
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-13-2007

Ensemble Fuzzy Belief Intrusion Detection Design
Te-Shun Chou
Florida International University, tchou001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Chou, Te-Shun, "Ensemble Fuzzy Belief Intrusion Detection Design" (2007). FIU Electronic Theses and Dissertations. Paper 6.
http://digitalcommons.fiu.edu/etd/6

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/6?utm_source=digitalcommons.fiu.edu%2Fetd%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida  

 
 
 
 
 
 
 
 
 
 

ENSEMBLE FUZZY BELIEF INTRUSION DETECTION DESIGN 

 
 
 
 
 
 
 
 
 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

ELECTRICAL ENGINEERING 

by 

Te-Shun Chou 

 

2007 



 

ii 

To: Interim Dean Amir Mirmiran 
      College of Engineering and Computing 
 
This dissertation, written by Te-Shun Chou, and entitled Ensemble Fuzzy Belief Intrusion 
Detection Design, having been approved in respect to style and intellectual content, is 
referred to you for judgment. 
 
We have read this dissertation and recommend that it be approved. 

 
 

_______________________________________ 
Niki Pissinou 

 
 

_______________________________________ 
Kia Makki 

 
 

_______________________________________ 
Jean Andrian 

 
 

_______________________________________ 
Yimin Zhu 

 
 

_______________________________________ 
Kang K. Yen, Major Professor 

 
Date of Defense: November 13, 2007 
 
The dissertation of Te-Shun Chou is approved. 
 
 

_______________________________________ 
Interim Dean Amir Mirmiran  

College of Engineering and Computing 
 
 

_______________________________________ 
Dean George Walker 

University Graduate School 
 
 

Florida International University, 2007 



 

iii 

 
 
 
 
 

DEDICATION 

To the Memory of My Father  

and  

To My Mother 

 



 

iv 

ACKNOWLEDGMENTS 

I would like to express my gratitude to all those who gave the possibility to complete this 

thesis.  

First of all, there are no words enough to express my gratitude to my advisor, Dr. Kang 

K. Yen who not only inspired and guided me throughout my academic program but also 

served as a mentor in my life. Without his constant support and encouragement I could 

never have finished my Ph.D. program. 

Besides my advisor, I would like to thank my dissertation committee: Dr. Niki Pissinou, 

Dr. Kia Makki, Dr. Jean Andrian, and Dr. Yimin Zhu for all their help. Especially for Dr. 

Niki Pissinou and Dr. Kia Makki, without their valuable suggestions upon my research 

and support toward me I would have never got through my Ph.D. program. Thanks are 

also due to Dr. Jinsong Zhang at the Applied Research Center where I started my study 

for Ph.D. degree.  

Thanks to the Telecommunications and Information Technology Institute, I have not only 

been financially supported but also had a stimulating and fun environment in which to 

learn and grow for the last two years. I would like to express my appreciation to all 

members at The Telecommunications and Information Technology Institute. In 

particular, I would like to thank Zhiwen Wan and Zhaomin Mo whose friendship not only 

warm my heart but also offer solutions whenever I encountered technical difficulties. For 

his kind assistance with developing computer programs, I wish to thank in addition Jun 

Luo. My appreciation also goes to Pat Brammer, Maria Benincasa, and Daniela C. 

Madriz, for their kind administrative support. 



 

v 

I am indebted to Ya-Fen, my wife and life partner of over twenty years. It is her belief in 

and support of me that gave me the strength to step out and pursue my dream. Without 

her encouragement and faith, I would not have been able to bring out the very best of 

myself and find my way to achieving what I truly want. Thanks also to my lovely 

daughters, Annie and Jun, for loving and believing in me. You were at my side each day 

that I worked on this thesis. 

Lastly, and most importantly, I wish to express my deepest gratitude to my late father, 

Peng-Hsiao Chou, without whom I would not be living my best life and to my mother, 

Hsueh-Lin Wang Chou, who always gives me one hundred percent unconditional 

support, encouragement, and love. This thesis is dedicated to my parents, especially in 

memoriam to my father who was always a role model in the journey of my life and will 

live in my heart forever. 

 



 

vi 

ABSTRACT OF THE DISSERTATION 

ENSEMBLE FUZZY BELIEF INTRUSION DETECTION DESIGN 

by 

Te-Shun Chou 

Florida International University, 2007 

Miami, Florida 

Professor Kang K. Yen, Major Professor 

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and 

can easily cause millions of dollar in damage to an organization. Detecting these attacks 

is an important issue of computer security. There are many types of attacks and they fall 

into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) 

attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe 

attacks continuously show up with greater frequency in a short period of time when they 

attack systems. They are different from the normal traffic data and can be easily 

separated from normal activities. On the contrary, U2R and R2L attacks are embedded in 

the data portions of the packets and normally involve only a single connection. It 

becomes difficult to achieve satisfactory detection accuracy for detecting these two 

attacks. Therefore, we focus on studying the ambiguity problem between normal 

activities and U2R/R2L attacks. The goal is to build a detection system that can 

accurately and quickly detect these two attacks. 

In this dissertation, we design a two-phase intrusion detection approach. In the first 

phase, a correlation-based feature selection algorithm is proposed to advance the speed of 

detection.  Features with poor prediction ability for the signatures of attacks and features 



 

vii 

inter-correlated with one or more other features are considered redundant. Such features 

are removed and only indispensable information about the original feature space remains. 

