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ABSTRACT OF THE DISSERTATION 

AN EPISTEMIC EVENT-BASED CORRELATION SCHEME FOR  

PERVASIVE NETWORK MANAGEMENT 

by 

Vinayak Ganapathy 

Florida International University, 2008 

Miami, Florida 

Professor Niki Pissinou, Major Professor 

Computer networks produce tremendous amounts of event-based data that can be 

collected and managed to support an increasing number of new classes of pervasive 

applications. Examples of such applications are network monitoring and crisis management.  

Although the problem of distributed event-based management has been addressed in 

the non-pervasive settings such as the Internet, the domain of pervasive networks has its own 

characteristics that make these results non-applicable. Many of these applications are based on 

time-series data that possess the form of time-ordered series of events. Such applications also 

embody the need to handle large volumes of unexpected events, often modified on-the-fly, 

containing conflicting information, and dealing with rapidly changing contexts while producing 

results with low-latency. Correlating events across contextual dimensions holds the key to 

expanding the capabilities and improving the performance of these applications. 

This dissertation addresses this critical challenge. It establishes an effective scheme for 

complex-event semantic correlation. The scheme examines epistemic uncertainty in computer 

networks by fusing event synchronization concepts with belief theory. Because of the 

distributed nature of the event detection, time-delays are considered. Events are no longer 
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instantaneous, but duration is associated with them. Existing algorithms for synchronizing 

time are split into two classes, one of which is asserted to provide a faster means for 

converging time and hence better suited for pervasive network management. 

Besides the temporal dimension, the scheme considers imprecision and uncertainty 

when an event is detected. A belief value is therefore associated with the semantics and the 

detection of composite events. This belief value is generated by a consensus among 

participating entities in a computer network. The scheme taps into in-network processing 

capabilities of pervasive computer networks and can withstand missing or conflicting 

information gathered from multiple participating entities. 

Thus, this dissertation advances knowledge in the field of network management by 

facilitating the full utilization of characteristics offered by pervasive, distributed and wireless 

technologies in contemporary and future computer networks. 

 



viii 

TABLE OF CONTENTS 

CHAPTER PAGE 

CHAPTER 1 ................................................................................................................................................ 1 
1. Introduction ...................................................................................................................................... 1 

1.1 Preamble ................................................................................................................................... 1 
1.2 Background .............................................................................................................................. 2 
1.3 Epistemic Theory and Event Correlation .......................................................................... 4 
1.4 Motivation ................................................................................................................................ 9 
1.5 Problem Statement .............................................................................................................. 10 
1.6 Hypothesis ............................................................................................................................ 11 
1.7 Objectives .............................................................................................................................. 12 
1.8 Significance & Contribution .............................................................................................. 13 
1.9 Methodology ......................................................................................................................... 14 
1.10 Organization of the Dissertation .................................................................................... 14 

 
CHAPTER 2 ............................................................................................................................................. 15 

2. Related Work ................................................................................................................................. 15 
2.1 Introduction .......................................................................................................................... 15 
2.2 Literature on Time Synchronization ................................................................................ 16 
2.3 Literature on Event-based Technologies ........................................................................ 17 

2.3.1 Correlation domain ................................................................................................... 20 
2.3.2 Correlation logic ........................................................................................................ 22 
2.3.3 Correlation architecture ............................................................................................ 25 

2.4 Distributed event correlation ............................................................................................. 26 
 
CHAPTER 3 ............................................................................................................................................. 29 

3. Synchronizing Time ...................................................................................................................... 29 
3.1 Introduction .......................................................................................................................... 29 
3.2 Real-Time Clock (RTC) ...................................................................................................... 29 
3.3 Security................................................................................................................................... 30 
3.4 Stability................................................................................................................................... 31 
3.5 Comparison of Methods of Time Synchronization ...................................................... 32 
3.6 Background ........................................................................................................................... 32 
3.7 Assumptions ......................................................................................................................... 33 
3.8 Analysis .................................................................................................................................. 35 

3.8.1 Comparison with reference to convergence of time .......................................... 35 
3.8.1.1 LS strategy ............................................................................................................ 36 
3.8.1.2 GS strategy ........................................................................................................... 37 

3.8.2 Comparison with reference to mobility ................................................................ 40 
3.8.2.1 Mobility and LS strategies ................................................................................. 40 
3.8.2.2 Mobility and GS strategies ................................................................................ 41 

3.8.3 In terms of stochastic time-delay............................................................................ 42 
3.9 Simulation.............................................................................................................................. 42 
3.10 Conclusion .......................................................................................................................... 44 



ix 

CHAPTER 4 ............................................................................................................................................. 45 
4. Exploiting Epistemic Uncertainty .............................................................................................. 45 

4.1 Introduction .......................................................................................................................... 45 
4.2 Candidate 1: Bayesian theory ............................................................................................. 45 
4.3 Candidate 2: Dempster-Shafer’s theory ........................................................................... 48 
4.4 Assumptions ......................................................................................................................... 51 
4.5 Model ..................................................................................................................................... 51 
4.6 Simulation.............................................................................................................................. 54 
4.7 Drawbacks – Location awareness .................................................................................... 59 
4.8 Conclusion ............................................................................................................................ 60 

 
CHAPTER 5 ............................................................................................................................................. 61 

5. Conclusions .................................................................................................................................... 61 
5.1 Contribution ......................................................................................................................... 61 
5.2 Future Work ......................................................................................................................... 62 

5.2.1 Location Awareness .................................................................................................. 62 
5.2.2 Security and Trustworthiness .................................................................................. 63 

 
LIST OF REFERENCES ...................................................................................................................... 64 
 
APPENDICES ......................................................................................................................................... 70 
 
VITA ........................................................................................................................................................... 88 

  



x 

LIST OF FIGURES 

FIGURE PAGE 

Figure 1: Simple message routing on the Internet ................................................................................ 5 
 
Figure 2: Distributed event correlation ................................................................................................... 7 
 
Figure 3: Describing relation between d, h and L for case I. ............................................................ 38 
 
Figure 4: Describing relation between d and L for case II. .............................................................. 39 
 
Figure 5: Convergence time vs. probabilities when n = 9. ................................................................ 42 
 
Figure 6: Convergence time vs. probabilities when n = 55. ............................................................. 43 
 
Figure 7: Convergence probabilities in 500m × 500m ...................................................................... 44 
 
Figure 8: Correlation transformations (Ki). .......................................................................................... 46 
 
Figure 9: Architecture showing correlation transformation. ............................................................ 48 
 
Figure 10: Typical pervasive environment modeled as Wireless Sensor/Actuator Network .... 53 
 
Figure 11: Changes in belief and conflict in probable causes as a function of hop-count. ........ 55 
 
Figure 12: Changes in belief in an unusual pervasive environment. ............................................... 56 
 
Figure 13: Changes in belief in a pervasive environment partitioned by a Firewall. .................... 57 
 
Figure 14: Average increase in message bandwidth for an edge manager entity. ......................... 58 
 
Figure 15: Average increase in message bandwidth for a central manager entity. ....................... 59 
 
Figure 16: Relation between agreement and bandwidth consumed for location aware nodes. . 62 



1 

C H A P T E R  1  

1. INTRODUCTION 

“God couldn’t wanted to be everywhere, so he created mothers computer networks.”  
– Jewish Proverb 

“Logic will get you from A to B. Imagination Computer networks will take you everywhere.” 
– Albert Einstein 

 

1.1 Preamble 

The scope of managing computer networks, known as ‘network management’ in 

common parlance, encompasses the entirety of computer networks today. What makes it 

difficult, challenging and complex is the fact that computer networks have been growing 

rapidly – so rapid that the reader would certainly feel inconvenience in finding suitable 

definitions for the terms ‘computer’ and ‘networks’ covering the complete spectrum of 

technologies, and, devices and equipment implementing those technologies. It is imperative 

that no single network management technology can claim to manage a subset of computer 

networks, let alone the myriad universe of computer networks, the technologies behind them, 

and, the services supported by them. 

And yet, it is human endeavor to research for that one universal solution, that one 

silver bullet which will solve the entire problem of network management with mathematical 

certainty. This dissertation is an attempt to belong to the research body whose goal is to make 

this dream a reality – a tribute and support to scientists and engineers who have put countless 

hours of efforts in building and managing computer networks in the past, those who have 

taken charge of it at present, and those who shall do so in future, so as to support and elevate 

the standard of living and general well-being of mankind. 
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1.2 Background 

In 1990-2000 decade, it was recognized that unlike the widespread adoption of 

Internet for enterprise scale transactions, there was no parallel for “monitoring and managing 

information that flows through the global information systems” [40]. Given the explosive 

growth of computer networks [9, 10] and ease with which they percolated all spheres of 

human activity, this observation was surprising. It spawned a lot of research concentrating on 

streamlining fundamental issues behind Internet-scale networking, for example traffic flows 

[61] and privacy [46], and led to the conclusion that to understand the activities, operation and 

behavior of computer networks, and then forecast their operational, administrative, 

management and provisioning states requires management of tremendous amounts of event-

based data produced therein. 

Events have been used to describe ‘occurrences of interesting phenomena’ in a system 

[40]. Depending on context, the physical interpretation of events varies, for example, as in [35, 

40, 46]. The concept of events let to an obvious research area – Simple Event Correlation (not 

related to Simple Event Correlator (SEC) [65]). Simple event correlation is essentially a set of 

Event-Condition-Action (ECA) rules for inference-based network management systems [32, 

24, 68]. Over time, the process was refined, and currently, a number of methods exist for this 

kind of network management, also known as ‘deterministic’ event management. Prominent 

methods which are currently used in popular commercial network management systems are 

decision trees [27, 49], and Codebook/Correlation Matrix [57, 68]. These network 

management systems are deterministic because decision trees and correlation matrices are 

‘static’ – a decision connecting a known set of inputs to a given result must be known prior to 

programming the network management system.  
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While such systems have been highly successful in the past [3, 5], new security 

vulnerabilities coupled with edges of networks gaining more computing power, are forcing 

network management systems based on such methods in becoming burdened with too many 

rules. Artificial Intelligence (AI) has been used to circumvent this problem, however, such 

methods till date are either offline, or require tremendous modeling data to be effective [64]. 

While there is no dearth of modeling data, such models frequently fall behind real-time 

restrictions imposed on network management systems, especially as pervasiveness progresses. 

Complex correlation of events is gaining reputation as a fast and lean alternative to 

above mentioned methods for network management [7]. Unlike simple event correlation, 

complex correlation uses multiple dimensions to carry out correlation – instead of correlating 

only on primitive events generated by agents or proxies, scope of events is broadened to a 

higher level by correlating timing data in events [17] and topographical information concerning 

where the events were generated (spatio-temporal or contextual correlation) [7, 35, 52]. These 

techniques for correlating events are now clubbed under a common title: Complex Event 

Processing (CEP), a term given by [40]. Most of the work, even till date still relates to business 

processing environments [63] and application layer integration [16]. To the best of author’s 

knowledge, no application of CEP currently exists or is being pursued in the area of network 

management. The reasons for this are two-fold: 

(a) Unless CEP is integrated with techniques which allow fair amount of distributivity 

over event processing, it is unlikely to be a popular network management tool which 

can be integrated into managers and managed devices and equipment. In context of 

pervasive systems, distributing network management load among a handful of 

powerful servers does not constitute distributed network management. 



4 

(b) Classical CEP (primitive event composition to obtain composite events) can be 

reduced to the traditional decision tree/correlation matrix methods yielding just 

another programmatic way to handle incoming event information (e.g., Simple Event 

Correlator (SEC) [65]). 

Furthermore, pervasive computer networks have their own characteristics [1] which 

are not amenable to either contemporary techniques or CEP techniques as is: 

(a) Many applications of pervasive computer networks are based on ‘time-series’ data. 

This means that management traffic flowing for such applications will contain a time-

ordered series of events. This temporal dimension forces the consideration of events 

to be associated with duration rather than being instantaneous [17]. 

(b) Most applications of pervasive computer networks need to handle large volumes of 

events. Many times, events may turn unexpectedly fulminant, are often modified on-

the-fly, are heavily dependent on topography of the computer network, contain 

conflicting information and deal with rapidly changing contexts, and are constrained to 

provide results with low latency. 

1.3 Epistemic Theory and Event Correlation 

This dissertation proposes to extend CEP techniques by considering uncertainty in 

decision regarding correlation of events. The reason for this proposition, aimed at a departure 

from ‘deterministic’ network management, is elucidated by an example as follows.  
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Figure 1: Simple message routing on the Internet 

From Figure 1, consider that an entity A wishes to know if an entity B somewhere in 

the Internet is available for communication. Typically, entity A will send an Internet Control 

Message Protocol (ICMP) control message, more commonly known as a ‘ping’, to gateway G, 

which will route the ICMP message across the Internet via a series of routing elements that can 

determine the route to entity B. If all goes well, entity B will respond back favorably to the 

ICMP control message of entity A. However, if entity A fails to obtain a response from entity 

B, the failure can be attributed to any of the following probable causes: 

(a) Transmission Control Protocol/Internet Protocol (TCP/IP) stack embedded in entity 

B has faulty or disabled ICMP module: Since TCP/IP stack is essentially a piece of 

configurable software, a given operating system (OS) platform may choose to disable 

portions of the software, may have an altered design, may be working under reduced 

resource availability, etc. – a number of reasons by which the TCP/IP stack may not 

operate as per the actual protocol specifications. 

(b) ICMP messages are blocked within the network: Since Firewalls are typically designed 

to ignore ICMP messages by default, entity A will never know if the ICMP message 

actually reached entity B. Typically, a Firewall embedded in entity A will automatically 

discard the ICMP message with no local interactive notification regarding the behavior. 

G A

B
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(c) Entity B is disconnected: Physical connectivity to entity B may be absent. 

(d) Entity B is shutdown: Entity B may not be at a ‘run-level’ at which networking services 

are operational, or, may have entered a reduced power state, or, might have simply 

been shut down for say, replacement. 

(e) ICMP Time-to-Live (TTL) expired in transit: The route between communicating 

entities A and B might contain higher number of intermediate relay entities than the 

intervening communicating protocol negotiation allows for. 

