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mixture was injected into the GC-FID to ensure that the compounds of interest could be 

efficiently separated (Figure 93).  Based on the separations that were obtained using the 

GC/FID, it was decided that the fractions would be collected at 4.00 – 10.50 minutes 

(fraction #1), 10.50 – 16.00 minutes (fraction #2), 16.00 – 20.00 minutes (fraction #3) 

and 20.00 – 28.00 minutes (fraction #4).  

For the collection of the fractions, the FID was turned off  (so that the sample would not 

be pyrolyzed) and a 10 ml glass vial containing a pre-cleaned gauze placed directly above 

the FID opening (hydrogen and air were not flowing only helium) (Figure 94).  

With the initial GC/FID trials, discrete fractions were not obtained (Figure 95). It was 

assumed that enough of the VOCs were not being trapped onto the gauze pad. In an effort 

to ensure that the majority of the VOCs were being trapped by the gauze pad, the GC 

column length was adjusted to within 3 cm of the “FID opening.”  In order to do this, the 

FID was disassembled by removing the parts shown in Figure 96.  

Figure 93: Chromatogram showing the separation of human scent compounds using the 5890 

GC/FID 
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Figure 94: Schematic showing collection of fractions using the GC/FID 

 

 
Figure 95: Overlaid chromatograms showing fractioned samples of a standard compound mixture 

obtained using a GC/FID followed by SPME-GC/MS analysis 
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Figure 96: Parts removed from FID to facilitate maximum trapping of VOCs onto gauze for 

fractionation  

 

* Diagram obtained from www.agilent.com 

*The parts removed were numbers 3 (collector nut), 5 (ignitor castle), 6 (ignitor glow pug assembly), 7 

(upper collector insulator), 8 (collector body) and 15 (Jets). 

 

 

The samples collected included a negative control, positive control and four fractions. 

The negative control involved allowing the helium gas to flow while the 10 ml glass vial 

containing the pre-cleaned gauze was inverted above the opening of the FID (no sample 

was injected). The negative control was collected for the duration of the analysis (28 

minutes). The positive control involved injecting 2 µl of a 200 ppm standard compound 

mixture onto the GC column; a 10 ml glass vial containing a pre-cleaned Dukal gauze 

was placed directly over the opening of the FID and the sample collected for the duration 
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of the analysis. This procedure was repeated for the collection of the fractions with each 

fraction being collected at the respective times. The samples were allowed to equilibrate 

for 24 hours then analyzed by SPME-GC/MS to determine if discrete fractions were 

obtained. Discrete fractions were obtained using liquid injections (Figure 97). 

 
Figure 97: Overlaid chromatograms showing fractioned samples of a standard compound mixture 

obtained using a GC/FID (FID disassembled) followed by SPME-GC/MS analysis 

 

  

Having obtained discrete fractions using liquid injections, the next step was to obtain 

discrete fractions from the injection of VOCs onto the GC/FID. A comparison was made 

between introduction of VOCs using the 7694 static headspace sampler that is attached to 

the GC/FID and SPME-HS injections. The various parameters for the headspace analyzer 

had to be optimized to determine which parameters resulted in the most VOCs detected 

by the FID. The initial method which was tried included a transfer line temperature of 
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200 
0
C, an oven temperature of 45 

0
C, a sample loop temperature of 60 

0
C, a GC cycle 

time of 34 minutes, vial equilibration time of 30 minutes, vial pressurization time of 0.1 

minutes, loop fill time and injection time of 0.3 minutes, carrier pressure of 7.7 psi and 

vial pressure of 19.9 psi. The vials initially used were 20 ml glass vials. The results 

obtained gave a maximum count of 1200 (Figure 98). In an effort to increase the VOCs 

being detected, the oven temperature for the headspace sampler was increased to 105 
0
C 

giving a maximum count of 2000 (Figure 99). The vial size was also decreased to 10 ml 

to after which the purge time was set to zero. The maximum counts obtained were 3000 

and 4000 (Figure 100 and Figure 101 respectively).  