In the second phase, we develop an ensemble intrusion detection system to achieve 

accurate detection performance. The proposed method includes multiple feature selecting 

intrusion detectors and a data mining intrusion detector. The former ones consist of a set 

of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve 

the ambiguity problem. The latter one applies data mining technique to automatically 

extract computer users’ normal behavior from training network traffic data. The final 

decision is a combination of the outputs of feature selecting and data mining detectors. 

The experimental results indicate that our ensemble approach not only significantly 

reduces the detection time but also effectively detect U2R and R2L attacks that contain 

degrees of ambiguous information.  

 



 

viii 

TABLE OF CONTENTS 

CHAPTER           PAGE 

I. INTRODUCTION .................................................................................................... 1 
 1.1 Problem Statement ………………………..…................................................... 3 
 1.2 Research Hypotheses ...........…………............................................................. 5 
 1.3 Proposed Approach ...........……………............................................................. 6 
 1.4 Contributions ...........……................................................................................... 7 
 1.5 Dissertation Organization ...........……............................................................. 8 

 
II. LITERATURE REVIEW ………...…………………….......................................... 9 
 2.1 Intrusion Categorization ..................................................................................... 9 
 2.2 Host-Based vs. Network-Based Intrusion Detection ........................................ 12 
 2.3 Knowledge-Based vs. Behavior-Based Intrusion Detection ............................ 14 
 2.4 Intrusion Detection Techniques ………......................................................... 16 
 2.5 Feature Selection Techniques ........................................................................... 24 
 2.6 Multiple Classifiers Systems ........................................................................... 28 

 
III. CORRELATION-BASED FEATURE SELECTION ........................................... 32 
 3.1 Theoretical Framework ................................................................................... 34 
 3.2 Feature Selection Algorithm ........................................................................... 37 

 
IV. FUZZY BELIEF k-NN ANOMALY DETECTION ……………………….......... 40 
 4.1 Anomaly Detection .......................................................................................... 40 
 4.2 Handling of Uncertainty ................................................................................... 42 
 4.3 Approach .......................................................................................................... 44 

 
V. EVALUATION OF FEATURE SELECTION ALGORITHM ….….................... 58 
 5.1 DARPA KDD99 Intrusion Detection Evaluation Data Set .............................. 58 
 5.2 UCI Data Sets ……………………………………........................................ 61 
 5.3 Experimental Methodology .............................................................................. 64 
 5.4 Experimental Results ........................................................................................ 67 

 
VI. EVALUATION OF FUZZY BELIEF INTRUSION DETECTION ..................... 73 
 6.1 Experimental Methodology .............................................................................. 73 
 6.2 Experimental Results ........................................................................................ 75 

 
VII. ENSEMBLE INTRUSION DETECTION ………..………................................... 83 
 7.1 Ensemble Intrusion Detection Model ............................................................... 83 
 7.2 Experimental Results ........................................................................................ 89 

 
VIII. CONCLUSIONS .................................................................................................... 95 
 8.1 Feature Selection Algorithm ............................................................................ 95 
 8.2 Fuzzy Belief Machine Learning Algorithm ..................................................... 96 



 

ix 

 8.3 Ensemble Intrusion Detection Model ............................................................... 97 
 8.4 Future Work ..................................................................................................... 98 

 
REFERENCES .............................................................................................................. 100 

 
APPENDIX .................................................................................................................... 108 

 
VITA .............................................................................................................................. 170 

 



 

x 

LIST OF TABLES 

TABLE           PAGE 

1.1. Detection Performances of Past Study ................................................................... 5 

2.1. Experimental Results of the Work of Mukkamala and Sung .............................. 27 

3.1.  Feature Selection Algorithm ................................................................................ 38 

4.1.  Connection Information of the Example .............................................................. 55 

4.2.  Data Fusion Result ............................................................................................... 56 

5.1.  Connection Distributions ..................................................................................... 60 

5.2.  Thirty-Nine Attacks …......................................................................................... 60 

5.3.  Forty-One Features …………………............................................................... 62 

5.4.  Selected Features of UCI Data Sets ..................................................................... 68 

5.5.  Selected Features of KDD99 Data Sets .............................................................. 68 

5.6. CRs of C4.5 and Naive Bayes Using Full and Selected Feature Sets of UCI 
Data Sets .............................................................................................................. 70 

 
5.7. DRs of C4.5 and Naive Bayes Using Full and Selected Feature Sets of  

KDD99 Data Sets ……......................................................................................... 70 
 

5.8. FPRs of C4.5 and Naive Bayes Using Full and Selected Feature Sets of 
KDD99 Data Sets ................................................................................................. 70 

 
5.9.  SU Measure of Feature to Class of KDD99 Data Set ………………………...... 71 

5.10. SU Measure of Feature to Feature of KDD99 Data Set ………………………... 72 

6.1. FPRs and DRs Performed on Four Classifiers of Normal-U2R Data Sets with 
k Ranging From 1 to 10 ....................................................................................... 77 
 

6.2. FPRs and DRs Performed on Four Classifiers of Normal-R2L Data Sets with 
k Ranging From 1 to 10 ....................................................................................... 78 
 

6.3. Averaged Rates Performed on Four Classifiers of Normal-U2R Data Set with 
k Ranging From 1 to 10 ....................................................................................... 80 



 

xi 

6.4. Averaged Rates Performed on Four Classifiers of Normal-R2L Data Set with 
k Ranging From 1 to 10 ....................................................................................... 80 

 
7.1.  Intrusion Detection Accuracies of Four Base Feature Selecting Classifiers ....... 87 

7.2.  DRs of Classifiers Performed on Normal-U2R Data Set ..................................... 90 

7.3.  DRs of Classifiers Performed on Normal-R2L Data Set ..................................... 90 

7.4. Decision Rules ..................................................................................................... 93 