Except for reason mentioned in (e), no other reason will ever let entity A know the 

true reason for the failure behind communication of ICMP control message. The importance 

of true knowledge of failure increases with the fact that entities A or B are representing 

important customers, or are critical devices, or have stringent Service Level Agreements 

(SLAs) – any of which can be important to the business within the computer network.  

In traditional network management or classical CEP, reasons (a) through (d) will be 

assigned equal probabilities as a probable cause – ‘unbiased’ or ‘desperate’ assignment. This 

assignment is more popularly known as Laplace’s Principle of Insufficient Reason [53]. This 

means that if the entity, A, is a network manager, it can inform technicians and administrators 

in charge of the computer network that entity B is not accessible, but it cannot tell them the 

reason for the failure. At best, it can make an educated guess (for example, in reason (e), where 

an intermediate entity, such as gateway G sends a TTL expiry message to entity A notifying the 

exact cause of the problem). Otherwise, it can only claim that reasons (a) through (d) may have 

occurred with equal probability. Then, the problem is how can a network management system 

gain higher situational awareness so that network managers can make a more informed 

decision regarding the state of the computer network? 
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A two pronged approach may be used to solve this problem: 

(a) Use the knowledge of entities C, D,... present in the computer network (such as, use of 

contextual correlation of data; Figure 2), 

(b) Avoid desperation in determining probable causes by other means (such as, use of 

historical or expert data). 

 
Figure 2: Distributed event correlation 

It is intended to exploit knowledge possessed by such entities present in the computer 

network that can potentially provide historical or ‘expert’ data regarding communication with 

entity B (the entity in question). Such entities (entities C and D in Figure 2) can facilitate 

management entities (entities A and G in Figure 2) to enhance decision-making capabilities 

regarding failures – knowledge can be exploited via combination of contextual dimensions. 

New flavors of SNMP (for example, v3, supporting AgentX protocol [12]) allow dynamic 

Agent-Agent, Manager-Manager communication and makes this scenario industrially feasible. 

The process of determining a probable cause when given a (set of) symptom(s) can be 

considered to be the process of induction – determine and generalize behavior of the system 

given how a small subset of the system is operating. The system in question could possibly be 

as large as the Internet, and a small subset is considered as a part of this computer network, for 

example, the sub-network as shown in Figure 2. 

G A

B

D

C
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When all possible symptoms are known, the decision regarding the computer 

network's affliction or amelioration can be obtained using decision trees and 

codebooks/correlation matrices (deterministic network management). However, all possible 

symptoms may not be known, decision trees may not be correct, and codebooks/correlation 

matrices may contain insufficient hamming distances between probable causes. Assuming that 

all available historical data is considered to have the form of events flowing within or across 

the computer network, there might be uncertainty in knowledge regarding the available 

historical data, and, more often than not, there might not be enough available historical data, 

even if tremendous amounts of it flowed by in the past.  

Epistemic theory [45] may be considered as an appropriate technique in dealing with 

such uncertainty. In particular, to account for incompleteness and causality – two important 

factors concerning event processing for network management, this dissertation considers 

Dempster-Shafer’s theory [55] as a suitable flavor to analyze the network management 

problem [8]. Dempster-Shafer’s theory is useful whenever symptoms and probable causes 

cannot be fully enumerated or when data characterizing them is missing [54]. Also, apart from 

accommodating for missing or conflicting evidence, Dempster-Shafer’s theory can combine 

these from multiple sources of data, whether they are in agreement or in conflict. Such features 

make the theory useful when data precision is compromised, or, is obtained based on 

previously collected domain knowledge of unverifiable origin. Computer networks neatly fall 

in such a category – uncertainty which results from lack of knowledge about the system, and 

depends heavily upon attributes of the measuring entity. The nature of evidence collected for 

generating consensus may vary across contextual dimensions. 
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1.4 Motivation 

Motivation behind this dissertation comes from work carried out at 

Telecommunications & Information Technology Institute (IT²), Florida International 

University, to obtain competitive research funding in the area of secure and context aware 

sensor networks. 

Research carried out by the author’s major professor suggests that rapid growth of 

computer networks entails that network management systems must adopt event-based 

technologies to keep up with growth and diversity [47]. It has been shown that due to 

numerous advantages offered by event-based technologies, network management systems are 

robust and flexible. They are robust because even if a portion of a network fails or is afflicted – 

the distributed system architecture allows them to localize, partition and contain the failure. 

They are flexible because they offer a variable degree of coupling between elements of a 

network, thus allowing seamless changes in network constitution and topology. 

The research has demonstrated that event-based technologies offer wide-ranging 

architectural applicability: 

(a) Event-based technologies provided mechanisms to distribute functionality and 

operations across computing equipment, for example, publisher-subscriber 

architectures, remote procedure calls, remote method invocations, etc. [42], 

(b) Events lend themselves well to language analysis, and thus theoretical rigor [52], 

(c) Event-based technologies offer variable degrees of inter and intra-system coupling: 

tight, loose, or hybrid, and thus, provide flexibility in function segregation and 

interface definition [42], 
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(d) Manipulation of events via techniques of composition and correlation offers schemes 

for bandwidth conservation, hierarchical management designs and integration patterns, 

for example queuing architectures [40]. 

Consequently, the advantages offered by event-based technologies are central to this 

dissertation. The approach for event-based network management has been factored in three 

ways – the extent of the computer network from which the generated events are considered, 

the techniques used to generate, process and capture events, and, the type of events that are 

generated, processed and analyzed.  

The reader may note that these factors can be directly interpreted as the extent of 

computer network which the network management system manages, the technique of 

management employed, and, the kind of network over which the composition is carried out. It 

is the interplay of these factors that shaped the evolution of network management systems as 

they are seen today. The only difference is the approach – event-based technologies assert that 

growth of computer networks, whether by scale, or, by diversity, entail changes in perception 

and operation of the network management systems. 

1.5 Problem Statement  

There is little indication that future computer networks will use the same technologies 

as contemporary computer networks. Future computer networks are envisioned to be 

pervasive with a majority percentage of enabling applications being based on advantages 

offered by wireless technologies. Additionally, it is envisioned that they shall tightly integrate 

with critical functions (civil and defense functions such as such as power grids, intermodal 

transportation, environment monitoring, reconnaissance, warfare, etc.) which form the lifeline 

of societies so that the resultant would be a complete digital economy. 
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Thus, management of neo-contemporary and future computer networks will require 

research into the use of pervasive network management systems. These systems must enable 

distributed, large-volume, event-based processing for supporting novel, yet important 

functionalities such as real-time function distribution among participating manager and 

managed entities, flexible and efficient intra and inter-system interfaces, and, event correlation 

and composition along contextual dimensions for conserving management bandwidth and 

power consumption. 

Thus, the problem explored in this dissertation is to design a mechanism that supports, 

or plugs into pervasive network management architectures so that they can: 

(a) Enable network management functionality while handling large volumes of events, but 

consuming low bandwidth, 

(b) Support network management functionality using in-network processing and 

correlation of events along contextual dimensions, 

(c) Maintain reasonable anonymity of participating entities, 

(d) Withstand missing and conflicting information gathered from multiple participating 

entities, and, 

(e) Provide management feedback with low latency. 

1.6 Hypothesis 

A lightweight, distributed, large-volume, event-based technique which exploits 

epistemic uncertainty to correlate events along contextual dimensions can provide a successful 

technique for enabling management of large-scale and pervasive contemporary and future 

computer networks. 
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1.7 Objectives 

This dissertation attempts to tackle two of the many important challenges that face 

pervasive network management systems – 

(a) How long would it take for anyone managing a pervasive computer network to actually 

be able to start managing the network? 

This challenge is related to time. Unlike centralized paradigms which have a cardinal 

notion of time residing in a single clock, distributed paradigms and indeed, pervasive 

computer networks operate with multiple clocks as references. All these clocks must 

be synchronized mathematically if network administrators in charge of the pervasive 

computer network are to ever obtain a global view of the computer network’s 

operations. In pervasive computer networks, the challenge increases in complexity as 

entities join or leave the network, demonstrate malicious behavior, may refuse to 

cooperate in communications relay, etc. 

(b) Is there an event-based, distributed and lightweight mechanism that can support 

pervasive network management functions? 

This challenge is related to what future pervasive network management systems will 

require to operate. Once the notion of time in pervasive computer networks is defined, 

event-based architectures would be required to provide network management 

functionality which handles high volumes of events, consume minimal bandwidth and 

exploit in-network processing. Thus, unlike centralized paradigms where a single entity 

assumes all network management responsibilities, or, if the need be, delegates few 

trivial responsibilities to a limited number of trusted peers, all participating entities 

would be expected to contribute to network management functionality while 
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consuming a small fraction of bandwidth available to them. This will increase function 

distributivity in the network so as to compensate for network scalability, and thus, will 

facilitate the network management functions to adapt to changes in network topology, 

traffic conditions, enhancement or reduction in any/all management functionality, and, 

event correlation logic along contextual dimensions. 

1.8 Significance & Contribution 

This dissertation paves the way for supporting management functions for 

contemporary and future computer networks with limited addition and overhead. Such an 

initiative is necessary when growth in scale and diversity of computer networks is rapid and 

future trends are unknown. To accommodate such a scenario, it is required to develop 

network management technologies which are capable of managing computer networks which 

are much more complicated than existing ones. While existing research literature points to the 

use of event-based technologies as a suitable candidate for the purpose, most applications lie in 

simple event processing [64], gathering business intelligence [40], or data mining [67]. These 

approaches rarely exploit important characteristics of pervasive computer networks, for 

example, in-network processing, correlation of events across contextual dimensions, or, are 

either too trivial or too complex for majority of network management applications. 

The dissertation contributes to existing research on network management by using an 

existing, well tested mathematical tool incorporating epistemic uncertainty – Dempster-

Shafer’s theory, to provide a novel solution for contemporary and future network 

management. It establishes an effective scheme for complex-event semantic correlation – by 

incorporating epistemic uncertainty, the scheme fuses event synchronization concepts with 

belief theory. Many engineering applications based on this theory have demonstrated its 
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validity [54]. This dissertation empirically demonstrates the suitability of the theory (elucidated 

in Chapter 4), boundary conditions for its application to a pervasive network management 

environment (elucidated in Chapter 3) and results obtained by application of the theory to 

many scenarios (again, as elucidated in Chapter 4). Because of the distributed nature of 

detecting events, the dissertation considers time-delays, thereby associating events with 

duration, and takes into consideration imprecision and uncertainty in event detection by 

associating belief values generated by a consensus among participating entities in pervasive 

computer networks.  

1.9 Methodology 

This dissertation employs modeling and simulation. Pervasive computer networks 

have densities high enough that physical experimentation is difficult to implement. 

Consequently, simulation software was used to provide empirical results. The simulation 

software used is ns-2 [41]. ns-2 has had a respectable reputation as an accurate discrete-event 

network simulator. With provision and working examples for many computer network 

scenarios accurately reflecting real world, this simulation software has been used to provide all 

the results presented in this dissertation. 

1.10 Organization of the Dissertation 

Chapter 2 elucidates the existing research literature examined for the purpose of this 

dissertation. Time synchronization and its requirement for event-based network management 

are detailed in Chapter 3. A novel method for event-based, in-network, and non-deterministic 

pervasive network management is detailed in Chapter 4. Conclusion and future work is 

presented in Chapter 4. 
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C H A P T E R  2  

2. RELATED WORK 

Nanos gigantium humeris insidentes. 
– Greek Computer Mythology 

We do not see things computers as they are; we see things computers as we are. 
– Talmud 

 

2.1 Introduction 

In this chapter, related work concerning the dissertation is presented as follows: 

First, research related to synchronization of time is presented. Much of the research 

concerns itself with convergence to and sustenance of a single time reference in a distributed 

system. In Chapter 3 all algorithms presented in this chapter will be split into two classes, one 

of which will be shown to be the recommended class of algorithms for pervasive event-based 

network management.  

Second, research regarding event-based technologies as it applies to network 

management is presented. Much of the research concerns itself with techniques for correlating 

events and their facets. 

Third, research regarding Dempster-Shafer’s theory is not presented. Much literature 

regarding the theory, its applicability (for example, [58]), and its extensions exist in 

comprehensive works, for example, [54], which even includes a large collection of references 

regarding applications of the theory to various branches of engineering, for example, image 

processing and robotics. 
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2.2 Literature on Time Synchronization 

Research regarding time synchronization in mobile ad-hoc networks (MANETs) 

mainly concerns itself with convergence of local time via remote inter-process message 

exchange. Issues of concern include compensation for physical hardware’s clock’s skewness 

and kurtosis [70], influence of network dynamics and, network designs regarding application 

[31] or resource limitations [15, 28]. Additionally, fancier interfaces may be highly directional, 

multi-frequency antennas [11, 66] with abilities of time-stamping transmitted packets as far 

down the physical layer as possible [31, 37].  Relay mechanisms entail the use of a dominating 

set of nodes which cover the entire network for effectively diffusing the synchronization 

primitives [20]. The solutions either assume the existence of this set or form one of their own. 

Also, a rich set of solutions exist for MANET time synchronization [51] and are 

available as lightweight time synchronization protocols. Based on assumed criteria and 

approach adopted for time synchronization, recent research in time synchronization has been 

categorized into six classes [51] – time sources may be internal or external, synchronization 

may be carried out continuously or on demand, domain of synchronization may be flat or 

hierarchical, approach to synchronization may based on determining clock rate versus 

determining clock offsets, nodes may use an operational clock over the actual physical clock or 

synchronize invasively, and, synchronization may be carried out instantly or spread over time. 

This dissertation considers that contiguous time is an important requirement for 

applications in MANETs. In research regarding time synchronization, seminal contribution by 

Lamport on event ordering in distributed systems [36] defines the rule – preserve event order 

and causality using forward clocks. An important consequence of this has been the adoption 

of monotonically increasing virtual clocks in any application design concerning distributed 
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systems, including mobile and ad hoc networks. In IEEE 802.11 IBSS (Independent Basic 

Service Set) specification [30], clocks leap to the fastest known virtual clock in their 

neighborhood to achieve convergence – faster clocks synchronize slower clocks (TSF). 