 
Figure 98: Chromatogram showing human scent VOCs detected by GC/FID after injection by 

headspace sampler (initial trial) 
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Figure 99: Chromatogram showing human scent VOCs detected by GC/FID after injection by 

headspace sampler (headspace sampler oven temperature increased) 

 

Figure 100: Chromatogram showing human scent VOCs detected by GC/FID after injection by 

headspace sampler (20 ml glass vials replaced by 10 ml glass vials) 
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Figure 101: Chromatogram showing human scent VOCs detected by GC/FID after injection by 

headspace sampler (purge off) 

 

Once the count obtained was 4000, attempts to change the other parameters proved futile 

as the counts did not drastically changes. The optimum parameters for transfer of 

volatiles into the FID using the headspace sampler included; a transfer line temperature 

of 200 
0
C, an oven temperature of 105 

0
C, a sample loop temperature of 60 

0
C, a GC 

cycle time of 34 minutes, vial equilibration time of 30 minutes, vial pressurization time of 

0.1 minutes, loop fill time and injection time of 0.3 minutes, carrier pressure of 7.7 psi 

and 10 ml glass vials with a pressure of 19.9 psi.  

For the headspace sampler injections, 2 µl of a 200 ppm standard mixture was spiked into 

10 ml glass vials allowed to equilibrate for 24 hours then the VOCs extracted using the 

headspace sampler and introduced into the GC/FID. For the SPME injections, 2 µl of a 

200 ppm standard mixture was spiked into 10 ml glass vials allowed to equilibrate for 24 

hours followed by a 21 hour SPME extraction. The SPME fiber was then introduced into 
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the GC/FID. The area counts obtained for both methods were compared and it was 

determined that the SPME injections produced greater area counts than the headspace 

sampler (Figure 102). The maximum count obtained using the headspace sampler was 

4000 while using the established SPME method, the maximum count obtained was 

100000. All subsequent extractions and introduction of the VOCs into the GC/FID were 

performed using the established SPME method. 

Having determined that SPME extractions resulted in more compounds reaching the 

detector, 21 hour SPME extractions of gauzes spiked with human scent standard 

compounds were conducted. Single and triple SPME injections were performed into the 

FID and the samples sets collected. The results show that the triple SPME injections 

result in slightly greater numbers of compounds being obtained. Only the positive control 

and the fractions were performed in triplicates; the negative control was not. 

The optimized procedure for the fractionation of VOCs using the GC/FID was applied to 

hand odor samples. The collected fractions were analyzed using SPME-GC/MS and the 

GC/MS analysis performed in SIM mode to obtain discrete fractions. Samples were 

initially collected onto the Dukal brand gauzes but were changed to collection on the 

Johnson and Johnson brand as the results obtained in section 4.3 showed that this 

material released the compounds more readily than the Dukal brand gauze. The fractions 

collected using the Johnson and Johnson brand gauze were more prominent than the 

fractions collected on the Dukal brand gauze (Figure 105 - Figure 107). The results show 

that through the use of instrumental analyses, human scent samples can be separated into 

fractions which can be used to determine if human scent canines require entire VOC 

profiles or specific VOCs to produce a match. 
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Figure 102: Comparison between area counts obtained when VOCs were introduced into GC/FID 

using a headspace sampler and SPME 

 
 
Figure 103: Fractions collected on Dukal brand gauze from single SPME injection onto GC/FID 

followed by SPME-GC/MS 
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Figure 104: Fractions collected on Dukal brand gauze from triple SPME injection onto GC/FID 

followed by SPME-GC/MS 

 

Figure 105: Hand odor sample collected from a female subject, fractioned using GC/FID and 

collected on Dukal brand gauze followed by SPME-GC/MS analysis 
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Figure 106: Hand odor sample collected from a male subject, fractioned using GC/FID and collected 

on Johnson and Johnson brand gauze followed by SPME-GC/MS analysis 

 

  
 

Figure 107: Hand odor sample collected from a female subject, fractioned using GC/FID and 

collected on Johnson and Johnson brand gauze followed by SPME-GC/MS analysis 
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4.7. Discriminating between the hand odor of monozygotic and dizygotic twins 

using SPME-GC/MS 

Studies have demonstrated that specially trained canines can identify persons by the 

chemical components of his or her unique odor. In the case of twins, however, studies 

have shown that while canines can readily discriminate between dizygotic (DZ) twins 

they have difficulty discriminating between monozygotic (MZ) twins. In this experiment, 

scent from three sets of co-habitating DZ twins and three sets of co-habitating MZ twins 

were tested using Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry 

(SPME-GCMS) to determine if twins could be discriminated based on their scent.  