7.5. Detection Performances of Ensemble Model ...................................................... 94 

 
 



 

xii 

LIST OF FIGURES 

FIGURE           PAGE 

2.1.  Comparison of Knowledge-Based and Behavior-Based Intrusion Detection ….. 14 

2.2.  Three Topologies of Ensemble Classifiers .......................................................... 29 

3.1. FCBF Feature Selection Scheme ......................................................................... 33 

3.2.  Illustration of Correlations of Three Features in Venn Diagram ......................... 36 

4.1.  Intrusion Detection Scheme ……….………….................................................... 45 

4.2.  Functions of Belief and Plausibility ..................................................................... 53 

5.1.  Distributions of Four KDD99 Attack Categories................................................. 61 

6.1.  ROC Graphs of Four Classifiers Performed on Normal-U2R Data Set ............... 77 

6.2.  ROC Graphs of Four Classifiers Performed on Normal-R2L Data Set ............... 78 

6.3. The Performance of Four Classifiers Using Normal-U2R and Normal-R2L  
Data Sets ……………………………………………...………..........……..…... 82 

 
6.4. The Performance of Fuzzy Belief k-NN Classifier Using Normal-U2R and 

Normal-R2L Data Sets ......................................................................................... 82 
 

6.5 Detection Time of One Connection Using Fuzzy Belief k-NN Classifier ........... 82 

7.1.  Ensemble Intrusion Detection Model .................................................................. 84 

7.2.  CRs and ROC Graph of Normal-U2R Data Set with k Ranging From 1 to 10…. 92 

7.3.  CRs and ROC Graph of Normal-R2L Data Set with k Ranging From 1 to 10…. 92 

7.4. Detection Time on One Connection .................................................................... 94 



 

1 

CHAPTER I 

INTRODUCTION 

 

With the rapid growth of Internet based technology, applications of computer networks 

such as web service, file transfer, and voice IP are extensively used. In the meantime, the 

networks inevitably become as the targets of computer attacks and the attacks can easily 

cause millions of dollar damage to an organization. According to the annual report from 

the Computer Emergency Response Team (CERT) [1], only 8 computer security 

incidents were documented in 1988 but over 130,000 in 2003. Since 2004, CERT no 

longer publishes the number of incidents because the attacks against Internet-connected 

systems have become so commonplace. Not only are those attacks increasing in a fast 

pace, they are also becoming more sophisticated with the advance of technology. 

Consequently, to manage breaches of security has become an important issue for 

nowadays network infrastructures and has become an irreplaceable element in modern 

security systems. Today intrusion detection has caught researchers’ attention greater than 

ever. Its development and improvement have been set with the highest priority by 

academia, government, research institutes, and industrial corporations.   

Intrusion detection is a technology developed to discover breaches of security, attempted 

breaches, or open vulnerabilities that could lead to potential breaches [2]. An intrusion 

detection system is a security management system for computers and networks. It 

examines activities from computer users and identifies inappropriate, incorrect, or 

anomalous activities within computers or networks. The possible attempts to breach the 



 

2 

security could be either attacks from outside of the computer system or misuse conducts 

from inside of the computer system [3]. The former aims at gaining access to penetrate 

the system and the latter tries to exploit security vulnerabilities or mistreat their approved 

privileges. While there are many types of attacks, they fall into four main classes. 

• Denial of Service (DoS) attacks: Attackers disrupt a host or network service in order 

to make legitimate users not be able to have an access to a machine;  

• Probe attacks: Attackers use programs to automatically scan networks for gathering 

information or finding known vulnerabilities; 

• User to Root (U2R) attacks: Local users get access to root access of a system without 

authorization and then exploit the machine’s vulnerabilities; and 

• Remote to Local (R2L) attacks: Unauthorized attackers gain local access from a 

remote machine and then exploit the machine’s vulnerabilities. 

During the past years, a large variety of techniques to the task of detecting the above 

mentioned intruders’ activities have been proposed [6]-[12]. These techniques are mainly 

categorized into two groups: anomaly detection and misuse detection. Anomaly detection 

searches for intrusive activities by comparing network traffic to those established 

acceptable normal usage patterns learned from training data. If the pattern of observed 

data is different from those learned normal ones, the data is classified as an attack. This 

approach can successfully detect novel and unseen malicious occurrences from computer 

users. However, it suffers from a high volume of false alarms. Misuse detection involves 

the comparison of observed traffic data with a set of well defined rules that describe 

signatures of intrusions. If the signature of observed network traffic is not matched with 

any of predefined rules, it is declared as an attack. This approach can detect the 



 

3 

recognized attacks in an efficient way with high level of accuracy. However, it suffers 

from its inability of identifying attacks which differ from these predefined patterns. A 

minor variation of an attack may not be identified during the whole detection procedure.  

1.1 Problem Statement 

Using either anomaly detection or misuse detection techniques in the design of intrusion 

detection systems, a data set of network traffic is necessary to be collected in advance for 

analysis. It consists of a great amount of traffic records with various features such as the 

length of connection, the type of protocol, the network service and other information. 