The dissertation adds an additional perspective to classify recent research into two 

distinct groups. They are global time synchronization (GS), which requires clocks in all 

participating nodes leap to the fastest clock in the system [15, 20, 44, 50, 56, 59, 70], and, local 

time synchronization (LS), which requires every participating node to preserve its local clock 

and only record time offset to its neighbors [11, 18, 29, 33, 37, 43]. An exception case of this 

classification is the result of reference broadcasting synchronization (RBS) [14], which 

combines both local and global time synchronization strategies. It uses GS when 

synchronizing within one broadcast area, but uses LS when reference nodes corresponding to 

different broadcast areas exchange time-synchronization messages. Moreover, a comparison is 

carried out between these two distinct groups, in terms of their performance on synchronizing 

time over MANET. 

The first known research into the application of IEEE 802.11 standard [30] to 

MANETs is provided in [43]. This research follows [43] in adopting the use of IEEE 802.11 

standard [30] to MANETs as it helps leverage the development of real-time communication 

protocols to be based on the standard. 

2.3 Literature on Event-based Technologies 

Events have already been defined as changes in parameters of interest. Parameters may 

be a computer network's system parameters or individual elements – called managed objects. 

Associating these events with one another in useful ways is known as event correlation [64].  
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There are two types of events: primitive and composite [39]. Primitive events are pre-

defined in a system and their detection/generation mechanism is embedded in the system. 

Composite events are formed from primitive and/or other composite events [46], each of 

which is then called a component event. An ‘event correlation engine’ detects the occurrences 

of these composite events. Event correlation may be carried out at multiple points of the 

computer network - elements, Object Request Broker (ORB), proxy, etc. (spatial event 

correlation), and at various points of time - periodic or aperiodic, causal etc. (temporal, causal 

event correlation) and is one of the central techniques in managing high volume event 

messages [32, 39]. Event correlation may be executed via the following means, alone or in 

combination: 

(a) Compression, suppression, generalization and homogenization: 

Compression optimizes the flow of events by representing multiple instances of the 

same event using a transformation. For example, gauges and counters used to track 

Management Information Base (MIB) parameters in SNMP. It may be noted that a 

transformation may result in generation of events different from the events being 

monitored, for example, when a counter wraps around or crosses a threshold. 

Suppression optimizes the flow of events by differentiating events based on priorities 

associated or embedded in them. For example, tuples consisting of events and their 

priority are passed through a priority queue. Queuing discipline, for example, priority 

First-In-First-Out (FIFO), event aging and consequently incremental priority 

assignment, or, unqualified discard, etc. are implementation choices. Generalization 

[21] optimizes the flow of events by differentiating events based on their origin. For 

example, tuples consisting of events and their origin passed through to a multiqueue 
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where each queue pertains to an element, an interface, or part of the network, etc. 

Homogenization optimizes the flow of events by differentiating events based on the 

type/classification associated or embedded in them. For example, tuples consisting of 

events and their type passed through to a multiqueue where each queue pertains to an 

event's type definition. Homogenization can be preceded by or followed by 

suppression for higher resolution differentiation of events. When event type is priority 

itself, homogenization transforms to suppression. 

(b) Composition:  

Causal Composition [26] – Using a sufficient number of relationships which map 

events apriori to one another, a rule trail can be generated, which in turn can facilitate 

automatic determination of cause from a set of symptoms. 

Temporal Composition [38] – Using a sufficient number of relationships which map 

event sequences to one another, a rule trail can be generated, which in turn can 

facilitate automatic determination of cause from a sequence of symptoms. Temporal 

Composition is considered more useful because it is more complete than causal 

composition [26, 64]. 

The ability of execution is governed by the network administrator, thus, the means of 

correlation and its execution are related to the extent allowed. 

Event correlation was first analyzed by [32] as frequent episodes in alarm sequences. 

The analysis of event correlation was done apriori via model-based reasoning. Subsequently, 

research has focused on applying a number of research methods on both apriori and posteriori 

event correlation. By application of various constraint forms on data mining, rule-based 

reasoning, and network topology analysis, tighter control and efficiency on data mining, 
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algorithms for data mining and rule generation has been achieved. Due to complexity and scale 

of most commercially important networks (wireless and wireline), event correlation has also 

been studied from the perspective of event and alarm propagation through layered model of 

networks and model-based reasoning. 

Event correlation must be viewed from three perspectives: 

(a) Correlation domain (scope) 

(b) Correlation logic (definition) 

(c) Correlation architecture (site diversity) 

2.3.1 Correlation domain 

The scope of event correlation is of three kinds [72]: 

(a) Event range covers the space of all generator entities within the scope of a single 

network element (elements covering the same physical and/or data link layer address 

masks) 

(b) Event range covers the space of all generator entities within the scope of a group of 

network elements in the same subnetwork (network elements covering the same 

network layer address masks) 

(c) Event range covers the space of all generator entities within the scope of a group of 

network elements in the same administrative domain 

By applying the above perspective of correlation domain to any network – for 

example, IP based networks, it can be seen that as scope of event correlation is broadened, the 

number of network elements increases in progression. This implies a significant increase in the 

events generated in the network and also the number of interfaces across which management 

data must stream between interacting entities. Any event correlation engine must be able to 



21 

scale with the correlation domain. By avoiding unique or preferred ingress and egress 

interfaces in the network, the tendency of network management centralization can be avoided. 

Advertised or dynamically chosen ingress and egress points shall maintain distributivity. 

Some network management products, such as [27, 57], circumvent the problem of 

scaling correlation domain at the administrative domain level by attacking the problem on the 

lines of routing – by maintaining an event correlation hierarchy. Having a hierarchy assumes 

that all peers binding to the same hierarchical level have equal computational and/or 

communication functionality – intuitive, because majority of homogeneous network elements 

will be identical functionally. If network elements are heterogeneous, they can be considered 

functionally equal if they support a common set of functions, or, if the weaker peers are 

assisted by external function support via proxy devices and appropriately designed 

convergence protocols. Hierarchical routing has been immensely successful – IP based as well 

as ISO based environments use hierarchical routing. The nemesis of hierarchical routing lies in 

mobility and mobility management. However, this again brings back network management 

centralization, a perspective which can be subject to debate. 

The alternative to the event correlation hierarchy is a distributed event correlation 

system wherein all collaborating peers acknowledge, and respect specialized roles of each 

other. The challenge lies in how best can each role be utilized efficiently and optimally. The 

functionality of acknowledging and characterizing the specialized roles of peers can be carried 

out via share of management information via corresponding layer management entities in 

peers. Considering a functionally disjoint set of peers, a system task can be broken down to 

subtasks which are functionally disjoint in such a way that each subtask can be performed by a 

corresponding peer efficiently and optimally while respecting distributed computing principles. 
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From the point of view of scope it is also important to consider whether a connection-

oriented or connection-less communication is used. This is because a connection-oriented 

architecture requires additional channel maintenance and handshake. Also, resource awareness 

may require the elements to maintain lower occupancy (number of in/out links) for better 

efficiency. Whichever be the architecture used, synchronization points shall allow ‘check-

pointing’ correlation into meaningful units which allow dialog completion between 

synchronizing peers. The synchronization points can be of two types - major and minor. 

2.3.2 Correlation logic 

The definition perspective of event correlation is of five kinds [64]: 

(a) Case-based reasoning: 

Case-based reasoning [21] is a learning system which defines a case over a set of 

events. This case is then compared to an existing database of cases for maximum 

similarity. Maximum similarity is automatically implied by maximum relevance of the 

set of events which define cases via the principle of optimality. However, relevance of 

events to a case is not easy to define. Incorrect relevance of event sets can result in 

skewed similarity and consequently incorrect cause determination by correlation 

engines. If the case library is large, it will not scale well with correlation scope. Of all 

the kinds of correlation logic discussed in this section, case-based reasoning is the only 

research area which incorporates learning [64]. 

(b) Codebook-based reasoning: 

Codebook-based reasoning [68] is based on a 2-dimensional correlation matrix 

between events. One dimension of the matrix is the primitive events generated by the 

network elements and the other dimension is the composite events or event 
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notifications considered as alarms or symptoms. The matrix relates each primitive 

event to an alarm by either probabilistic or (for a simple case) boolean values. For 

example, a primitive event may be designated to contribute to an alarm 75% of the 

time (probabilistic) or may (1)/may not (0) contribute (boolean) to an alarm. Once the 

correlation matrix is generated, it can be refined via correlation scope and/or 

compression, suppression, generalization, homogenization to generate a codebook. A 

second matrix is required which relates the primitive events to probable cause(s). Using 

the codebook, the correlation engine can process an event stream for comparison with 

event sets defined in it. Once specific primitive events are singled out to maximally 

contribute to current alarms, they can be back-correlated to the probable cause(s). The 

degree to which the correlation scope and/or compression, suppression, 

generalization, homogenization are applied determine the accuracy of codebook-based 

reasoning. Similar to the concept of hamming distances, if the alarms are too tightly 

related to singleton primitive events, the codebook will be small but susceptible to 

incorrectly identify spurious alarms or ignore missing alarms. If the alarms are loosely 

related to multiple numbers of primitive events, the correlation matrix may not scale 

well with correlation scope. [57] implements codebook-based reasoning [34]. 

(c) Model-based reasoning: 

Model-based reasoning [72] falls under the domain of artificial intelligence. Sufficient 

accurate models of each managed entity are used as frameworks which are populated 

with current network entities' data. Snapshots of the network at given times are 

extrapolated via modeling to generate the pattern of events which the actual network 

should generate in future. Given the network state approaches an anomaly, the models 
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will provide maintenance engineers with most plausible causes of the anomaly via 

backtracking. Model-based reasoning requires the correlation engine to accurately 

catalog the entities in the correlation scope, and choose the best model for those 

entities whose model is not available or modeled before. Once the models are in place, 

the main job of the correlation engine is to keep ahead of real-time monitoring in 

obtaining the network state. Object oriented paradigm lends itself easily to model-

based reasoning, however, because each network entity needs to be modeled, model-

based reasoning does not scale well with increasing correlation scope. [4] and [32] 

implement model-based reasoning. 

(d) Rule-based reasoning: 

In rule-based reasoning [64], a non-empty set of event(s) is passed through a logic 

equation. A true event set implies a true rule and consequently, the correlation engine 

can notify or trigger management entities for pre-determined actions. Rule-based 

reasoning is rigid and optimal for well-understood networks only. As the correlation 

scope increases, number of rules required to cover the event range increases. 

Consequently, rule-based reasoning does not scale well with correlation scope. Most 

network element managers and agents implement rule-based reasoning. 

(e) State transition graph-based reasoning: 

In state transition graph-based reasoning, state transition graphs are finite state 

machines where the nodes are network's current state and the transitions are the 

actions to be carried out when in the current state. Sub-sequences of events and 

current symptoms of the network are used to run the finite state machines. Depending 

on the transitions defined, the correlation engine determines the plausible cause from 
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the output of the finite state machine. Just like other reasoning mechanisms, the 

determination of plausible cause is as good as the definition of transition between 

various states. Incorrectly defined states will result in misdirected transition paths and 

consequently determination of incorrect plausible causes. 

2.3.3 Correlation architecture 

Networks and network elements exhibit a large diversity: 

(a) The technology of network elements can range between state-of-the-art to legacy, 

(b) Network elements can be manufactured by a broad spectrum of vendors, each 

interpreting standards and RFCs differently, 

(c) Network elements of a given manufacturer can have multiple versions and families,  

(d) Network elements may be wireless, mobile,  

(e) Multiple gateways at each layer, especially data-link, network, and transport layers will 

alter protocol state and flow, etc. 

This diversity introduces three important parameters which must be taken into 

account for correlation: 

(a) Accuracy of relative temporal distance between events generated at different sections 

of the network [22] 

Inherent differences in bandwidth, topology, and speed can introduce clock skews in 

event timestamps as events propagate across sections of the network. Uncompensated 

timestamps can result in false correlation or missed correlation patterns (false alarms 

which are generated when propagation delay is sufficient to trigger the truth of an 

attack pattern and undetected alarms which are generated when the propagation delay 

is sufficient to avoid satisfying the truth requirement of the attack pattern). 
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(b) Mediation required to translate events to suit the processing capabilities of destined 

correlation process(es). 

(c) Resource delegation for correlation 

Mobile agents with privileges of autonomy have been proposed to assist in distributed 

processing – primarily for attaining optimality in network functions [13]. However, the 

basis of using mobile agents appears weak, and has limited support among event-based 

communication models [42]. Unless protected management channels, and trust 

protocols among collaborating entities are established, the solution does not appear 

viable in the face of currently vulnerable OSs.  

2.4 Distributed event correlation 

Originally, distributed system architectures comprising of large orders of miniature 

computing devices coalesced via an OS designed to work over computer interconnections 

were proposed to exploit computing scalability and performance, and physical robustness. 

Computer networks extend the idea of physical robustness by being geographically distributed 

– based on an assumption that providence and wars cannot afflict large geographic areas 

simultaneously. However, geographic expansion of a computing system brings forth multiple 

issues. Without loss of generality, these are called distributed computing issues from a network 

management point-of-view. Current research literature focuses on four distributed computing 

issues: 

(a) Distributed event models 

A number of existing event-based distributed communication models have been 

investigated [42]. Each has strengths and weaknesses which are claimed to be strongly 

influenced by applications which the models are intended to serve. Some important 
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features of the models are methods of domain dispersal of management traffic 

optionally with anonymity, filtering of events, central and distributed mediation, 

mobile device support, and service delegation. Common Object Request Broker 

Architecture (CORBA) has been extensively used in many large scale carrier-grade 

network management systems and is an industry standard. 

(b) Time synchronization 

Temporal accuracy of event composition, and event correlation (ECA or otherwise) 

depends upon time synchronization between the sources of events. Due to this 

dependency, time synchronization is considered to be critical to distributed system 

infrastructure [15]. Temporal accuracy can be conserved in the face of clock-skew or 

propagation skew [22]. However, the current solutions require multiple processes 

and/or equipment like calibration probes, monitors and controllers to coordinate the 

effort. Extensions for mobility in ad hoc networks have also been investigated [15]. 

(c) Language and semantics 

Event correlation requires a language and computational model to be formalized [52]. 