Comparisons which were made between the hand odor profiles of the DZ twin sets and 

the MZ twin sets showed that the there were greater differences in the VOCs of the hand 

odor profiles of the DZ twin sets than the MZ twin sets. The data were analyzed using 

Bray-Curtis similarity which showed greater similarity between the VOCs of MZ twins 

than the VOCs of DZ twins. The greatest similarity seen between a set of the DZ twins 

was 67 percent while between a set of MZ twins, the similarity was as great as 86 percent 

(Figure 108 - Figure 119). 

Researchers have theorized that odor similarities in twins could be attributed to shared 

environmental factors rather than direct genetic effect (43). This study was conducted 

with twin sets that were all cohabiting resulting in their environmental influences such as 

diet and social status being extremely similar. Despite these environmental similarities, 

differences between hand odor samples collected from the twin sets were determined. As 

greater differences were observed between the DZ twins than the MZ twins, these results 

are suggesting that odor could be more influenced by genes rather than environmental 
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factors. Since no two individuals are identical in their MHC genes except for identical 

twins, if VOCs comprising odor is indeed controlled by these genes, it is expected that 

greater differences should be seen in  the DZ twins as compared to  MZ twins.  

Figure 108: VOCs present in hand odor samples collected from a DZ boy and girl twin  

 

 
Figure 109: Dendrogram showing Bray Curtis Similarity between VOCs present in hand odor 

samples collected from a DZ boy and girl twin 
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Figure 110: VOCs present in hand odor samples collected from DZ twin girls 

 
 
 

Figure 111: Dendrogram showing Bray Curtis Similarity between VOCs present in hand odor 

samples collected from DZ twin girls  
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Figure 112: VOCs present in hand odor samples collected from DZ twin boys 

 
 

 

Figure 113: Dendrogram showing Bray Curtis Similarity between VOCs present in hand odor 

samples collected from DZ twin boys 
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Figure 114: VOCs present in hand odor samples collected from MZ twin girls 

 
 

 
 

Figure 115: Dendrogram showing Bray Curtis Similarity between VOCs present in hand odor 

samples collected from MZ twin girls 
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Figure 116: VOCs present in hand odor samples collected from MZ twin boys 

 

 
Figure 117: Dendrogram showing Bray Curtis Similarity between VOCs present in hand odor 

samples collected from MZ twin boys 
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Figure 118: VOCs present in hand odor samples collected from MZ twin boys 

 

 

 
Figure 119: Dendrogram showing Bray Curtis Similarity between VOCs present in hand odor 

samples collected from MZ twin boys 
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5. CONCLUSION 

This study was successful in using SPME-GC/MS to show that individuals including 

twins possess distinctive scent profiles which can be statistically differentiated. 

Subjecting collected human scent samples to various environmental conditions 

demonstrated that scent samples should be stored with minimal exposure to light to 

prevent changes in the overall scent profile of the sample. As was observed with three 

dimensional covariance mapping, the greatest changes were observed within the first 

three weeks of storage with minimal changes seen thereafter. It was also determined that 

even though overall scent profiles change over time, the primary odor constituents remain 

stable.  

The storage study also revealed differences in the odor profiles that can be obtained from 

a single individual on different materials. This study was conducted with three different 

materials, Dukal brand gauze, Kings Cotton and Johnson and Johnson brand gauze. It 

was determined that the Dukal brand gauze and the Kings Cotton which are 100 percent 

cotton did not release polar compounds such as alcohols as readily as the Johnson and 

Johnson brand gauze which is a cotton blend material. This shows the importance of 

collection material selection in the human scent community especially since numerous 

research groups are undertaking instrumental evaluation of human scent samples.   

Various sampling collection protocols such as contact/non-contact and passive/active 

collection protocols used for the recovery of human scent from objects were investigated. 

Differences in these collection methods were determined through the use of standard 

compounds previously reported as human scent compounds spiked onto stainless steel 

metal bars. The results showed that passive collection methods produce ten times more 
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VOCs by mass than active collection methods. Application of both passive and active 

collection methods to hand odor samples have shown that they provide inadequate VOCs 

for instrumental analysis. In the United States, active collection methods have 

traditionally been used for collection of human scent evidence while in Europe; passive 

collection methods have traditionally been used and both methods have proven to be 

adequate for discrimination purposes using canines. For instrumental analyses however, 

the collection technique has to be maximized to allow reliable detection and identification 

of human scent compounds. Despite these indirect collection techniques being adequate 

for canine use, instrumental analyses require techniques which trap more VOCs resulting 

in better instrumental detection and identification.  