Based on this set of data, misuse detection specifies well defined attack signatures and 

anomaly detection constructs acceptable user behavior. However, there are several 

problems in the collected database.  

a) Problem of Redundant Information  

Not every feature of the network traffic information we are monitoring is relevant to the 

intrusion detection task. Some features may be irrelevant to the signatures of attacks, and 

some features may be redundant since they are highly inter-correlated with one or more 

of the other features [4]. The detection speed becomes slow if unnecessary information is 

involved in the analysis.  

b) Problem of Uncertainty  

The collected data always enclose uncertainty when only limited amount of information 

about intrusive activities is available. It is difficult to completely collect intrusive 

behavior because new exploits are discovered at anytime and anywhere. The available 

data is always incomplete that only contains limited information.  



 

4 

c) Problem of Ambiguity  

Within the four attack categories, DoS and Probe attacks continuously show up with 

large amounts in a short period of time when they attack systems. They are different from 

the normal traffic data and can be easily separated from normal activities. On the 

contrary, U2R and R2L attacks are embedded in the data portions of the packets and 

normally involve only a single connection (a data packet related to a particular service). 

Their patterns are similar to those of normal activities. The boundaries between those two 

attacks and the normal behavior are always unclear. When processing an intrusion 

detection task, the attacks may not be detected if the ambiguous behavior is not 

considered anomalous. On the other hand, if the ambiguity is considered anomalous, then 

system administrators may be alerted by false alarms, i.e., in cases where there is no 

attack [5].  

Past research results [6]-[12] shown in Table 1.1 have indicated that it is difficult to 

achieve satisfactory detection accuracy while detecting U2R and R2L attacks. Therefore, 

our study will address the issue on how to accurately and quickly detect them in the 

network traffic. We expect that our system not only has the ability to correctly detect 

those two types of attacks but also achieve a minimum number of incorrect false alarms. 

More specifically, we are trying to solve four major problems.  

• To select a subset of features from the network traffic to advance speed of detection 

• To solve the ambiguity problem between U2R/R2L attacks and normal activities 

• To solve the uncertainty problem associated with the available data which is always 

incomplete 

• To build an accurate model with high detection rate but low false negative rate 



 

5 

1.2 Research Hypotheses 

This dissertation describes the work done with the following hypotheses. 

• Feature selection technique can reduce the complexity of network traffic data and 

therefore increase the detection speed. 

• Fuzzy clustering technique [13], [14] can solve the ambiguity problem between 

U2R/R2L attacks and normal activities. 

• Dempster-Shafer theory [15], [16] can solve the uncertainty problem caused by 

limited information during the detection process. 

• Multiple intrusion detectors can get better detection performance than that of 

individual one.  

 

Table 1.1. Detection Performances of Past Study 

DoS  Probe  U2R  R2L Ref. Method 
DR FPR  DR FPR  DR FPR  DR FPR 

6 KDD cup winner 97.10% 0.30%  83.30% 0.60%  12.30% 0.00%  8.40% 0.01% 

7 SOM map 95.10% -  64.30% -  22.90% -  11.30% - 

8 Gaussian classifier 82.40% 0.90%  90.20% 11.30%  22.80% 0.50%  9.60% 0.10% 

8 K-means clustering 97.30% 0.40%  87.60% 2.60%  29.80% 0.40%  6.40% 0.10% 

8 Nearest cluster alg. 97.10% 0.30%  88.80% 0.50%  2.20% 0.00%  3.40% 0.01% 

8 Radial basis 73.00% 0.20%  93.20% 18.80%  6.10% 0.04%  5.90% 0.30% 

8 C4.5 decision tree 97.00% 0.30%  80.80% 0.70%  1.80% 0.00%  4.60% 0.01% 

9 PN-rule - -  - -  6.60% -  10.70% - 

10 Linear GP 96.70% -  85.70% -  1.30% -  9.30% - 

11 Online k-means  69.81% 5.00%  99.62% 5.00%  49.45% 5.00%  6.48% 5.00% 

11 SVM 99.90% 5.00%  67.31% 5.00%  0.00% 5.00%  29.09% 5.00% 

11 KMO+SVM 75.76% 5.00%  99.61% 5.00%  49.45% 5.00%  22.24% 5.00% 

11 SVM 99.96% 10.00%  68.10% 10.00%  0.00% 10.00%  29.16% 10.00% 

12 Backpropagation 97.23% -  96.63% -  87.71% -  30.97% - 

* DR: Detection Rate, FPR: False Positive Rate 



 

6 

1.3 Proposed Approach 

In the entire course of work, we develop a system using the intrusion detection 

benchmark data set DARPA KDD99 [17], which not only includes a large quantity of 

network traffic but also collects a wide variety of attacks. It is a standardized data set for 

researchers to develop and test their intrusion detection systems as well as to compare 

their results with those of others. In the beginning of research, a correlation-based feature 

selection algorithm is proposed to advance both the detection speed and accuracy. 

Features with poor prediction ability to the signatures of attacks and features inter-

correlated with one or more other features are considered redundant. Such features will 

be removed and the remaining ones contain indispensable information about the original 

feature space. Then, the selected features are incorporated with other feature subsets into 

the ensemble intrusion detection design. This design includes multiple feature selecting 

intrusion detectors and a data mining intrusion detector that act as anomaly detection and 

misuse detection, respectively. This ensemble approach is capable of further improving 

the detection performance. 

Each feature selecting intrusion detector uses a subset of features to derive independent 

decision about an input network traffic data, then all the decisions from multiple ones are 

combined into a fused result. In the kernel of each detector, a developed machine learning 

algorithm is used to detect both known and novel U2R and R2L attacks. The problems of 

uncertainty and ambiguity caused by incomplete and imprecise information are solved 

during the intrusion detection procedure. Using the developed algorithm, we are 

considering the intrusion detection task as a decision making process rather than 



 

7 

identifying the vicious usages by their similarity to earlier defined recognized attacks. 