All frameworks proposed for event correlation use or formalize one [2, 23, 26, 35, 72]. 

The languages are first-order, use finite state automata, and may optionally choose 

between boolean and short-circuit evaluation of conjunctive or disjunctive conditions. 

[52] also mentions other specification languages based on Backus-Naur Form (BNF) 

and its derivatives. 
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(d) Computing affinity 

Though more popularly used in alert correlation for Intrusion Detection Systems, 

agents (autonomous, mobile, or both) have interesting applications in distributed 

systems. Autonomous agents separate their context from the host system to resist 

subversion and achieve a degree of fault tolerance [6]. Mobile agents go a step further 

by carrying out many other functions apart from data collection – delay analysis, 

reconfiguration, etc. [13]. Because mobile agents can migrate processes, they can be 

used to strategically locate correlation engines across the network for optimizing 

any/all of the above distributed computing issues, and dynamically adapt to changing 

network conditions and processing power affinity). 
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C H A P T E R  3  

3. SYNCHRONIZING TIME1 

“Everywhere you go, take a smile time with you.” 
– Sasha Azevado 

“All men by nature desire to know synchronize.” 
– Britannica 

 

3.1 Introduction 

In context of this dissertation, time synchronization is considered from the perspective 

of pervasive network management. This implies that more often than not, entities requiring 

synchronization of time wish to do so with minimal communication effort, minimal resource 

requirements and securely with a guarantee on the stability of time. While minimal 

communication effort and minimal resource requirements are generic pervasive requirements, 

security and stability warrant an explanation. Following these explanations, the comparison of 

two broad classes of time synchronization – GS and LS strategies are compared. Analysis and 

simulation of the strategies conclude the chapter. 

3.2 Real-Time Clock (RTC) 

All hardware platforms maintain an internal register with a given precision (typically 

16, 32, 64 or 128 bits) which is driven by a hardware interrupt generated by a crystal oscillator. 

The register maintains a counter whose value increments for a given number of oscillations of 

the crystal oscillator. For example, if a hardware platform incorporates a 4 MHz crystal 

oscillator, the hardware will increment the register by one unit once for every 4 million times 

                                                 
 
1 In this chapter, ‘node’ unambiguously refers to computing hosts, devices or equipment. 
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the crystal oscillates. This provides the platform with a clock whose granularity is 1s. While 1s 

is no longer a suitable, clocks with higher resolutions lying in the range of 25ns to 1ms are 

more typical today. This setup is known in engineering parlance as a Real-Time Clock (RTC). 

The physics (piezo-electricity) behind the crystal oscillator decides the number of oscillations 

which in turn, may depend on numerous environmental factors – a typical one being 

temperature. Because the environment of pervasive entities may not be controllable, a slight 

drift in the time-keeping will occur. This error accumulates over time to become sizable 

enough that it may affect time-based operations of the hardware platform and the software 

supported by it. It is then that time synchronization is done to correct the error introduced by 

the drift. 

3.3 Security 

Security is an important requirement in synchronizing time because of the way 

software is designed to derive its time from hardware. Typically, the RTC only increments a 

designated register depending on the count resolution set by the hardware platform, but it is 

up to the software to fill in the correct initial value and keep it updated. This means that the 

software in-charge of the platform is the one which decides what time it actually is. This may 

not be so much of a problem for ephemeral processes; however, indiscriminate change in the 

RTC value might disturb the states of most other processes, especially those which last for the 

entire up-time of the software system. Prominent examples of such processes are security and 

communication processes. 

The main issue regarding security is the fact that if the software in one entity chooses a 

malicious peer entity to provide it with a value of time, the malicious peer entity can control 

the network behavior of the unsuspecting entity. An existing standard for wireless 
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communications in MANETs – IEEE 802.11 [30] mandates that a given peer may adopt the 

fastest available clock in their neighborhood. This effectively means that given a bunch of 

pervasive entities which used their ad hoc network to exchange time synchronization 

primitives, all entities will jump to the clock of the fastest peer among themselves. It is 

apparent that this will lead to a security related problem if a malicious peer decides to 

continuously broadcast the highest possible RTC value as its time synchronization primitive. 

This will force its peers to adopt its time and reset their clocks to a null value every time they 

receive time synchronization primitives. In sum, the malicious peer would have managed to 

stop the clocks of all unsuspecting peers and therefore collapse the network into a stasis state. 

3.4 Stability 

As in the case of security, stability is also an important requirement in synchronizing 

time because of the way software is designed to derive its time from hardware. Stability too 

may not be so much of a problem for ephemeral processes; however, like security, 

indiscriminate change in the RTC value might disturb the states of most other processes.  

The main issue regarding stability is the fact that if the software in an entity frequently 

updates the RTC (forcibly or otherwise), many process states and finite state machines might 

evaluate indeterminate states or error conditions frequently. A change in RTC value would 

require schedulers for various processes, including those of the OS itself to restart relative to 

the new RTC value. If done frequently enough, these processes would soak up the majority of 

the scheduling quota which would have otherwise been allotted to processes of lower priority 

– effectively leading to a forced process starvation. Since most schedulers execute at very high 

priorities, it would be easy for a malicious peer entity to disrupt existing networks with 

unstable time synchronization primitives. 
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3.5 Comparison of Methods of Time Synchronization 

One of the contributions of this dissertation lies in classifying existing methods of 

synchronizing time into two broad categories. This classification permits the reader to make an 

informed decision regarding the class of algorithm s/he deems suitable for a given application. 

This dissertation itself makes such a choice as discussed in Chapter 4, where the ability to 

correlate events for the purpose of network management strongly depends on how fast and 

how accurately pervasive entities in a computer network synchronize their time – synchronized 

time must be available on all entities participating co-operative correlation of events. 

3.6 Background 

Literature on time synchronization (Chapter 2, Section 2.2) lists many strategies 

available for time-synchronization in pervasive environments. Then, the options available 

would be to either develop a new strategy which competes with existing ones or to pick a 

suitable strategy ‘off-the-shelf’. The main goal was to use a time synchronization strategy most 

suitable for event correlation in a pervasive environment. During the course of research, the 

authors observed that time-synchronization strategies of a particular class of algorithms fared 

better than others and therefore it was not necessary to create a new strategy [71]. Engineers 

wishing to corroborate particular features necessary for their implementation of a pervasive 

environment could choose from algorithms in this class – GS strategies. The choice of GS 

strategies of time-synchronization was arrived at by a comparison of GS and LS strategies. 

This comparison was based on a MANET environment – a typical extreme of pervasive 

environments. The evaluation was carried out with reference to convergence time – the time 

taken by the entire MANET to reach a time-synchronized state from ab-initio. This essentially 

translated to how fast the entire MANET could be time-synchronized.  
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During comparison, it was found that the suitability of a given strategy was highly 

dependent on MANET topology on which the comparison was carried out. Thus, the aim of 

the comparison was modified to determine upper bounds to synchronization efforts for 

particular MANET topologies. Thus, geometries that compel slowest time synchronization for 

a given strategy would be candidates for determining the upper bound to time 

synchronization. 

3.7 Assumptions 

The comparison of GS and LS strategies required certain assumptions to simplify 

mathematical analysis: 

(a) Assumption A1: A MANET has a seed node.  

The research follows the beacon mechanism as described in IEEE 802.11 TSF [30]. 

The node which happens to be the first member of a MANET is defined as a seed 

node. This seed node instantiates beacons as part of its operating routine. The interval 

time between these beacons is known as Target Beacon Transmission Time (TBTT). 

Other nodes willing to participate in the MANET are required to conform to beacon 

periods as defined by the seed node. At each TBTT, all participating nodes contend 

for a beacon. This may result in beacon collisions – a performance factor that has been 

disregarded because it equitably affects both GS and LS strategies. Following 

contention, only one node manages to beacon in a broadcast area – typically defined 

by its radio range. Due to hidden terminal phenomenon [30], some node may receive 

two or more beacons in the same TBTT. Such cases are treated as collisions. 



34 

(b) Assumption A2: MANET nodes conform to a spatially homogeneous distribution. 

It is assumed that each participating node experiences the presence of equal numbers 

of neighbors regardless of its spatial position within the MANET. Thus, any node i has 

(n-1) neighbors, where, n is the unit size within a broadcast area. Furthermore, it is 

assumed that the MANET consists of N nodes, and, N = |MANET| = m·n, m ∈ I+. 

Notwithstanding the strategy of time-synchronization, the only known method for a 

node to exchanging data regarding time is by periodic broadcast of a beacon. 

(c) Assumption LS1: For a given topology, LS time synchronization is considered 

complete when each participating node has broadcast a beacon at least once. 

Participating nodes maintain a non-invasive local clock – one whose value is not 

changed by knowledge of external, and perhaps more precise and accurate clocks. 

Instead, the nodes maintain a vector containing time-differences between their local 

clocks and all participating node clocks within the broadcast area. This vector, 

henceforth called dT-vector, facilitates time inter-conversion between transacting 

node-pairs. (A2) simplifies the problem formulation by allowing the dT-vector to 

maintain a fixed size of (n-1) entries, and therefore impose a constant working-memory 

cost on the node. Some LS strategies may violate (A2) by implementing on-demand 

services to gain energy-efficient performance.  

(d) Assumption GS1: GS time synchronization is considered complete when each 

participating node has attained the fastest MANET clock. 

In GS strategies, a MANET is considered time synchronized when the fastest time is 

dispersed throughout the MANET. Although an arbitrary clock can be chosen as a 

predefined standard, IEEE 802.11 specification [30] suggests the selection of the 
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fastest clock available among all participating nodes within an IBSS in ad-hoc mode. 

For a MANET, this implies selection of the fastest available clock among all 

participating nodes within a broadcast area, or, within the radio range of an air 

interface. Participating nodes maintain an invasive local clock – one whose value is 

changed every time a faster clock is detected within the broadcast area. The change can 

be carried out instantaneously, or spread over a period of time [31, 43]. 

3.8 Analysis 

This section compares GS and LS strategies, in terms of convergence time, mobility, 

and stochastic time delay. The section is divided in three parts. The first sub-section compares 

the strategies from the perspective of convergence of time, the second compares them from 

the perspective of mobility, and, the third compares them from the perspective of stochastic 

time-delay. 

3.8.1 Comparison with reference to convergence of time 

Due to beacon contention, GS and LS strategies involve a fair degree of randomness, 

and an exact figure regarding time-convergence cannot be guaranteed. Instead, it is intended to 

determine the probability that the entire MANET has been synchronized by a particular time 

interval. This time interval is expressed in terms of TBTTs.  

Let k denote the number of elapsed TBTTs. Then, GS probability that the entire 

MANET has been synchronized by k shall be compared to LS probability that the entire 

MANET has been synchronized by k. A higher probability of one strategy to be completely 

time-synchronized by k will lead to the conclusion that it performs better than the other in 

terms of time-convergence. Furthermore, (A2) implies that each node has to contend with its 

(n-1) neighbors to beacon at each TBTT interval: 1, 2,…, k. 
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3.8.1.1 LS strategy 

Given (A1), (A2) and (ALS1), the entire MANET can be substituted by m IBSSs, each 

IBSS consists of n nodes. Then, synchronization of the entire MANET implies that each of 

the m IBSSs are also synchronized and, in turn, this implies that each participating node within 

each IBSS has beaconed at least once. The following analysis first considers probability of 

synchronizing time within an IBSS, and then generalizes it to apply throughout the MANET. 

Let P(i, k) denote the probability that i nodes of an IBSS have beaconed in k TBTTs. 

Since only one node can beacon at each TBTT, 

 P(i, k) = 0, whenever k < i. (RLS1) 

The argument behind (RLS1) implies that n nodes of an IBSS need at least n TBTTs for 

each node to successfully beacon, and consequently satisfy ALS1. 

Trivially,  P(1, 1) = 1, and P(1, k) = 1
1
−kn

, k > 0. (RLS2) 

The argument behind (RLS2) is that there is always a node beacon at each TBTT within 

an IBSS. Moreover, it is rare that the same node beacons at each of k TBTTs. 

As shown in Appendix I, lemma 1: 

 P(i, i) = 
inin

i
⋅− )!(

! . (RLS3) 

In addition, 

 P(i, k) = P(i, k-1) 
n
i

⋅  + P(n-1, k-1)
n
in 1+−

⋅ , when i > 1.  (RLS4) 

The argument behind (RLS4) is that the ith node can beacon in k TBTTs in only two 

ways – when i nodes have already beaconed in k-1 TBTTs and no new node will beacon at the 

next TBTT, or, when (i-1) nodes have beaconed in k-1 TBTTs. Then, only one of the rest (n-

i+1) nodes (a new node) will beacon after failing to do so in the previous (k-1) TBTTs. 
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Using (RLS1) through (RLS4), individual probabilities P(n, k)  can be generated for all k. 

Then, the probability P(N, k) that the entire MANET is synchronized after k TBTTs is: 

 P(N, k) = [P(n, k)]m. (RLS5) 

The argument behind (RLS5) is that time-synchronization of each IBSS is independent 

of others. 

3.8.1.2 GS strategy 

(AGS1) implies that the fastest time has been delivered through to the farthest 

participating node in a MANET. This is because the probability of the farthest node in a 

MANET to be time-synchronized will be lower than any of the intermediate participating 

nodes. Given a typical MANET, many message delivery routes may exist. Due to inherent 

nature of MANETs, time diffused along one route may influence and accelerate diffusion 

along other routes. To simplify the analysis of such a scenario, two geometries are considered 

– when participating nodes lie along a 1 dimensional line (case I), and, participating nodes lie 

along a ring (case II). All other geometries offer paths which will reduce convergence times. In 

both cases I and II, d denote the Cartesian distance between any pair of neighboring nodes, L 

denote the Cartesian distance between the node possessing the fastest time and the node 

farthest from it, and, hop distance h is defined as h = ½(n-1)·d, so that using (A2), a given hop 

will essentially cover ½(n-1) nodes on either side of the beacon node (by symmetry, (n-1) 

should be even). It may be observed in case I that the farthest node shall be at one end of the 

1-dimensional line. This implies that (A2) shall be violated at the farthest node. However, even 

if it is conservatively assumed that (A2) does hold, the calculated probability of time 

synchronization will only be lower. Thus, the result from calculations in case I still provide a 

lower bound. 