Polymerase chain reactions were used to determine if there was a correlation between the 

amount of DNA that was deposited on an object after contact and the alerts that were 

produced by human scent identification canines. The results showed no correlation 

between the two variables. It was also determined that it was difficult to characterize 

individuals as shedders or non-shedders based on the amount of DNA that was deposited 

by individuals after they had been in contact with objects.  This study did reinforce that 

individuals do possess distinctive odor profiles and it appeared that the canine alerts were 

more dependent on the VOCs present in the hand odor samples than the amount of DNA 

deposited by each individual.  

Since the results of the previous task showed that the canines appeared to be more 

dependent on the VOCs that were present rather than the amount of DNA, the next phase 

of the research involved preparing fractions of human scent samples and presenting them 

to the canines to determine if canines were using specific VOCs as queues for a particular 
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persons odor profile or if the entire VOC profile was being used to identify an individual. 

Through the use of analytical instruments such as GC/FID and GC/MS, hand odor 

samples were successfully separated into fractions. The field trials with the canines were 

not conducted as there are very few human scent identification canines available and so 

police agencies that possess these canines are more amenable to case work rather than 

research. 

With this knowledge and ability to create fractions, fractioned hand odor samples can be 

presented to the canines to determine if the canines are alerting to specific VOCs or if the 

entire VOC profile is required for the canines to distinguish between individuals. Based 

on the results of these field trials, a prototype pseudo scent could be created which could 

be used for training purposes in order to provide more consistent training regiments for 

law enforcement thereby reducing possible challenges currently being faced in courts of 

law.  
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APPENDICES  

Appendix A 

Calibration Curves for human scent compounds 

Figure 120: Calibration curve for Octane 
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Figure 121: Calibration curve for Furfural 
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Figure 122: Calibration curve for 2-Furanmethanol 
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Figure 123: Calibration curve for !onane 
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Figure 124: Calibration curve for Heptanal 

y = 723025x - 427019

R2 = 0.9958
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Figure 125: Calibration curve for Propanedioic acid dimethyl ester 

y = 939285x - 2E+06
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Figure 126: Calibration curve for Benzaldehyde  

y = 2E+06x - 1E+06

R2 = 0.996
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Figure 127: Calibration curve for Phenol  

y = 1E+06x - 2E+06

R2 = 0.9929
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Figure 128: Calibration curve for 6-Methyl-5-hepten-2-one 

y = 1E+06x - 509430

R2 = 0.9969
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Figure 129: Calibration curve for Octanal 

y = 996078x - 4E+06

R2 = 0.9813
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Figure 130: Calibration curve for Benzyl alcohol  

y = 2E+06x - 6E+06

R2 = 0.9947
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Figure 131: Calibration curve for 2-Octenal (E) 

y = 975121x - 745758

R2 = 0.9963
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Figure 132: Calibration curve for 1-Octanol 

y = 1E+06x - 5E+06

R2 = 0.9965
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Figure 133: Calibration curve for !onanal 

y = 952644x + 221292

R2 = 0.9947
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Figure 134: Calibration curve for Phenylethyl alcohol 

y = 2E+06x - 7E+06

R2 = 0.9939
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Figure 135: Calibration curve for Octanoic acid methyl ester  

y = 1E+06x - 2E+06

R2 = 0.9943
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Figure 136: Calibration curve for 1-!onanol 

y = 2E+06x - 6E+06

R2 = 0.9918
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Figure 137: Calibration curve for !aphthalene 

y = 3E+06x - 4E+06

R2 = 0.9965
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Figure 138: Calibration curve for 2-Decanone 

y = 904816x + 4E+06

R2 = 0.9751
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Figure 139: Calibration curve for Dodecane 

 

y = 1E+06x + 7E+06

R2 = 0.9702
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Figure 140: Calibration curve for Decanal 

y = 1E+06x - 153485

R2 = 0.9955
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Figure 141: Calibration curve for Hexanedioic acid dimethy ester 

y = 2E+06x - 3E+06

R2 = 0.9977
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Figure 142: Calibration curve for Tridecane 
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Figure 143: Calibration curve for Undecanal 

y = 1E+06x - 302737

R2 = 0.9959
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Figure 144: Calibration curve for n-Decanoic acid 

y = 2E+06x - 1E+07
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Figure 145: Calibration curve for Tetradecane 

y = 1E+06x + 7E+06

R2 = 0.9719
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Figure 146: Calibration curve for Dodecanal 

y = 1E+06x - 255357

R2 = 0.996
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Figure 147: Calibration curve for 6, 10-Dimethyl-5, 9-undecadien-2-one 
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Figure 148: Calibration curve for Pentadecane 
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Figure 149: Calibration curve for Tridecanal 

y = 1E+06x - 632709

R2 = 0.9959
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Figure 150: Calibration curve for Dodecanoic acid methyl ester 

y = 2E+06x + 8E+06

R2 = 0.8103
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Figure 151: Calibration curve for Dodecanoic acid 