Specifically, fuzzy clustering technique is applied to maximize the intra-class of similar 

types of normality and abnormality, as well as to minimize the inter-class of dissimilar 

types of normality and abnormality. By the use of Dempster-Shafer theory, the input 

network traffic is identified by fusing evidences from clustering process. Also, the k-

nearest neighbors (k-NN) technique [18] is employed to speed up the detection process.   

The data mining intrusion detector uses data mining technique to automatically extract 

computer users’ normal behavior from training data set. We combine the output of this 

detector with the result from multiple feature selecting intrusion detectors to derive an 

output, which is the final decision of the input network traffic. The data mining intrusion 

detector acts as a filtering mechanism to reduce the number of false alarms. 

1.4 Contributions  

• Speed up the detection process: Based on the concept of information theory, a feature 

selection algorithm is implemented. With the use of selected features, the detection 

time is reduced during the intrusion detection task.  

• Solve the uncertainty problem: By using the developed machine learning algorithm, 

the uncertainty problem caused by deficient information and the ambiguity between 

U2R/R2L attacks and normal activities is included in the design.  

• Improve the detection performance: The proposed ensemble intrusion detection 

model not only increases the detection rate but also reduces the number of false 

alarms compared to the results of past research.  



 

8 

1.5 Dissertation Organization  

The dissertation is organized as follows. Chapter II includes a discussion of taxonomy 

schemes on grouping attacks into categories, the survey of the popular used intrusion 

detection approaches, and the overview of feature selection and multiple-classifier 

techniques. Chapter III presents the idea of correlation based feature selection technique. 

We afterwards describe our proposed feature selection algorithm. Chapter IV initially 

explains the importance of considering the problem of uncertainty during the detection 

process. We then present the intrusion detector, namely fuzzy belief k-NN classifier. 

Chapter V discusses the experimental results of our developed feature selection algorithm. 

Chapter VI describes the evaluation of the fuzzy belief k-NN classifier. Also, we employ 

the feature selection results from Chapter V to test the detection accuracy and detection 

speed of fuzzy belief k-NN classifier. Chapter VII presents the ensemble fuzzy belief 

selection model, which combines several fuzzy belief k-NN feature selecting classifiers 

with a data mining classifier. Chapter VIII draws the conclusions and lists future research 

directions.  



 

9 

CHAPTER II 

LITERATURE REVIEW 

 

The main concern of intrusion detection systems is to detect possible abnormal behavior 

from computer users. This chapter starts with the discussion of a variety of taxonomies 

for intrusions. DARPA KDD99 intrusion detection benchmark data set used throughout 

our entire research is described. Next, we introduce two categories of systems and their 

related research work. The former category is host-based and network-based intrusion 

detection. The later one is knowledge-based and behavior-based intrusion detection. We 

then introduce feature selection techniques that have been applied to find informative 

feature subset from a network traffic data stream. At last, multiple-classifier intrusion 

detection systems are described.  

2.1 Intrusion Categorization 

The concept of detecting abnormal behavior of computer users was first introduced by 

Anderson in 1980 [3]. He published a paper, Computer Security Threat Monitoring and 

Surveillance, and defined that an attack was a specific formulation or execution of a plan 

to carry out a threat. He classified a threat as a deliberate unauthorized attempt to  

 access information,  

 manipulate information, or  

 render a system unreliable or unusable.  



 

10 

Since then, a variety of taxonomy schemes on grouping attacks into categories have been 

proposed. For example, in 1987 Denning [19] classified abnormal patterns of system 

usage into eight categories. They are attempted break-in, masquerading or successful 

break-in, penetration by legitimate user, leakage by legitimate user, inference by 

legitimate user, trojan horse, virus, and denial-of-service. In 1988 Smaha [20] divided 

intrusions into six main types: attempted break-ins, masquerade attacks, penetration of 

the security control system, leakage, denial of service, and malicious use. Howard [21] 

summarized the variations of taxonomy of attacks on the Internet from 1989 to 1995 in 

one of the chapters in his PhD dissertation. Dekker [22] defined network security incident 

as an activity threat violated an explicit or implicit security policy and classified incidents 

into the probe, scan, account compromise, root compromise, packet sniffer, denial of 

service, exploitation of trust, malicious code, and Internet infrastructure attacks in 1997. 

In 1999, Lincoln Laboratory at MIT created the KDD99 data set, which is known as 

“DARPA Intrusion Detection Evaluation Data Set” [17]. The data set includes thirty-nine 

types of attacks that are classified into four main categories. They are DoS, Probe, U2R, 

and R2L attacks. 

The first category of attacks is DoS attacks. In this type of attacks, attackers attempt to 

disrupt a host or network resource in order to make legitimate users not be able to access 

to the computer service. The victim machines can be web server, domain name system 

server, mail server, and so on. In the DARPA KDD99 data set, there are many common 

forms of DoS attacks that are included. For example, smurf attack is one and takes over 

70% of the attacks in the DoS category. By using the vulnerability of ICMP (Internet 

Control Message Protocol), the attack can cause a target system crash. The attacker can 



 

11 

send a large number of ICMP “echo request” packets to the broadcast address and every 

packet has a spoofed source address of the intended target system. Any machine in the 

subnets will respond by sending ICMP “echo reply” packets back to the target. If the 

number of the packets is more than the system can handle, the result is the spoofed 

system can no longer be able to service to the real ICMP requests. Another common way 

to fail a system is neptune attacks. Over 25% of DoS attacks are neptune in the data set. It 

is a SYN (Synchronize) flood attack that exists in TCP/IP (Transmission Control 

Protocol/Internet Protocol) implementation of a network. The attacker just simply rapidly 

sends out a large number of connection requests but never responds to any replies from 

the system. While the attacker continues to request new connections faster than the 

system can handle, the legitimate connection requests can never be accommodated. In the 

mean time, the system may run out of memory and even crash. 