38 

Case I: Given (A2), consider a MANET with all participating nodes along a straight 

line (Figure 3). Let node A, the origin of the line possess the fastest time and node B be the 

farthest node in the MANET. Then, the position of intermediate nodes i shall be integral 

multiples of d. Also, the farthest node B at distance L shall be as follows: 

 L = l·d, l∈I+. (RGS1) 

The nodes are partitioned in two – those lying within the single-hop range h, of the 

beacon node, and, the outliers. Then, using (AGS1), the probability P(L, k) at which the node 

farthest from the fastest node is synchronized successfully within k TBTTs can be determined 

as follows: 

By (A1), (A2), any node i will contend with n-1 neighbors to broadcast its beacon in a 

TBTT. So, within single-hop range h: 

 P(i·d, 1) = 
n
1 , for i = 1, 2,…,(n-1)/2, and, (RGS2) 

for nodes outside the single-hop range, 

 P(i·d, 1) = 0, for i = (n+1)/2 , (n+3)/2,…,∞ (RGS3) 

Figure 3: Describing relation between d, h and L for case I. 
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For all nodes i lying within the single hop range h, from Appendix II: 

 P(i·d, j) = 
j

n
n

⎟
⎠
⎞

⎜
⎝
⎛ −

−
11 , i ≤ (n-1)/2 and j = 1, 2,…, k,  

and, for all nodes i lying outside the single-hop range h, Appendix II, lemma 2 gives: 

 P(i·d, j) = P(i·d, j-1)+ {P((i- 2
1−n )·d, j-1) – P(i·d, j-1)}

n
1
⋅ , 

 i > (n-1)/2 and j = 2, 3,…, k. (RGS4) 

Case II: Extending the MANET geometry with all participating nodes to lie along a 

ring (Figure 4), the distance L shall correspond to the circumferential distance between two 

nodes lying along the diameter. Thus, (RGS1) holds when the total number of nodes in this 

geometry is 2l. Circular geometry facilitates analysis by presenting only two routes along which 

the fastest time can disseminate from one node to another. As a conservative simplification to 

calculate the probability that the farthest node is time-synchronized, the coupling effect of the 

two routes is only considered at the farthest node. Since two independent, symmetric routes 

exist for achieving time synchronization, the probability PӨ (L, k) for successfully 

synchronizing time within k TBTTs with coupling effect is given by: 

 PӨ(L, k) = 2P(L, k) – P(L, k)2 (RGS5) 

 
d

A B

L
Figure 4: Describing relation between d and L for case II. 
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As mentioned above, (RGS5) only provides a simple estimation; however, it suggests 

that as the number of routes between the pair of fastest node and farthest node increases, the 

probability of time-synchronization actually improves. In fact, a circular geometry presents 

worst possible MANET topology for GS time synchronization in 2-dimensions. Thus, the 

probability for any 2- or 3-dimensional MANET to be time-synchronized within k TBTTs will 

be higher due to increased numbers of alternative routes available for diffusing the fastest time. 

3.8.2 Comparison with reference to mobility  

3.8.2.1 Mobility and LS strategies 

In an LS strategy, whenever a node receives the beacon from a neighbor, it measures 

its time difference with the neighbor, populating one element in the dT-vector. When the node 

receives beacons from all its neighbors, the dT-vector is fully populated, and the node is 

considered to be locally time-synchronized.  

On the other hand, to diffuse a common time between any two nodes in a MANET, it 

is necessary to know the MANET’s topology. A route between two given nodes must be 

probed firstly. Then, hop by hop time transformation can be carried out along the route. 

Hence, LS protocols must be aided by a routing protocol to synchronize time over the 

MANET.  

Moreover, each dT-vector corresponds to given topology – a spatial synchronized 

state. Whenever the MANET topology changes, the state of time synchronization is lost, and 

dT-vectors at some or all nodes requires an update. Thus, a dynamic MANET topology may 

retard time synchronization when using LS strategies. This can be illustrated with the 

movement of a node in a set of k TBTT intervals. The k TBTT intervals can be split in two 

groups: T1: 0 to k1, and T2: k1+1 to k. In T1, a node is considered to be in a region C with n-1 
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neighbors, and, in T2, the node moves to a region D with another n-1 neighbors. Regions C 

and D must be different so that the node can be considered to have moved in terms of the 

topology. During T1, the node receives beacons from m1 nodes in region C. When the node 

moves to region D, the node shall receive beacons from another m2 nodes. Given that,  

 n-1 < m1+m2 ≤ 2(n-1),  (RLS6) 

the probability that the mobile node recovers its time-synchronized state at the end of T2 can 

be calculated as two subsequent events – during T1, n-m2-1 nodes have beaconed, and, during 

T2, m2+1 nodes must beacon (the additional unit term, “1” of “m2+1”, refers to the mobile 

node itself). The probability of the mobile node recovering its time-synchronized state at the 

end of T2 is: 

 PT2 = P(n-m2-1, k1)·P[(n, k)|(n-m2-1, k1)] 

 = P[(n, k), (n-m2-1, k1)] (RLS7) 

As the event (n, k) and the event (n-m2-1, k1) are independent,  

 PT2 = P(n, k)·P(n-m2-1, k1) < P(n, k),  for P(n-m2-1, k1) < 1.  (RLS8) 

Thus, a node’s mobility will retard MANET’s time synchronization. 

3.8.2.2 Mobility and GS strategies 

GS has advantage over LS in terms of mobility – GS strategies would not be 

influenced by node mobility as only reference time (here, the fastest time) needs to be adopted 

within the MANET. In fact, a node’s movement can accelerate distribution of reference time 

during synchronization. Following the analysis of a ring MANET (Case II), the probability that 

the farthest node is synchronized, P(L, k), is only related to distance and elapsed time. Mobility 

does not affect farthest distance L and elapsed time k, making GS robust to mobility.  
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3.8.3 In terms of stochastic time-delay 

In practice, GS strategies are not feasible without compensation for lack of precision. 

At each beacon, precision errors, i.e., stochastic time-delay, will accumulate as distances and 

elapsed times increase, resulting in distortion of reference time. In fact, a MANET’s reference 

time will never converge to fastest time, but will drift with accumulation of precision error. On 

the other hand, LS strategies are robust to precision errors. Even through every node still 

needs to beacon its time, every receiver would not update its own time, but only record the 

offset to update its dT-vector – precision errors may affect the dT-vector, but they would not 

accumulate. 

3.9 Simulation 

In this section, theoretical results and simulation regarding the comparison of GS and 

LS are presented. As node density is given, MANET topology would not affect convergence 

time of LS. However, for GS, ring topology is considered. 

 
Figure 5: Convergence time vs. probabilities when n = 9. 
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Figure 6: Convergence time vs. probabilities when n = 55. 

By analyzing Figure 5 and Figure 6, it is observed that when n > 9 and h < 5, GS 

performance is better than the LS with reference to convergence time. It shows that GS 

performs better than LS, even if the MANET accommodates 7 hops, so long as node density 

is high (n ≥ 55). 

GS has advantage over LS when nodes are mobile. If the participating nodes are 

synchronized to the fastest time, time-sync state will not be influenced by mobility. In fact, 

mobility will actually promote the distribution of fastest time. On the other hand, LS will suffer 

due to mobility as a large overhead is involved when participating nodes have to adjust their 

dT-vectors to accommodate for new neighbors. 

The simulation was carried out using network simulation software ns-2 [41], within a 

rectangular region of 500m × 500m. The broadcast radius for each node was chosen to be the 

ns-2 default (250m). Thus, the maximum possible hop count is 3 (along the region’s diagonal). 

It is apparent from Figure 7 that GS strategies achieve faster convergence. 
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Figure 7: Convergence probabilities in 500m × 500m 

3.10 Conclusion 

This research presents a theoretical basis for comparing GS and LS time-

synchronization strategies. It has been pointed out that GS strategies have guaranteed faster 

convergence probabilities than LS strategies whenever node density > 9 nodes/broadcast area, 

and maximum hop count of the MANET is < 5. Such a result proves useful for application to 

event-based pervasive network management systems discussed in Chapter 4 where these 

bounds present minimum time required before any correlation based on events is carried out. 
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C H A P T E R  4  

4. EXPLOITING EPISTEMIC UNCERTAINTY 

What’s in a name theory? 
- Shakespeare 

The devil lies in details computer networks. 
- Anonymous 

 

4.1 Introduction 

This chapter delves into application of Dempster-Shafer’s theory to support a high-

volume, event-based, in-network and non-deterministic pervasive network management. First, 

an argument for providing network management functionality based on classical probability is 

presented. Then, due to its inherent drawbacks, a second argument supporting Dempster-

Shafer’s theory for the same functionality will be presented. Following the description of the 

model and its assumptions, simulation data verifying the model’s applicability conclude the 

chapter. 

4.2 Candidate 1: Bayesian theory 

The advantage offered by Baye’s theorem lies in its ability to determine probabilities 

that are causally ‘inverse’. In other words, it is possible to determine the probability of an 

earlier event given that another event is known to have occurred later on in time. From the 

perspective of network management, this entails changes in notation for easier understanding. 

Conditional probability will be notated in terms of events, E, and probable causes, PC, so that, 

the probability P of occurrence of probable-cause PCi given that the event E has already 

occurred is given by: 
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EPCP  (RBT1) 

Values on right hand side (RHS) of (RBT1) are generally obtained experimentally. As 

sample-size j, which denotes number of entities at which correlation between E, and PCi is 

known increases, conditional probability that E is due to PCi will be more accurate. 

Enumeration i denotes the universe of probable-causes which can afflict the network. 

(RBT1) does not lend itself well to event composition – it does not have a form that can 

be used to preserve information content of events as they pass through the network, or, under 

some special circumstances, preserve information content under certain correlation 

transformations such as generalization and suppression. In fact, the form is no different from 

traditional apriori methods such as decision trees and codebook/correlation matrix methods. 

However, Bayesian theory offers leverage by considering the concept of partial event set.  

Given correlation transformations, Ki, such transformations can be denoted 

diagrammatically as follows (Figure 8): 

 
Figure 8: Correlation transformations (Ki). 

In previous research, it is implicitly assumed that correlation transformations, Ki, are 

lossless. In other words, it is assumed that information content is completely preserved under 

such transformations. However, the assumption does not hold true when particular members 

of the partial event set, ej, are missing, false, delayed or corrupt. Using Bayesian theory, 

K1 K2

E1

E2

E3

E E<ej>
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correlation transformations, Ki, can calculate conditional probabilities )( jeEP  for each ej, and 

whenever all ei are known, )()( EPeEP j = , defined implicitly in regular correlation 

transformations. 

Extending (RBT1) using knowledge of partial event sets [19]: 
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)(
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j
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ePCP
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∩
=  (RBT2) 

Since ej may not contribute to E for some value of j: 
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Applying Bayesian theorem again: 
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=  (RBT4) 

This can further be written as: 

 )'()'()()()( jjijjiji eEPeEPCPeEPeEPCPePCP ⋅∩+⋅∩=  (RBT5) 

(RBT5) can be solved but requires lot of computation at devices and equipment 

responsible for processing events – processing event properties for E and each instance j of ej. 

If design of correlation transformations, Ki, is such that if missing, false, delayed or corrupt 

instances of ej are sparse in number, they are ignored, and then, (RBT5) can be reduced to a 

cascading conditional form: 

 )'()'()()()( jijiji eEPEPCPeEPEPCPePCP ⋅+⋅=  (RBT6)
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(RBT6) is simple but must be used with caution – there are no guarantees regarding 

apriori knowledge of missing, false, delayed or corrupt ej, even though they are considered 

apriori by causal considerations alone. 

Architecturally, (RBT6) can be envisioned in the network as shown in Figure 9. Each Ki 

(here, i = D, F) shall calculate )( jeEP and )'( jeEP , and pass this information to KA where Ei 

will be used to obtain a probable cause PCA. 

 
Figure 9: Architecture showing correlation transformation. 

While architecture presented in Figure 9 is suitable for distributed network 

management, it still requires full enumeration of symptoms and probable causes to allow 

management entities such as A, D, and F to correctly determine causes (“C” in ECA) and 

consequent actions (“A” in ECA) suitably. 

4.3 Candidate 2: Dempster-Shafer’s theory 

The advantage offered by Dempster-Shafer’s theory is ability to assign a degree of 

belief to events with regards to probable-causes, as they traffic through a network. Applying 

Dempster-Shafer’s theory to pervasive network management, it is found that assigning a belief 

of say 10% to a particular event Ej as being a symptom for a probable-cause PCi does not 
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mean a disbelief of 90% to Ej as being a symptom for PCi. In other words, if the network 

management system believes that once it observes the presence of event Ej, there is a 10% 

chance that a problem can be attributed to probable-cause PCi, then, it does not automatically 

mean that there is a 90% chance that the problem cannot be attributed to probable-cause PCi. 

Therefore, to accommodate such scenarios, a degree of belief is assigned to events. This is 

customarily known as mass of the events, denoted by m. Then, each event Ej, or a sequence of 

events <ej>, each of which may be a symptom of a probable cause PCi, are all assigned a finite 

mass m, to denote a degree of belief in the events as being symptoms for probable causes PCi. 

Any event Ej or sequence of events <ej> which do not contribute to PCi for any i, are not 

assigned any mass. All events Ej and sequences of events <ej> are considered to be elements 

of a mutually exclusive and exhaustive set known as ‘frame of discernment’, denoted by M.  