 

y = 2E+06x - 2E+07

R2 = 0.9977

-20000000

0

20000000

40000000

60000000

80000000

100000000

0 10 20 30 40 50 60 70

Mass (ng)

P
e

a
k

 A
re

a

 
 

 

 

 

 

 

 



 209 

Figure 152: Calibration curve for Hexadecane 

y = 1E+06x + 8E+06

R2 = 0.9722
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Figure 153: Calibration curve for Heptadecane 

y = 2E+06x + 1E+06

R2 = 0.9935
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Figure 154: Calibration curve for Methyl tetradecanoate 

y = 2E+06x - 3E+06

R2 = 0.9962
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Figure 155: Calibration curve for Pentadecanoic acid 

y = 1E+06x - 2E+07

R2 = 0.9986
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Figure 156: Calibration curve for Hexadecanoic acid methyl ester 
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Appendix B 

Protocol for DNA extraction and PCR analysis for DNA present in hand odor samples 

collected on pre-cleaned Solon cotton tipped swabs  

I. Principle 

To extract HMW DNA from swabs obtained individuals after holding pre-cleaned 

Solon cotton tipped swabs for 10 minutes between the palms of their hands.  The 

procedure will be based on the Qiagen QIAamp
®

 DNA Micro Kit and the recovered 

DNA will be used for microbial DNA profiling. 

II. General Safety Requirements 

1. Always wear lab coat and gloves. 

2. Do not pipette by mouth. 

III. Essentials 

(A)  Reagents (QIAamp
®

 DNA Micro Kit) 

Proteinase K 

Buffer ATL  

Buffer AL 

(96 – 100%) ethanol 

Buffer AW1 

Buffer AW2 

Buffer AE 

(B) Supplies 

QIAamp
®

 DNA MicroElute columns 

Pipettes and tips (2 µl, 10 µl, 20 µl, 200 µl, 1000 µl) (calibrated/certified 

Rainin pipettes dedicated to casework) 

Sterile microcentrifuge tubes (1.5 and 2 µl) 

(C) Equipment 

Tweezers 

Centrifuge (Eppendorf, 5415D) 
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Thermomixer (Eppendorf, AG) 

Vortex (Daigger, Vortex Genie 2) 

II. Procedure 

1. Preparation of work bench and supplies 

1.1. Turn on laboratory UV light for 1 hour prior to procedure. 

1.2. Turn off UV light. 

1.3. Turn on visible light. 

1.4. Clean bench space with 5% hypochlorite, water and ethanol. 

1.5. Cut enough VersiDry (Fisher Scientific) to cover the area that will be used for 

the extraction. 

1.6. Set thermomixer to 56 °C. 

 

2. Sample preparation 

2.1. Use tweezers to transfer one (already pre-cut swab) from the sample container 

to a 2 ml micro centrifuge tube. 

!OTE: Tweezers should be decontaminated between samples in 

95-100% ethanol and allowed to dry before transferring the next 

sample swab.  

3. Extraction 

3.1. Add 20 µl Proteinase K to the sample. 

3.2. Add 400 µl Buffer ATL to the sample. Mix by pulse vortexing for 10 s. 

3.2.1.1.!OTE: DO !OT add Proteinase K directly to Buffer ATL.  

3.3. Incubate sample at 56 °C with shaking for at least 1 hour.  

3.4. Briefly centrifuge samples to remove drops from inside the lid. 

3.5. Add 400 µl Buffer AL to the sample, close the lid and mix by vortexing 

3.5.1.1.for 15 s.  

3.6. Incubate tubes at 70 °C with shaking at 900 rpm for 10 min. 

3.7. Briefly centrifuge the tube to remove drops from inside the lid. 
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3.8. Add 200 µl ethanol (96-100%) and mix by vortexing for 15 s. 