The second category of attacks is Probe attacks. By using programs to automatically scan 

a large amount network IP addresses, the attacker can explore vulnerabilities of the 

computers. Once any vulnerability is found, the attacker can thus gain the access to the 

system and start to gather information without authorization. The DARPA KDD99 data 

set collects six scanning attacks of Probe attack category. They are ipsweep, mscan, 

nmap, portsweep, saint, and satan. 

The third category of attacks is U2R attacks. The attacker pretends as a legitimate user of 

the system without authorization and then exploits the system’s vulnerabilities to get root 

access of that system. The DARPA KDD99 data set consists of eight different types of 

U2R attacks. Among them, buffer_overflow attack is the most common one that starts 

with by feeding many data into a fix length buffer. When the volume of data exceeds the 



 

12 

size of the buffer that can hold, the extra information will overflow into other buffers and 

overwrite the instructions that suppose to be executed. The result may cause the system 

crash or make the system execute the attacker's program as if it is part of the system’s 

original programs. 

The forth category of attacks is R2L attacks. This type of attacks is that an unauthorized 

attacker through networks gains local access as a user of local machine and then exploits 

the machine’s vulnerabilities. Totally fifteen types of R2L attacks are included in the 

DARPA KDD99 data set. For example, the ftp_write attack is one that the attacker creates 

rhost file to make anonymous FTP (File Transfer Protocol) directory writable and finally 

obtains local login to the system. The guess_passwd is another one that the attacker tries 

to gain access to a user’s account by repeatedly guessing the possible passwords. Any 

service that needs password to access possibly becomes an attacked target, for example, 

rlogin, ssh, ftp, telnet, pop, and imap.  

2.2 Host-Based vs. Network-Based Intrusion Detection 

Based on the sources of data, intrusion detection systems can be divided into two major 

classes, host-based and network-based. In the first kind of systems, the intrusion 

detection mechanism is installed on the local host/terminal. By examining the status of 

audit information on system’s behavior, the system finds signs of intrusion and can then 

protect its own local machine. The audit information can be obtained from different 

sources such as system logs and activities, application logs, and target monitoring [23]. 

These logs could be Unix logs, NT/2000/XP logs, firewall logs, router logs, web server 

logs, and FTP logs. The intrusions can be critical file modifications, segmentation fault 



 

13 

errors recorded in logs, crashed services or extensive usage of the processors [24]. From 

the system point of view, all users are considered as local clients to the target 

environment. 

Unlike the host-based intrusion detection system that only protects its own host machine 

by examining audit trail, network-based intrusion detection system protects the entire 

environment of the network by monitoring all the activities from both inside and outside 

of the network. By inspecting the traffic data that goes through the network, the possible 

intrusions can be identified. In general, the network traffic that needs to be monitored is 

quite large. For releasing each sensor’s detection burden, the network based intrusion 

system deploys its sensors on different locations instead of one central point. With a good 

design of sensor placement on the network, the network-based intrusion detection system 

can efficiently monitor a large network environment. 

Compared to the audit trial used by a host-based intrusion detection system, the data 

shown on network-based intrusion detection system always has less information about 

what exactly happens during the attack courses. However, the data of network-based 

intrusion detection system has a broader range of attacks because the background traffic 

is much wider than that of a host-based intrusion detection system. With the popular use 

of the Internet and the growth of larger network systems, more attention has been focused 

on the development of network-based intrusion detection systems. Also, current trend 

shows people incline to use both host-based and network-based information to design 

hybrid systems. These intrusion detection systems are capable of running detection on 

local host and monitor network traffic as well.  



 

14 

2.3 Knowledge-Based vs. Behavior-Based Intrusion Detection 

Based on the use of detection technique, intrusion detection systems are categorized as 

knowledge-based and behavior-based intrusion detection systems as shown in Figure 2.1. 

Knowledge-based intrusion detection is typically realized by modeling known attack 

behavior with prior understanding about specific attacks and system vulnerabilities. This 

technique is to compare network traffic data being observed with well defined attack 

patterns for identifying the possible penetrations to a system. When the data is the same 

as one of the explicitly defined attack patterns, an alarm is raised. The defined attack 

patterns are frequently referred to as the signatures of intrusions. The signature could be a 

static string or a sequence of events. This type of detection method is called misuse 

detection [25].  

to find 
Known 
attacks 

to find 
Novel 
attacks 

Misuse 
Detection 

Anomaly 
Detection 

Figure 2.1. Comparison of Knowledge-Based and Behavior-Based Intrusion Detection 
 

update 

Network 
traffic  

State 

Attack 
signatures 

retrain 

Normal 
behavior 

Knowledge-Based 

Behavior-Based 



 

15 

Advantages of this type of approach are it is very efficient to detect known attacks and is 

very accurate with a very low false alarm rate. Since the attack patterns are 

comprehensively encoded in advance for matching against computer user activities on 

background traffic, the recognized attacks can be promptly identified. Once an attack is 

identified, the security administrator can quickly analyze the problem and make a correct 

action to prevent any breaches of security.   