The set M, its elements, or its subsets may be mapped to each probable cause PCi to 

denote that the set M, its elements, or its subsets are actually symptoms of the probable causes 

PCi. Mathematically, this mapping is nothing but the power set of M, denoted by π(M): 

 }},,,,{,},,{},,{,},{,},{},{,{)( 2112121 KKKKKK ><><><= − jjjj eEEeEEEeEEM ϕπ   

  (RDS1) 

According to Dempster-Shafer’s theory, elements of π(M) may have a Real mass in the 

continuous interval [0, 1], and the sum of masses of all elements in π(M) is unity: 

 ]1,0[)( ⎯→⎯Mm π  (RDS2) 

 1)(
)(

=∑ ∈ Mx
xm

π
 (RDS3) 
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Each correlation transformation Ki can define its own degrees of belief to each event 

or sequence of events encountered at Ki:{mKi}. As events traffic through different parts of a 

network, various correlation transformations can orthogonally combine their masses using 

Dempster's Rule of Combination: 

)( 2121 iKiKK xxxmmm LL ∩∩⊕⊕⊕   
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If the output of a certain correlation transformation K is channeled to another correlation 

transformation G, then, the masses shall combine as: 
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 (RDS5) 

While the form of (RDS5) may appear complicated, it is actually amenable for 

application to a distributed system scenario. Events which form evidence in a correlation 

transformation K, are not recomputed in correlation transformation G. This “consensus” 

operation, which is a property of orthogonal sums, provides a strong mathematical support to 

many important network management processes, prominently, reduction in computation 

requirement, and reduction in bandwidth for management traffic. Additionally, this operation 

also introduces anonymity – a feature which may be desirable for democratic contexts in 

pervasive computer networks, but is subject to debate. This research will provide credibility to 

all these claims in later sections. 
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4.4 Assumptions 

The following are the assumptions governing the pervasive modeling environment: 

(a) Assumption A1: The pervasive environment is time synchronized. 

A necessary assumption for accuracy of correlated events is that every participating 

managed, managing, or proxy entity is aware of a global or a relative time which is 

constant throughout the network. Although Dempster-Shafer’s theory does not imply 

a component of time, this assumption generalizes correlation over contextual domains.  

(b) Assumption A2: The pervasive environment implements routing. 

Analyses of network management and associated features assume the presence of a 

routing mechanism within the pervasive mechanism. The analyses does not rely on 

contextual route changes accruing to the process of management itself, however, 

security and trust in routing mechanisms may be integrated into the management 

process to minimize the effect of collusion and therefore enhance network 

management outreach (Chapter 5). 

4.5 Model 

Pervasive environments have unique characteristics which must be exploited for a 

network management system to successfully manage such computer networks: 

(a) In-network processing – Since pervasive environments typically contain resource 

constrained entities, energy efficiency is gained by distributed computing, whether 

it be for local consumption or peer support. This must also be applicable to data 

used for network management. Management traffic flowing within the computer 

network must be of a form which can be processed in a distributed manner. 
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(b) High event volume – A high entity density typically results in a high volume of 

generated events. More often than not, an unexpected fulmination of events, 

known as ‘event storms’ may occur if distributed event-based management is 

applied to pervasive environments as is. Thus, network management paradigms 

for pervasive environments should be able to handle large volumes of events, 

often modified on-the-fly by correlation along contextual dimensions, heavily 

dependent on topology of the computer network, containing conflicting 

information and dealing with rapidly changing contexts while producing results 

with low-latency. 

(c) Relay – A centralized network management paradigm dictates that the computer 

network must have a single point of control. While this requirement is necessary 

for managing the network per se, its functional architecture is relaxed for 

distributed processing of management information. This implies that even though 

management information is aggregated at various points within the network, the 

information must be relayed to a central point. This ‘manager’ entity, which is the 

recipient of this summarized information, may be equated to the sink in traditional 

wireless sensor/actuator networks. Thus, just like the case of wireless 

sensor/actuator networks, while the relay may be arbitrary in length, and span 

different communication media, there are associated drawbacks. Increase in relay 

lengths typically increases the energy consumption of the pervasive environment, 

increases data latency and increases communication failure rates accruing to 

dropped packets. 
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Figure 10: Typical pervasive environment modeled as Wireless Sensor/Actuator Network 

Consequently, management channels dependent on the relay must reduce bandwidth 

consumption while maintaining network management functionality. 

(RDS5) can be directly applied to a scenario as shown in Figure 10 so that it can be 

modeled as shown in Figure 9. As a key, ‘1’ denotes management traffic, ‘2’ denotes 

participating managed entities, ‘3’ denotes summarized management data, ‘4’ denotes 

management traffic flow, and, ‘5’ denotes upstream traffic to a manager entity. Masses of 

events Ej, collected at each participating managed entity j, can be combined orthogonally at 

each entity in the relay until the aggregate reaches the ‘manager’ (sink). This method provides 

us with two advantages: 

(a) Management data is summarized at each entity in the relay – While this is the main 

advantage offered by Dempster-Shafer’s theory, it also affirms in-network processing 

which is an important characteristic of pervasive environments. The technique used 

for summarizing network management data may include correlation along contextual 

dimensions. 
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(b) Bandwidth required for management data is lowered – This affirms the second 

requirement of pervasive environments, that is, to mitigate the increase in energy 

consumption and communication failure rates due to long relay paths.  

The simulations based on this model are described next. 

4.6 Simulation 

The two main goals of simulations are: 

(a) To demonstrate that Dempster-Shafer’s theory is applicable and appropriate means for 

pervasive network management, and, 

(b) To demonstrate that bandwidth required for management traffic is significantly lower 

when supplementing event correlation with Dempster-Shafer’s theory. 

These goals are demonstrated in a scenario explained as follows: 

The simulation environment consists of a random collection of participating managed 

entities which relay packets of fixed size. Each packet consists of belief assigned to reasons 

considered as possible causes of various symptoms observed by each participating entity. 

Depending on their individual state, symptoms observed, and preferences, participating entities 

may or may not assign beliefs to particular probable causes (therefore, non-deterministic). The 

entities also query their neighbors regarding the status of particular internal processes (in-

network processing). These queries influence individual belief assignments; however, they do 

not accrue towards the management bandwidth consumed by the network (‘consensus’ 

operation). The simulation records assigned beliefs at each entity in a relay of up to 10 hops. 

Based on results from Chapter 3, it is assumed that relay lengths are generally confined within 

this hop range. 
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Figure 11 shows a typical scenario where network operation is ‘normal’ and no 

participating entity can pin-point observed problems in the network. As a key, ‘U’ denotes an 

unknown cause, ‘Ri’ denotes probable cause i, and, ‘Total’ denotes aggregate belief in a normal 

pervasive environment. 

 

Figure 11: Changes in belief and conflict in probable causes as a function of hop-count. 

When no participating entity in a given relay presents with consistent agreement on a 

given probable cause, the overall ‘conflict’ of belief rises along the relay. Notwithstanding the 

initial beliefs on individual probable causes, or their power-set combinations, the belief 

gradually diminishes along the relay length – this implies that without significant agreement 

regarding probable cause of a symptom or a set of symptoms, the overall belief is significantly 

eroded as more and more conflict is observed among entities along the length of the relay.  
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When a given probable cause (here reason R2) does show agreement among a group of 

entities, the belief in the probable cause shows a marked consistency denoting general 

agreement regarding a network problem. In the simulation, a critical service was deliberately 

shut down in a portion of the network. Entities lying in that particular portion of the network 

(here entities within hop 4 through 7 in Figure 12) increased overall belief in a probable cause 

R2. Since the probable cause is the only major source of symptoms observed in the network, its 

belief value approaches that of the total belief of the relay. The consistency in belief towards a 

single probable cause also stemmed the overall conflict observed within the network for the 

duration of hops lying within the affected region (hops 4 through 7 in Figure 12). 

 

Figure 12: Changes in belief in an unusual pervasive environment. 
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In simulation for Figure 13, a Firewall is deliberately used to partition the network 

(here after hop 6). Entities outside the Firewall (here hops 1 through 6) are exposed to a viral 

attack which consistently flags a particular probable cause (here reason R2). This is elucidated 

by a consistent belief in the reason. Since entities within Firewall’s perimeter are not affected 

by the particular attack, the nodes show a disagreement, and therefore significant erosion in 

the belief on probable cause R2 is observed. This is complemented by marked increase in 

conflict regarding overall belief. As before, since probable cause R2 is the only major source of 

symptoms observed in the network, its belief value approaches that of total belief of the relay. 

 

Figure 13: Changes in belief in a pervasive environment partitioned by a Firewall. 
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The following simulations (Figure 14 and Figure 15) show average bandwidth 

consumption for pervasive network management based on Dempster-Shafer’s theory versus a 

popular network management protocol: SNMP. Since pervasive network management 

employs in-network processing, overall bandwidth required is significantly lower as relay length 

increases. However, for relay lengths that are typically small (within single-digit range), the 

consumption is not significant. 

 

Figure 14: Average increase in message bandwidth for an edge manager entity. 
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Figure 15: Average increase in message bandwidth for a central manager entity. 

4.7 Drawbacks – Location awareness 

While this research brings forth a new event-based pervasive network management 

scheme based on a lightweight scheme exploiting epistemic uncertainty – Dempster-Shafer’s 

theory, it suffers from a major drawback as illustrated in Figure 12 and Figure 13 – location 

awareness. Due to missing information regarding location awareness, probable causes deemed 

as major afflictions in a portion of the computer network can only be noticed by manager 

entities within or adjacent to that portion of the computer network. This is true even if 

summarization of network management data does consider spatial correlation – outside the 

range of interest, conflict with other probable causes quickly erodes the belief in the major 

probable cause. For example, in Figure 12, belief that reason R2 is a dominant probable cause 

in the region of the computer network occupied by entities in the hops 4 through 7 is already 

eroded significantly by the 9th hop. 
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4.8 Conclusion 

This research presents us with a high-volume, event-based network management 

scheme suitable for pervasive computer networks. The scheme is based on Dempster-Shafer’s 

theory. Bandwidth required for management traffic is significantly lower when supplanted with 

in-network processing. In-network processing adds computation overhead to participating 

entities. However, distribution of overhead allows network management response less latent – 

no single point offers a processing bottleneck. The scheme withstands missing and conflicting 

information gathered from multiple participating entities and summarizes management data 

along contextual dimensions. Anonymity is maintained – it is difficult to trace a probable cause 

to an entity or a group of entities. However, advantages of this feature may be debatable for 

environments where privacy preservation makes forensic operations difficult. 
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C H A P T E R  5  

5. CONCLUSIONS 

We shall not cease from exploration 
And the end of all our exploring 

Will be to arrive where we started 
And know the place pervasive computer network for the first time. 

– T.S. Eliot 
 

5.1 Contribution 

The dissertation presents a novel application of Dempster-Shafer’s theory to high 

volume, event-based, in-network, network management of pervasive computer networks. 

Additionally, it provides analytical bounds of time synchronization after which such an 

application can be exploited. 

(a) First, currently available algorithms for synchronizing time in a pervasive computer 

network are split in two classes – those which employ an invasive clock and those 

which do not. It is shown that for a given lower bound of entities participating in a 

network, one class of algorithms, namely, those relying on an invasive clock – global 

time synchronization (GS), is able to achieve a faster time convergence, and therefore, 

are better prepared to support an event-based network management system. 

(b) Second, a novel application of Dempster-Shafer’s theory as an appropriate means for 

high-volume, event-based, network management in pervasive computer networks is 

presented and demonstrated. It elucidates an effective method of in-network 

processing, coupled with low bandwidth consumption – two important features for 

pervasive network management systems. Since only very little computation is involved 
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at each participating entity, the application is well-suited for a pervasive computer 

networks, prevents a processing bottleneck in the network, and therefore provides 

low-latency response. The theory itself withstands missing and conflicting information 

gathered from multiple participating entities, and supports summarizing of network 

management data at participating entities along contextual dimensions. 

5.2 Future Work 

5.2.1 Location Awareness 

Although a lightweight scheme for pervasive network management, this novel 

application has its drawback – its blindness towards location awareness. One of the first 

objectives of the future work is to remove this drawback without compromising on the 

advantages gained by the application. While this is possible by considering certain entities to be 

aware of the topology of their neighborhood, preliminary results indicate that the choice of 

such entities is an NP-hard problem. Surprisingly, the insight does offer promise that the 

relationship between possibility of agreement and bandwidth consumed for an algebraically 

increasing number of location aware nodes is simple (Figure 16). 

 

Figure 16: Relation between agreement and bandwidth consumed for location aware nodes. 
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5.2.2 Security and Trustworthiness 

As stated in the assumptions governing Chapter 4, security and trustworthiness are 

considered given by the underlying routing mechanism. This implicit faith in the system can 

blind the network management scheme towards vulnerabilities exploiting the routing 

mechanism [60]. As the network management shall rely on the routing mechanism to provide 

it with security and trustworthiness primitives, a malicious intent which succeeds in subverting 

the routing mechanism can effectively redirect network management traffic into obfuscated 

sections of the computer network. This is complicated by the fact that wireless technologies 

essentially use a shared medium for communication. Thus, management traffic flowing from 

and through wireless devices and equipment faces an extra level of trustworthiness and 

security complexity. 

Research being conducted by author’s major advisor indicates that this entails the 

development of a comprehensive trust platform that ties a policy-based approach to a 

behavioral model. The platform will enable detection and isolation of entities that breach the 

platform, which itself is actually a network management function. Tying the network 

management scheme to the platform will allow it to be independent of externally provided 

trust and security primitives. 

In sum, the future of this research would be to introduce location awareness and tie 

network management to a comprehensive trust platform providing integration of security and 

trust primitives to network management itself. 
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A P P E N D I X  I  

Lemma 1: Inside a n-node IBSS, the probability that i nodes have beaconed after i 

TBTTs is given by: 

 P(i, i) =
)!(

!
in
i
−

· in
1 , 

Proof: Omitting beacon collision, the event (1, 1), that a node beacons after a TBTT, 

will surely occur. So, P(1, 1) = 1. 

The event (2, 2), that two different nodes beacon after two TBTTs, can only be 

achieved via event (1, 1), because only one node is permitted to beacon at each TBTT. 