3.9. Briefly centrifuge to remove drops from inside the lid. 

3.10. Carefully transfer the entire lysate to a QIAamp MiniElute Column 

without wetting the rim. 

3.11. Close the lid and centrifuge at 6000 x g for 1 min. 

3.12. Place the QIAamp MiniElute Column in a clean 2 ml collection tube and 

discard the tube containing the filtrate. 

3.13. Carefully open the QIAamp MiniElute Column and add 500 µl Buffer 

3.14. AW1 without wetting the rim. 

3.15. Close the lid and centrifuge at 6000 x g for 1 minute.  Place the column in 

a new 2 ml collection tube and discard the tube containing the filtrate.  

3.16. Carefully open the QIAamp MiniElute Column and add 500 µl Buffer 

3.17. AW2 without wetting the rim. Close the lid and centrifuge at 6000 x g for 

1 minute 

3.18. Place the QIAamp MiniElute Column in a new 2 ml collection tube and 

discard the tube containing the filtrate. 

3.19. Centrifuge at 20,000 x g for 3 minutes. 

3.20. Place the QIAamp MiniElute Column in a sterile 1.5 ml microcentrifuge 

tube and discard the tube containing the filtrate.  

3.21. Carefully open the QIAamp MiniElute Column and add 30 µl Buffer AE.   

3.22. Incubate at room temperature for 1 minute, and then centrifuge at 20,000 x 

g for 1 minute. 

3.23. Label and store at 4 °C until ready to dilute. 
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Appendix C 

Protocol for DNA extraction and quantitation from telogen shed hair 

 

 

I. Purpose 

To extract and purify human DNA from telogen (shed) hairs 

II. Safety 

All laboratory safety procedures will be complied with during this procedure. 

III. Reagents, Supplies, and Equipment 

Reagents: 

Differential extraction buffer (DEB) 

Proteinase K 

Hair Extraction Buffer (HEB) 

DTT 

0.9% NaCl solution 

Absolute ethanol 

70% Phenol/Chloroform/Water (PCH2O) 

PCR ddH2O 

Supplies: 

600 µL flat cap tubes 

100-1000 µL pipettor 

100-1000 µL barrier pipet tips 

10-100 µL pipettor 

10-100 µL barrier pipet tips 
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0.5-10 µL pipettor 

10XL µL barrier pipet tips 

Microcon YM-30 Filtration columns 

Gloves 

Tweezers 

Kim Wipes 

15 mL centrifuge tubes 

Equipment: 

Shaking water bath 

Tube racks 

Waterproof container 

Analytical Balance 

Microcentrifuges 

IV. General 

a. Procedure will be used for extracting and purifying human DNA from 

telogen hairs 

b. Procedure will be used as necessary for research 

c. Gloves should be worn at all times 

d. Phenol chloroform should be used in the hood 

V. Procedure 

a. Add 300 µL of  DEB to tubes containing hair samples 

b. Add 2 µL of Proteinase K to each tube, and use pipet tip to push hair down 

into the solution. 
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c. Place capped tubes 1 half of tube rack, and place tube rack in waterproof 

container. 

d. Place container in shaking water bath that has been preheated to 56° C and 

shake for 2 hours. 

e. Remove tubes from bath, and spin down in centrifuges. Remove buffer 

from tubes without removing hair using the 100-1000 µL pipettor and 

barrier tips.  Change tips between samples. If extraction is to be done on 

differential buffer, transfer to a new 600 µL tube and label and set aside. 

f. Add 500 µL of the 0.9% NaCl to each tube.  Remove NaCl solution 

without removing hair. 

g. Add 500 µL of absolute ethanol to each tube.  

h. Label new 600 µL tubes for each sample. Remove hairs from ethanol and 

transfer to appropriate new tube with tweezers. Clean and dry tweezers 

between samples. 

i. Weight out 15 mg of DTT, and add to 15 mL of HEB in 15 mL tubes. 

Shake to dissolve DTT. 

j. Add 300 µL of HEB with DTT to each new sample tube. 

k. Add 4 µL of Proteinase K to each tube, and use pipet tip to push hair down 

into the solution. 

l. Place capped tubes 1 half of tube rack, and place tube rack in waterproof 

container. 

m. Place container in shaking water bath that has been preheated to 56° C and 

shake for 2 hours. 



 218 

n. Remove tubes from bath, and spin down in centrifuges. 

o. Add 300 µL of PCH2O to each sample tube. Work in the fume hood. 