However, the main shortcoming of this approach is that it is only good for detecting 

known attacks. Once the attack pattern is slightly changed or a novel attack appears, the 

unseen attack will be considered as acceptable pattern and thus cannot be successfully 

detected. In addition, maintenance of the knowledge database is an extremely tedious and 

time-consuming task. It is very difficult to collect the required information of the known 

attacks since to label records of data as either normal or a specific type of attack requires 

careful analysis. Especially in this fast pace world, it is impossible to keep an intrusion 

detection system always up to date with all attacks and vulnerabilities information. 

While knowledge-based intrusion detection is achieved by modeling known attack 

behavior, on the contrary, behavior-based intrusion detection also known as anomaly 

detection models normal or expected behavior of computer users. It looks for malicious 

activities by comparing the observed data with those acceptable behavior. If the data 

diverges from the learned normal behavior, an alarm is raised. Advantage of this 

approach is that novel and unseen attacks can be detected. Since it assumes any deviation 

from normal patterns is regarded as anomalous activities, the technique is not required to 

continuously keep up with hackers’ techniques [26], [27]. Also, it is less dependent on 

target operating environments compared with the misuse detection technique. 



 

16 

The main drawback of this approach is it might have a high number of false alarms due to 

any deviations from the learned behaviors are treated as attacks. Since not every 

deviation is a real intrusion, the security administrator may spare precious time to take 

care of these false alarms and ignore the real anomalous activities. 

2.4 Intrusion Detection Techniques 

The popular intrusion detection techniques are reviewed in this section. We start with the 

expert systems based intrusion detection techniques. Expert systems are primary used in 

the design of misuse detection systems and most of them are rule-based systems. An 

expert system contains a set of predefined rules on the basis of knowledge of the intrusive 

activities. The inference engine then uses these rules to identify indications of known 

attacks from the background of network traffic. For example, SNORT [28] is a popular 

open-source network intrusion detection system of this kind. SNORT uses rules to 

describe attacks in which each rule uses a single line of text to explicitly describe the 

signatures of a certain attack. When monitoring the network traffic, SNORT compares 

traffic data with rule database and fires an alarm if a traffic matches SNORT’s rule 

signatures. A sample SNORT rule [29] is shown in the following equation.  

alert tcp !HOME_NET any −> HOME_NET any (flags: SF; msg: “SYN-FIN scan”;)       (2.1) 

This rule fires an alert message “SYN-FIN scan” when an outsider attempts to make an 

internal home network TCP connection. For building such kind of rules, SNORT 

employs human knowledge to recognize those attempts of security breach. It provides a 

systematic search for attacks in the audit data, yet it will not flag alarm if the attack 

signatures are not described within the rules. For maintaining its up-to-date status, a 



 

17 

regular update is posted on the SNORT website. This update could be a very tedious and 

difficult task because the rules in the system must be reformulated by security 

professionals. In addition, the rule-based technique lacks flexibility in the rule-to-audit 

record representation [30]. Expert systems based approach suffers from its inability to 

identify attacks which differ from those predefined patterns. A minor variation of an 

attack itself or an attack sequence is possible to affect the rule comparison result and 

causes the attack never be found during the detection process.   

Unlike the rule-based system that provides a set of predefined rules to identify indications 

of known attack activities, researchers also apply a variety of approaches to model the 

normal behavior of the protected system. In such approaches, neural networks and fuzzy 

logic are two well-known techniques in the development of intrusion detection systems. 

Neural network system acts as a computational model to process the network traffic 

information, which the system can be trained to perform intrusion detection tasks based 

on the traffic data provided. At the end of the training procedure, the neural network 

gains the knowledge that can extract the normal and attack signatures from the provided 

data automatically. With the ability to generalize rules from learned data, the neural 

network performs generalization of attacks and fault tolerance to imprecise and uncertain 

information. 

Approaches using various neural network structures have been applied in building 

anomaly intrusion detection systems and the two most common architectures are the Self-

Organizing Maps (SOM) [31] and the Multilayer Perceptrons (MLP) network [32]. A 

SOM uses unsupervised learning algorithm to group similar data to clusters in the input 

space. It is a data visualization technique that produces a low dimensional topological 



 

18 

map to help people understand the original high dimensional data. Once the neural 

network is trained, the map converges to a stationary distribution and shows a clear 

separation between normal and attacks. The output neurons are considered as the counts 

for normal and attacks. Next, future connections can be rapidly classified as normal or 

attacks by visualizing the histogram of the map. Examples can be found in the works of 

Kayacik et al. [7], Depren et al. [33], and DeLooze [34]. These researchers selected 

various subsets of features of KDD99 data set to build different sizes of networks in order 

to simplify the complexity of the networks. Kayacik et al. built a hierarchical topological 

SOM maps for network intrusion detection. In the first layer, they selected six basic TCP 

features (length of the connection, protocol type, network service, status flag, total data 

bytes from source to destination, and total data bytes from destination to source) to build 

six 6×6 SOMs, each individual one was associated with each basic feature. The second 

layer integrated the information from the first level SOMs into a single view of the 

problem. Then in the third layer six SOMs were built for the second layer SOM neurons 

that demonstrated significant counts for both attack and normal connections. In each third 

layer SOM, 20×20 neurons were included. By using the same six basic features as 

Kayacik et al. did, Depren et al. built 15×15, 8×8, and 6×6 SOM maps for TCP, UDP 

(User Datagram Protocol) and ICMP traffic data, respectively. Each SOM structure was 

trained with the normal traffic data. When the training process was completed, any 

incoming anomalous traffic would be clustered outside of the normal clustering or inside 

the normal clustering with high quantization error. In the work of DeLooze, he created 

three 20×20 SOM maps using content, time, and connection features. Content features 

included number of total packets, acknowledgement packets, data bytes, retransmitted 



 

19 

packets, pushed packets, SYN and FIN packets flowing to or from the source and 

destination, and the status of completed, not completed and reset for each connection. 