Additionally, the node that beacons at the 2nd TBTT must be different from the node that has 

already beaconed at the 1st TBTT. Thus,  
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Similarly, event (3, 3) can only evolve from the event (2, 2). Additionally, the node that 

beacons at the third TBTT must be different from the nodes that beacon at the first two 

TBTTs. Thus,  
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By induction, the probability of the event (4, 4), …, (i, i), …, (n, n) is obtained as: 
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A P P E N D I X  I I  

As the fastest time is diffused via intermediate nodes to the farthest node, the 

probability P(L, k) that the farthest node is synchronized can be used to denote the probability 

that the entire MANET has been synchronized. For an intermediate node i lying between the 

source node and the farthest node, P(i·d, k) implies the probability that the fastest time has 

diffused a distance i·d in k TBTTs. This may not necessarily imply that fastest time has not 

diffused beyond node i towards (i+1)th node or further. To determine the probability that the 

fastest time has actually diffused into ith node and no further than that, a correction probability 

factor needs to be applied to determine a more accurate snapshot regarding time 

synchronization of the ith node:   

 Pcut(i·d, k) = P(i·d, k) – P((i+1)·d, k) (RGS6) 

Analogous to case I, the nodes are partitioned in two – those lying within the single-

hop range h, and the outliers, so that, using (AGS1), the probability at which the node farthest 

from the fastest node is synchronized can be determined as follow.  

When i < ½(n-1), the fastest time disperses within the radio range of a single hop: 

 P(i·d, k) = 
k

n
n

⎟
⎠
⎞

⎜
⎝
⎛ −

−
11 , i = 1, 2,…, k (RGS7) 

The argument behind (RGS7) is that after k TBTTs, the probability that the node with 

the fastest time has no chance to beacon is [(n-1)/n]k, which is equal to 1- P(i·d, k). For outlier 

nodes, the probability will be influenced by correction provided by (RGS6). 
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Lemma 2: All nodes of MANET are dispersed homogeneously along a line with 

inter-node distance d, and not all within a unit hop distance. Then, when i > ½(n-1), the 

probability that the ith node is successfully time synchronized within k TBTTs is given by:  

P(i, k) = P(i, k-1)+ {P[(i- 2
1−n )·d, k-1] – P(i, k-1)} 

n
1 , i > 

2
1−n  and k = 2, 3,…, ∞  (RGS4) 

Proof: 

P(i·d, k) =  

 P(i·d, k-1)  
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The argument behind (RGS4) is that the ith node can be synchronized in k TBTTs in the 

following ways – when ith nodes have been synchronized in k-1 TBTTs, or, when (i-(n-1)/2)th 

node just synchronized its time with the fastest node in the k-1 TBTT and shall beacon at the 

next TBTT, or, when (i-(n-1)/2+1)th node just synchronized its time with the fastest node in 

the k-1 TBTT and shall beacon at the next TBTT, and so on, until, when (i-1)th node just 

synchronized its time with the fastest node in the k-1 TBTT and shall beacon at the next 

TBTT. □ 
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A P P E N D I X  I I I  

(a) ns-2 source code for Chapter 3 (ns-allinone 2.29). 

# gts.tcl 
set val(chan)    Channel/WirelessChannel     
set val(prop)    Propagation/TwoRayGround    
set val(netif)   Phy/WirelessPhy             
set val(mac)     Mac/802_11                  
set val(ifq)     Queue/DropTail/PriQueue     
set val(ll)      LL                          
set val(ant)     Antenna/OmniAntenna         
set val(ifqlen)  50                          
set val(nn)      16                          
set val(rp)      AODV                        
 
set ns_ [new Simulator] 
set tracefd [open gts.tr w] 
$ns_ trace‐all $tracefd 
 
# set up topography object 
set topo [new Topography] 
 
$topo load_flatgrid 500 500 
create‐god $val(nn) 
 
set chan_ [new $val(chan)] 
 
$ns_ node‐config  ‐adhocRouting $val(rp) \ 
  ‐llType $val(ll) \ 
  ‐macType $val(mac) \ 
  ‐ifqType $val(ifq) \ 
  ‐ifqLen $val(ifqlen) \ 
  ‐antType $val(ant) \ 
  ‐propType $val(prop) \ 
  ‐phyType $val(netif) \ 
  ‐channel $chan_ \ 
  ‐topoInstance $topo \ 
  ‐agentTrace ON \ 
  ‐routerTrace OFF \ 
  ‐macTrace OFF \ 
  ‐movementTrace OFF    
     
 for {set i 0} {$i < $val(nn)} {incr i} { 
   set node_($i) [$ns_ node]  
   $node_($i) random‐motion 0   
 }  
 
for {set i 0} {$i < $val(nn)} {incr i} { 
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  $node_($i) set X_  [expr ($i*165)%660] 
  $node_($i) set Y_   [expr ($i*165‐($i*165)%660)/4] 
  $node_($i) set Z_  0.0 
}  
 
for {set i 0} {$i < $val(nn)} {incr i} { 
  set p_($i) [new Agent/GTS] 
  $ns_ attach‐agent $node_($i) $p_($i) 
} 
 
set period   30 
set rep_num  1000 
for {set i 0} {$i < $rep_num} {incr i} \ 
{  
   $ns_ at [expr ($i)*($period+5)] "$p_(0) be_fastest" 
   for {set j 1} {$j < [expr $period+1]} {incr j} \ 
   { 
     for {set k 0} {$k < $val(nn)} {incr k} \ 
     { 
       $ns_ at [expr $i*($period+5)+$j]  
    } 
 } 
    
 for {set l 0} {$l < $val(nn)} {incr l} \ 
 { 
   $ns_ at [expr ($i+1)*($period+5)‐3]  
   $ns_ at [expr ($i+1)*($period+5)‐2.5]  
 } 
 $ns_ at [expr ($i+1)*($period+5)‐1.5]  
} 
$ns_ at [expr ($period+5)*$rep_num+9]  
$ns_ at [expr ($period+5)*$rep_num+10]  
$ns_ at [expr ($period+5)*$rep_num+10.01]  
$ns_ halt 
proc stop {} { 
    global ns_ tracefd 
    $ns_ flush‐trace 
    close $tracefd 
} 
$ns_ run 
 

   



75 

# lts.tcl 
set val(chan)   Channel/WirelessChannel  
set val(prop)   Propagation/TwoRayGround  
set val(netif)  Phy/WirelessPhy  
set val(mac)    Mac/802_11  
set val(ifq)    Queue/DropTail/PriQueue  
set val(ll)     LL  
set val(ant)    Antenna/OmniAntenna  
set val(ifqlen) 50  
set val(nn)     16  
set val(rp)     AODV  
 
set ns_ [new Simulator] 
set tracefd [open lts.tr w] 
$ns_ trace‐all $tracefd 
 
set topo [new Topography] 
$topo load_flatgrid 500 500 
 
create‐god $val(nn) 
 
set chan_ [new $val(chan)] 
 
$ns_ node‐config ‐adhocRouting $val(rp) \ 
  ‐llType $val(ll) \ 
  ‐macType $val(mac) \ 
  ‐ifqType $val(ifq) \ 
  ‐ifqLen $val(ifqlen) \ 
  ‐antType $val(ant) \ 
  ‐propType $val(prop) \ 
  ‐phyType $val(netif) \ 
  ‐channel $chan_ \ 
  ‐topoInstance $topo \ 
  ‐agentTrace ON \ 
  ‐routerTrace OFF \ 
  ‐macTrace OFF \ 
  ‐movementTrace OFF  
  
for {set i 0} {$i < $val(nn)} {incr i} { 
  set node_($i) [$ns_ node]  
  $node_($i) random‐motion 0 ;# disable random motion 
}  
 
for {set i 0} {$i < $val(nn)} {incr i} { 
  $node_($i) set X_ [expr ($i*165)%660] 
  $node_($i) set Y_ [expr ($i*165‐($i*165)%660)/4] 
  $node_($i) set Z_ 0.0 
}  
 
for {set i 0} {$i < $val(nn)} {incr i} { 
  set p_($i) [new Agent/LTS] 
 $ns_ attach‐agent $node_($i) $p_($i) 
} 
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set n [new RandomVariable/Uniform] 
$n set max_ 0.0003 
$n set min_ 0.0 
 
set period 120 
set rep_num 1000 
for {set i 0} {$i < $rep_num} {incr i} \ 
{  
  for {set j 1} {$j < [expr $period+1]} {incr j} \ 
  { 
    for {set k 0} {$k < $val(nn)} {incr k} \ 
    { 
       $ns_ at [expr $i*($period+5)+$j+[$n value]+0.001] 
    } 
  } 
  for {set k 0} {$k < $val(nn)} {incr k} \ 
  { 
    $ns_ at [expr ($i+1)*($period+5)‐3]  
    $ns_ at [expr ($i+1)*($period+5)‐2.5]  
  } 
  $ns_ at [expr ($i+1)*($period+5)‐1.5]  
} 
 
$ns_ at [expr ($period+5)*$rep_num+9]  
$ns_ at [expr ($period+5)*$rep_num+10]  
$ns_ at [expr ($period+5)*$rep_num+10.01]  
$ns_ halt" 
proc stop {} { 
 global ns_ tracefd 
 $ns_ flush‐trace 
 close $tracefd 
} 
 
$ns_ run 
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// gts.h 
 
#ifndef ns_gts_h 
#define ns_gts_h 
 
#define NODE_NUM 16 
 
#include "agent.h" 
#include "tclcl.h" 
#include "packet.h" 
#include "address.h" 
#include "ip.h" 
 
struct hdr_gts { 
  bool time_mark;  
  int seq;  
  static int offset_;  
  inline static int& offset() { return offset_; } 
  inline static hdr_gts* access(const Packet* p) { 
    return (hdr_gts*) p‐>access(offset_); 
  } 
}; 
 
class GTS_Agent : public Agent { 
public: 
 GTS_Agent(); 
 int seq;  
 bool time_mark;  
 static int flag[NODE_NUM];  
 static int has_syn;  
 static int hasnot_syn;  
 static float success; 
 static float repeats;  
 virtual int command(int argc, const char*const* argv); 
 virtual void recv(Packet*, Handler*); 
}; 
#endif 
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// gts.cc 
#include "gts.h" 
 
int hdr_gts::offset_; 
static class GTS_HeaderClass : public PacketHeaderClass { 
  public: 
   GTS_HeaderClass() : PacketHeaderClass("PacketHeader/GTS",  
   sizeof(hdr_gts)) {bind_offset(&hdr_gts::offset_);} 
} class_gts_hdr; 
 
static class GTS_Class : public TclClass { 
 public: 
   GTS_Class() : TclClass("Agent/GTS") {} 
   TclObject* create(int, const char*const*) {return (new GTS_Agent());} 
} class_gts; 
 
int GTS_Agent::flag[NODE_NUM]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
int GTS_Agent::has_syn=0; 
int GTS_Agent::hasnot_syn=0; 
float GTS_Agent::success=0.0; 
float GTS_Agent::repeats=0.0; 
GTS_Agent::GTS_Agent():Agent(PT_GTS),seq(0){bind("packetSize_", &size_);} 
 
int GTS_Agent::command(int argc, const char*const* argv) 
{ 
  if (argc == 2) { 
  if (strcmp(argv[1], "send") == 0) { 
    Packet* pkt = allocpkt(); 
    hdr_ip* iph = HDR_IP(pkt); 
    hdr_gts* th = hdr_gts::access(pkt); 
    iph‐>daddr() = IP_BROADCAST; 
    iph‐>dport() = iph‐>sport(); 
    seq++; 
    th‐>seq = seq; 
    th‐>time_mark = time_mark; 
    flag[here_.addr_]=0; 
    send(pkt, (Handler*) 0); 
    return (TCL_OK); 
 } 
 if (strcmp(argv[1], "be_fastest") == 0) { 
   time_mark=TRUE;return (TCL_OK);} 
   if (strcmp(argv[1], "reset") == 0) { 
     time_mark=FALSE; 
     has_syn=0; 
     hasnot_syn=0; 
     flag[here_.addr_]=0; 
     return (TCL_OK); 
   } 
   if (strcmp(argv[1], "cal_pro") == 0) {return (TCL_OK);} 
   if (strcmp(argv[1], "check") == 0) { 
     repeats++; 
     if(!time_mark) {hasnot_syn++;} else {has_syn++;} 
     if(has_syn==NODE_NUM) {success++;}  
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     return (TCL_OK); 
   } 
  } 
  return (Agent::command(argc, argv)); 
} 
 
void GTS_Agent::recv(Packet* pkt, Handler*) 
{ 
  if (flag[here_.addr_]) {Packet::free(pkt); return; } else  
  { 
    flag[here_.addr_]=1; 
    hdr_gts* hdrgts = hdr_gts::access(pkt); 
    if((hdrgts‐>time_mark)&&(!time_mark)){time_mark=TRUE;} 
    Packet::free(pkt);  
    return; 
   } 
} 
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// lts.h 
 
#ifndef ns_lts_h 
#define ns_lts_h 
 
#define NODE_NUM 16 
 
#include "agent.h" 
#include "tclcl.h" 
#include "packet.h" 
#include "address.h" 
#include "ip.h" 
 
struct hdr_lts { 
 int seq;  
 static int offset_;  
 inline static int& offset() {return offset_;} 
 inline static hdr_lts* access(const Packet* p) { 
    return (hdr_lts*) p‐>access(offset_);  
 } 
}; 
 
class LTS_Agent : public Agent { 
public: 
 LTS_Agent(); 
 int seq;  
 static int flag[NODE_NUM];  
 static int syn[NODE_NUM];  
 static int has_syn; 
 static int hasnot_syn; 
 static float success; 
 static float repeats; 
 virtual int command(int argc, const char*const* argv); 
 virtual void recv(Packet*, Handler*); 
}; 
#endif  
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// lts.cc 
  
#include "lts.h" 
#include <math.h> 
 
int hdr_lts::offset_; 
static class LTS_HeaderClass : public PacketHeaderClass { 
  public: 
    LTS_HeaderClass() : PacketHeaderClass("PacketHeader/LTS",  
    sizeof(hdr_lts)) { bind_offset(&hdr_lts::offset_); } 
} class_lts_hdr; 
 
int LTS_Agent::has_syn=0; 
int LTS_Agent::hasnot_syn=0; 
float LTS_Agent::success=0.0; 
float LTS_Agent::repeats=0.0; 
 
int LTS_Agent::syn[NODE_NUM]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
int LTS_Agent::flag[NODE_NUM]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
 
static class LTS_Class : public TclClass { 
  public: 
    LTS_Class():TclClass("Agent/LTS") {} 
    TclObject* create(int, const char*const*) { 
    return (new LTS_Agent()); 
  } 
} class_lts; 
 