Shake tube until solution is milky. (Add to differential buffers at this time 

if extracting from those buffers). 

p. Centrifuge tubes at 5000 rpm for 2 minutes. 

q. Assemble Microcon filters and label for each sample. 

r. Remove aqueous (top) layer and transfer to filter cup of Microcons. Use 

the 10-100 µL pipettor and tips, and be careful not to remove any of the 

organic (bottom) layer. 

s. Spin tubes at 13,000 rpm for 12 minutes. Discard filtrate. 

t. Add 200 µL PCR ddH2O to filter cup. 

u. Spin tubes at 13,000 rpm for 12 minutes. 

v. Remove caps from Microcon tubes and label for each sample. 

w. Add 60 µL of PCR ddH2O directly to filter in filter cup. Invert cup into 

capless tubes. 

x. Spin at 5000 rpm for 2 minutes. 

y. Discard filter cup and cap tubes. Store at 4°C overnight before 

quantification. 
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Alu-based Real-Time PCR Quantitation Method for telogen shed hairs 

 I.  Purpose  

To quantify human DNA using Real Time PCR, Alu primers, and SYBR Green I 

dye.  

 II.  Safety  

All laboratory safety procedures will be complied with during this procedure. SYBR 

Green Dye is a mutagen/carcinogen. Appropriate handling procedures should be 

followed.  

 III.  Reagents, Supplies, and Equipment  

Reagents 

SYBR Green I dye 

DMSO  

PCR ddH20  

10* ABI Buffer I 

MgCl2 (25 mM) 

dNTPs (2.5 mM)  

Amplitaq Gold or RampTaq hot start Taq polymerase (5U/µL) 

Triton X l00 (l0% solution)  

Nonacetylated BSA (20 mg/mL)  

Alu primers, numbers 1 and 2 for large fragments, 1 and 60 for small fragments (l00 

pmol/µL)  
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9948 DNA standard 

Supplies 

0.2 mL flat cap PCR tubes  

2 mL flat cap micro centrifuge tubes 

Rainin 0.5-10 µL pipet tips  

10-100 µL pipet tips  

Rainin electronic pipettor (multichannel, 0.5-10 µL) 

10-100 µL pipettor  

Gloves  

Bench paper  

Equipment 

Rainin electronic pipettor (multichannel, 0.5-10 µL) 

10-100 µL pipettor  

Corbett Rotor Gene 3000 Real Time PCR 

36 sample rotor  

IV. General 

1. Procedure will be used for preparing and quantifying extracted human 

genomic DNA samples 

2. Procedure will be used as necessary for research. 

3. Gloves should be worn at all times. 
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V. Procedure 

1. Preparation of 0.5 % working solution of SYBR Green I (Molecular Probes, 

Eugene, OR) 

a. Take 1µL of 10,000X concentrated Sybr Green I and add 199 µL of 

DMSO. Prepare aliquots for future use. 

2. Prepare DNA standards. 

a. Use 9948 DNA standard, dilute to 1, 0.1 and 0.05 ng/µL for LCN, or  

b. Use 9948 as l0 ng/µL and dilute to 1 ng/µL and 0.1 ng/µL for 

buccal swab samples 

3.  Prepare DNA samples to be quantified: spin down before opening tubes.  

4. Prepare 36 flat-top tubes, label them on the cap. Of the 36, label 2 sets of 

standards and 1 NTC (no template control). 

5. Prepare and vortex Alu Mix for 36 samples:  

a. Mix 542.0 µL PCR H20, 84.0 µL 10* ABI Buffer I, 67.0 µL dNTPs, 

50.0 µL MgCl2, 14 µL Taq polymerase, 8.4 µL Alu Primer 1 

(forward), 8.4 µL Alu Primer 2 (large) or 60 (small) (reverse), 8.4 µL 

TritonX 10%, 8.4 µL SYBR green solution, 8.4 µl BSA in 2 ml tube.  

b. Spin down before opening tube. 

6. Pipet 19 µL of Alu Mix into labeled PCR microtubes.  

7. Add DNA  

a. Add 1 µL of standard or DNA sample to each tube.  

b. Add 1 µl ddH20 to NTC tube.  

c. Vortex and mix.  
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d. Remove bubbles and spin down.  

8.  Turn on PC and turn on the Rotor Gene instrument  

9. Clean accessible optics with cotton Q-tip and ethanol. 

10. Place tubes on the appropriate wells of the carousel and place ring on top. 

Align carousel in the chamber. Screw in the cap with the red dot on top. Close 

cover. 

11.  Select SYBR Green program and click "New"  

12. Edit profile (if needed)  

Denature                                  95 
0
C 10 minutes 

Denature                                  96 
0
C 10 seconds 

Cycles                                      45 

Cycling                                    95 
0
C 15 s, 55 

0
C 20 s, 72 

0
C 20 s 

          acquiring to cycling onSybr Green             

Melt: Ramp from                      72 
0
C to 99 

0
C 

Rising by 1°C each step            1 
0
C each step 

14. Start run, go to correct folder to name an experiment with "dateName 

samples".  

15. During run, fill the sample table: distinguish between DNA samples, no 

template control (NTC), and standards. Fill in the given concentrations in the 

"given concentration" column for standards and sample names for other 

sample tubes.  
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16. When experiment is completed, click Analysis-Quantitation-Show. New 

windows will appear and a box in the middle - click Cancel.  

17. Fill: 

Slope correct                        on 

Eliminate cycles before        5 

Threshold                             default (0.03) 

When the box comes up, click OK 

18. The standard curve, fluorescence threshold cycle (Ct) and concentrations of 

samples will be calculated. The standard curve should have an efficiency and r 

value close to 1.00. You can choose to exclude those standard samples that cause 

give errors.  

19. If raw data is good but not quantitated, click on the "quantitative settings" and 

decrease the threshold to 2% (1 %).  

20. Click "reports" in the upper left of the Quantitation window - Full Report Send 

to Word and save.  

21. Click Analysis-Melt.  

22. Check if melting curve has two peaks (first is smaller).  
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Appendix D 

Glossary of Terms 

Headspace Sampling 

The protective sheath of the SPME fiber pierces the septum of the vial containing the 

sample. The plunger is lowered to immerse the SPME fiber to the space above the 

sample. The SPME fiber does not come into contact with the sample. 

Flame ionization detector (FID) 

Flame ionization detector is one of the most widely used detectors for gas 

chromatography. It possesses a burner in which the effluent from the GC column is 

mixed with air and hydrogen and then ignited electrically. Most organic compounds can 

be pyrolyzed in the hydrogen/air flame, producing ions and electrons that can conduct 

electricity. A collector is present which can measure the electricity produced which is 

proportional to the amount of sample which was burnt. 

Limit of Detection (LOD) 

This can be defined as the lowest quantity of a substance that can be distinguished from 

the absence of that substance (a blank value) within a stated confidence limit. 

Covariance Matrix 

A matrix in which the rows and columns are variables and the entries are covariances.  

STU-100
™

 – Scent Transfer Unit 

This is a portable vacuum that uses airflow to capture volatiles from an article of 

evidence onto a sorbent material.  

Lux  

This is a measurement of light intensity. E.g. a brightly lit office would be 400 lux.  



 225 

UVA/UVB Light – Ultra violet light 

Ultra violet light is electromagnetic radiation which is found as part of the radiation 

received by the earth from the sun. 

D1A 

DNA stands for deoxyribonucleic acid and it is the genetic material which is found in the 

nucleus of cells. 

PCR – Polymerase Chain Reaction 

This is a technique used in molecular biology to amplify small quantities of DNA. It 

consists of three steps; (1) denaturation, (2) annealing and (3) extension/elongation. 

RFLP  - Restriction length polymorphism  

This is the variation in the DNA sequence of a genome. It can be detected by breaking the 

DNA into pieces using restriction enzymes and analyzing the size of the resulting 

fragments using gel electrophoresis. 

STR – Short tandem repeat  

In DNA, this is a type of polymorphism that occurs when a pattern of two or more 

nucleotides are repeated with the repeated sequences next to each other. 

Thermochron I-Buttons 

This is a programmable device that contains a temperature sensor, a real time clock and 

memory for data storage.  

Passive Collection  

This is the collection of volatiles without the use of airflow. 

Dynamic/Active Collection  

This is the collection of volatiles with the use of airflow from the STU-100
TM

. 
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Monozygotic Twin 

Monozygotic twins are also known as identical twins and originate from the same 

fertilized ovum and sperm. 

Dizygotic Twin 

Dizygotic twins are known as fraternal twins are produced from two eggs separately 

fertilized by two sperms resulting in the twins not possessing identical DNA. 
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