LTS_Agent::LTS_Agent():Agent(PT_LTS),seq(0){bind("packetSize_", &size_);} 
 
int LTS_Agent::command(int argc, const char*const* argv) 
{ 
  if (argc == 2) { 
    if (strcmp(argv[1], "send") == 0) { 
      // allocate a packet 
      Packet* pkt = allocpkt(); 
      // get the access of the ip head and lts head of the packet 
      hdr_ip* iph = HDR_IP(pkt); 
      hdr_lts* th = hdr_lts::access(pkt); 
  
      // assign the broadcast address and port of the ip head 
      iph‐>daddr() = IP_BROADCAST; 
      iph‐>dport() = iph‐>sport(); 
      // increase the sequence number of lts head 
      seq++; 
      th‐>seq = seq; 
      flag[here_.addr_]=0; 
      send(pkt, (Handler*) 0); 
      return (TCL_OK); 
   } 
   if (strcmp(argv[1], "reset") == 0) { 
      has_syn=0; 
      hasnot_syn=0; 
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      syn[here_.addr_]=0; 
      flag[here_.addr_]=0; 
      return (TCL_OK); 
    } 
    if (strcmp(argv[1], "cal_pro") == 0) {return (TCL_OK);} 
    if (strcmp(argv[1], "check") == 0) { 
      repeats++; 
      if (syn[here_.addr_]) {has_syn++;} else {hasnot_syn++;} 
      if (has_syn==NODE_NUM) {success++;} 
      return (TCL_OK); 
    } 
  } 
  return (Agent::command(argc, argv)); 
} 
 
void LTS_Agent::recv(Packet* pkt, Handler*) 
{ 
   hdr_ip* hdrip = hdr_ip::access(pkt); 
   if (flag[here_.addr_]==1) {Packet::free(pkt);return;}  
   flag[here_.addr_]=1; 
   if (flag[hdrip‐>saddr()]==1) {Packet::free(pkt); return;}  
   flag[hdrip‐>saddr()]=1; 
   syn[hdrip‐>saddr()]=1;  
   Packet::free(pkt);  
   return; 
} 
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(b) C++ source code for Chapter 4 (Microsoft C++ 2005, boost 1.34.1) 

// dst‐normal.cpp 
 
#include "stdafx.h" 
#include "iostream" 
#include "conio.h" 
#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
 
#define UNKNOWN 6554  
 
#define UNIFORM 16384 
#define REASONS 3 
#define NEIGHBORS 5 
#define POWERSET 8  
#define ROUNDS 10 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
 int test_print = 1, file_print = 1; 
 int i, j, i3, j3; 
 int a1[REASONS][NEIGHBORS], i1, j1; 
 int a2[REASONS][NEIGHBORS], i2, j2; 
 float R[(POWERSET+1)][(POWERSET+1)], F[ROUNDS][(POWERSET+2)]; 
 FILE *f; 
  
 srand((unsigned)time(NULL)); 
 
 for (j1=0; j1<NEIGHBORS; j1++) 
 { 
   for (i1=0; i1<REASONS; i1++) 
   { 
     a1[i1][j1] = 0; 
     a2[i1][j1] = 0; 
   } 
 } 
 for (i2=0; i2<(POWERSET+1);i2++) { 
   for (j2=0;j2<(POWERSET+1);j2++) {R[i2][j2] = 0.0;} 
 } 
 for (i3=0; i3<ROUNDS;i3++) { 
   for (j3=0;j3<(POWERSET+2);j3++) {F[i3][j3] = 0.0;} 
 } 
 
 for (j1=0; j1<NEIGHBORS; j1++){ 
   for (i1=1; i1<REASONS; i1++) { 
     i = rand(); 
     if (i < UNIFORM) {a1[i1][j1]=1;} else {a1[i1][j1]=0;}; 
     i = rand(); 
     if (i < UNIFORM) {a2[i1][j1]=1;} else {a2[i1][j1]=0;}; 
   } 
} 
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if (test_print == 1) 
{ 
 for (i1=0; i1<REASONS; i1++) { 
   for (j1=0; j1<NEIGHBORS; j1++) { 
     printf ("%0d ",a1[i1][j1]); } 
     printf("\n"); 
 } 
 printf("\n"); 
 for (i1=0; i1<REASONS; i1++) { 
   for (j1=0; j1<NEIGHBORS; j1++) { 
     printf ("%0d ",a2[i1][j1]); } 
     printf("\n"); 
 } 
 printf("\n"); 
}  
 
for (j1=0; j1<NEIGHBORS; j1++) { 
 if (a1[0][j1] == 1 && a1[1][j1] == 0 && a1[2][j1] == 0) {R[2][0]++;}  
 if (a1[0][j1] == 0 && a1[1][j1] == 1 && a1[2][j1] == 0) {R[3][0]++;}  
 if (a1[0][j1] == 0 && a1[1][j1] == 0 && a1[2][j1] == 1) {R[4][0]++;}  
 if (a1[0][j1] == 1 && a1[1][j1] == 1 && a1[2][j1] == 0) {R[5][0]++;}  
 if (a1[0][j1] == 0 && a1[1][j1] == 1 && a1[2][j1] == 1) {R[6][0]++;}  
 if (a1[0][j1] == 1 && a1[1][j1] == 0 && a1[2][j1] == 1) {R[7][0]++;}  
 if (a1[0][j1] == 1 && a1[1][j1] == 1 && a1[2][j1] == 1) {R[8][0]++;}  
 if (a2[0][j1] == 1 && a2[1][j1] == 0 && a2[2][j1] == 0) {R[0][2]++;}  
 if (a2[0][j1] == 0 && a2[1][j1] == 1 && a2[2][j1] == 0) {R[0][3]++;}  
 if (a2[0][j1] == 0 && a2[1][j1] == 0 && a2[2][j1] == 1) {R[0][4]++;}  
 if (a2[0][j1] == 1 && a2[1][j1] == 1 && a2[2][j1] == 0) {R[0][5]++;}  
 if (a2[0][j1] == 0 && a2[1][j1] == 1 && a2[2][j1] == 1) {R[0][6]++;}  
 if (a2[0][j1] == 1 && a2[1][j1] == 0 && a2[2][j1] == 1) {R[0][7]++;}  
 if (a2[0][j1] == 1 && a2[1][j1] == 1 && a2[2][j1] == 1) {R[0][8]++;}  
} 
 
for (i=2; i<(POWERSET+1); i++) { 
 R[i][0] /= (float) NEIGHBORS; 
 R[0][i] /= (float) NEIGHBORS; 
 R[1][0] += R[i][0]; 
 R[0][1] += R[0][i]; 
} 
R[1][0] = 1‐R[1][0]; 
R[0][1] = 1‐R[0][1]; 
 
for (i2=1; i2<(POWERSET+1); i2++) { 
  for (j2=1; j2<(POWERSET+1); j2++) { 
    R[i2][j2]=R[0][j2]*R[i2][0]; } 
} 
 
F[0][0] = R[1][1];  
F[0][1] = 
R[2][2]+R[1][2]+R[2][1]+R[2][5]+R[5][2]+R[2][7]+R[7][2]+R[2][8]+R[8][2];  
 F[0][2] = 
R[3][3]+R[1][3]+R[3][1]+R[3][5]+R[5][3]+R[3][6]+R[6][3]+R[3][8]+R[8][3];  
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 F[0][3] = 
R[4][4]+R[1][4]+R[4][1]+R[4][6]+R[6][4]+R[4][7]+R[7][4]+R[4][8]+R[8][4];  
 F[0][4] = R[5][5]+R[1][5]+R[5][1]+R[5][8]+R[8][5];  
 F[0][5] = R[6][6]+R[1][6]+R[6][1]+R[6][8]+R[8][6];  
 F[0][6] = R[7][7]+R[1][7]+R[7][1]+R[7][8]+R[8][7];  
 F[0][7] = R[8][8];  
 
 for (i3=0; i3<POWERSET; i3++) {  
   F[0][POWERSET] += F[0][i3]; 
 } 
 F[0][POWERSET+1] = 1 ‐ F[0][POWERSET]; 
 
 if (test_print == 1) { 
   for (i2=0; i2<(POWERSET+1); i2++) { 
 for (j2=0; j2<(POWERSET+1); j2++) 
 { 
 printf ("%2.3f ",R[i2][j2]); 
 } 
 printf("\n"); 
 } 
 printf("\n"); 
 for (j=0; j<(POWERSET+2); j++) {printf("%2.3f ",F[0][j]);} 
 char ch = _getch(); 
 printf("\n"); 
}  
 
int a4[REASONS][NEIGHBORS], i4, j4; 
int k, l; 
 
for (k=1; k<ROUNDS; k++){ 
  for (j4=0; j4<NEIGHBORS; j4++) { 
    for (i4=0; i4<REASONS; i4++) { 
      a4[i4][j4] = 0; 
      a4[i4][j4] = 0; } 
} 
  
for (j4=0; j4<NEIGHBORS; j4++) { 
  for (i4=0; i4<REASONS; i4++) { 
    i = rand(); 
    if (i < UNIFORM) {a4[i4][j4]=1;} else {a4[i4][j4]=0;}; } 
} 
  
for (l = 0; l < POWERSET; l++) { 
  R[0][l+1] = F[k‐1][l]; 
  R[l+1][0] = 0; 
} 
 
#ifdef DEBUG_PRINT 
for (i=0; i<(POWERSET+1); i++) { 
 for (j=0; j<(POWERSET+1); j++) { printf ("%2.3f ",R[i][j]); } 
   printf("\n"); } 
   printf("\n"); 
#endif 
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for (j4=0; j4<NEIGHBORS; j4++) { 
 if (a4[0][j4] == 1 && a4[1][j4] == 0 && a4[2][j4] == 0) {R[2][0]++;}  
 if (a4[0][j4] == 0 && a4[1][j4] == 1 && a4[2][j4] == 0) {R[3][0]++;}  
 if (a4[0][j4] == 0 && a4[1][j4] == 0 && a4[2][j4] == 1) {R[4][0]++;}  
 if (a4[0][j4] == 1 && a4[1][j4] == 1 && a4[2][j4] == 0) {R[5][0]++;}  
 if (a4[0][j4] == 0 && a4[1][j4] == 1 && a4[2][j4] == 1) {R[6][0]++;}  
 if (a4[0][j4] == 1 && a4[1][j4] == 0 && a4[2][j4] == 1) {R[7][0]++;}  
 if (a4[0][j4] == 1 && a4[1][j4] == 1 && a4[2][j4] == 1) {R[8][0]++;}  
} 
 
#ifdef DEBUG_PRINT 
for (i=0; i<(POWERSET+1); i++) { 
 for (j=0; j<(POWERSET+1); j++) { 
   printf ("%2.3f ",R[i][j]); } 
   printf("\n"); 
} 
printf("\n"); 
#endif 
 
for (i=2; i<(POWERSET+1); i++) { 
  R[i][0] /= (float) NEIGHBORS;  
  R[1][0] += R[i][0]; 
} 
R[1][0] = 1 ‐ R[1][0]; 
 
#ifdef DEBUG_PRINT 
for (i=0; i<(POWERSET+1); i++) { 
 for (j=0; j<(POWERSET+1); j++) { 
   printf ("%2.3f ",R[i][j]); } 
   printf("\n"); 
} 
printf("\n"); 
#endif 
 
for (i4=1; i4<(POWERSET+1); i4++) { 
 for (j4=1; j4<(POWERSET+1); j4++) { 
   R[i4][j4]=R[0][j4]*R[i4][0]; } 
} 
 
#ifdef DEBUG_PRINT 
for (i=0; i<(POWERSET+1); i++) { 
 for (j=0; j<(POWERSET+1); j++) {  
   printf ("%2.3f ",R[i][j]); } 
   printf("\n"); 
} 
printf("\n"); 
#endif 
 
F[k][0] = R[1][1];  
 F[k][1] = 
R[2][2]+R[1][2]+R[2][1]+R[2][5]+R[5][2]+R[2][7]+R[7][2]+R[2][8]+R[8][2];  
 F[k][2] = 
R[3][3]+R[1][3]+R[3][1]+R[3][5]+R[5][3]+R[3][6]+R[6][3]+R[3][8]+R[8][3];  
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 F[k][3] = 
R[4][4]+R[1][4]+R[4][1]+R[4][6]+R[6][4]+R[4][7]+R[7][4]+R[4][8]+R[8][4];  
 F[k][4] = R[5][5]+R[1][5]+R[5][1]+R[5][8]+R[8][5];  
 F[k][5] = R[6][6]+R[1][6]+R[6][1]+R[6][8]+R[8][6];  
 F[k][6] = R[7][7]+R[1][7]+R[7][1]+R[7][8]+R[8][7];  
 F[k][7] = R[8][8];  
 
for (i=0; i<POWERSET; i++) { F[k][POWERSET] += F[k][i];} 
F[k][POWERSET+1] = 1 ‐ F[k][POWERSET]; 
 
if (test_print == 1) { 
  for (i4=0; i4<REASONS; i4++)  { 
   for (j4=0; j4<NEIGHBORS; j4++) { 
    printf ("%0d ",a4[i4][j4]);  } 
    printf("\n"); 
 } 
 printf("\n"); 
 
for (i=0; i<(POWERSET+1); i++) { 
 for (j=0; j<(POWERSET+1); j++) { 
   printf ("%2.3f ",R[i][j]); } 
   printf("\n"); } 
   printf("\n"); 
 
  for (l=0; l<(POWERSET+2); l++) { 
    printf ("%2.3f ",F[k][l]); } 
    printf("\n"); 
    printf("\n"); 
  }  
}  
 
if (test_print == 1) { 
  for (i=0; i<ROUNDS; i++) { 
    for (j=0; j<(POWERSET+2); j++) { 
      printf ("%2.3f ",F[i][j]); } 
      printf("\n"); } 
      printf("\n"); 
}  
if (file_print == 1) { 
  if (f = fopen("result.txt", "a+"), f != NULL) { 
    for (i=0; i<ROUNDS; i++) { 
      for (j=0; j<(POWERSET+2); j++) { 
      fprintf (f, "%2.3f ",F[i][j]); } 
      fprintf(f,"\n"); } 
      fprintf(f,"\n"); fclose(f); } } 
  return 0; 
} 
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