Time features included the number of connections and the type of services to or from the 

source and destination within the last 5 seconds. Connection features were the duration of 

the connection, the service requested, and protocol used. Each feature space was used 

independently to detect anomalous behavior. Then the results of the individual SOMs 

were combined using the majority ensemble method (reports an attack if two of the three 

SOMs report an attack for a particular connection) and the belief ensemble method 

(reports an attack if any of the three SOMs reports an attack for a particular connection). 

Here, the problems shown in the above three works are how to select a feature space as 

the input to the network and how to configure a network with proper size. These two 

factors play important roles in the detection performance and the granularity of the 

network nodes, which training a SOM with a large amount of neurons needs long 

computational time and a SOM with a small volume of neurons may loss some important 

information. Also, the empirical nature of training parameters development is still an 

unresolved question, which the topology, learning rate and function, the number of 

training epochs, and initial weights of the network are decided by trial and error.  

MLP uses a feedforward structure to solve classification problems by its supervised 

learning algorithm. The network weights are updated by using gradient-based 

optimization algorithm during the training period. When the network converges to the 

local minima of error, the output layer of the network will show the result when data is 

fed into the input layer. In the reported work of Faraoun and Boukelif [12], they applied 

k-Means algorithm to group the input data into a number of clusters. Having obtained the 



 

20 

clustering centers and their relative boundaries, the distances between the centers and 

input data were calculated and only the most discriminating samples that cover at 

maximum the region of each class were selected for the learning process. The selected 

samples were then presented to the MLP network for classifying four classes of attacks in 

the KDD99 data set. Although they tried to improve the learning process by reducing the 

amount of training samples, the network still had a heavy computational burden because 

it was complex with 41, 30, and 5 neurons in input, hidden, and output layers, 

respectively. Also, the neural network suffers its “black box” nature that it does not 

provide explicit knowledge representation of its internal connections between layers. It is 

difficult to understand why a network event is classified as a normal or abnormal activity.  

Fuzzy logic [35] is specifically designed to deal with imprecision of facts. With its 

capability of dealing with vagueness, there are several reasons it is a possible approach in 

the design of intrusion detection system. First, there is often no clear boundary between 

normal and abnormal of a computer user’s activity [36]. Instead of a network traffic is 

either completely assigned to a member of normal category or a member of abnormal 

category, the traffic is possible classified into more than one categories. Fuzzy logic 

provides a dynamic decision boundary in the detection of intrusions. Second, the moment 

that we raise an alarm is often fuzzy. There would be too many alarms if we raise an 

alarm every time when we suspect an intrusion event occurs. At what degree of intrusion 

we should raise an alarm often depends on different situations. It depends on the degrees 

of intrusion and different circumstances [37]. With the dynamic decision boundary 

characteristic provided by fuzzy logic, the security officers can decide the best time to 

raise alarms according to the alarm threshold desired.  



 

21 

The work of Dickerson et al. [38] is an example of applying fuzzy logic to spot malicious 

activities against computers. In their work, they built an anomaly-based intrusion 

detection system named FIRE (Fuzzy Intrusion Recognition Engine). Initially the FIRE 

system applied data mining technique to TCP packet data to extract metrics. The metrics 

were chosen to reveal anomalies in the network traffic and formed the basis for the fuzzy 

inputs as well. For example, SDP was one of the metrics, that were composed of the IP 

source, IP destination, and the destination port fields. Once the system completed the 

metrics extraction, it used the historical data to calculate the ranges over the input space. 

All of the data were evaluated in terms of three fuzzy characteristics, COUNT, 

UNIQUENESS, and VARIANCE. Each input space had five fuzzy membership 

functions: LOW, MEDIUM-LOW, MEDIUM, MEDIUM-HIGH, and HIGH. With the 

use of metrics, three fuzzy characteristics, and five fuzzy membership functions, the 

authors then developed fuzzy inference rules to describe intrusions with their past 

experiences. For example, Equation 2.2 is a fuzzy inference rule to detect the port scan. 

IF (COUNT OF SDPs = MEDIUM) AND (UNIQUENESS OF SDPs      (2.2) 
Observed = HIGH) THEN “Port Scan” = HIGH 
 

During the development of any fuzzy inference engine such as FIRE, the settings of 

fuzzy parameters, fuzzy characteristics and fuzzy membership functions, heavily depend 

on the experience of human experts. However, those settings are very critical to the result 

of fuzzy inference. It’s preferable if we can find a solution to automatically covert the 

professional’s expertise to a knowledge-based fuzzy inference machine. Hence, 

Dickerson et al. [39] improved the settings of five fuzzy membership functions by the use 

of fuzzy c-Means (FCM) clustering algorithm. They applied FCM to a data set and 



 

22 

obtained the clustering centers and membership grades. By the reference of clustering 

results, the extents and midpoints of the five fuzzy membership functions were 

determined. Methods such as neural networks [40], Support Vector Machine (SVM) [37], 

genetic algorithms [41], and data mining technique [42] had also been proposed to help 

the decision of the fuzzy parameters. All of them did improve the decision process of 

deriving necessary parameters of fuzzy logic, however more or less human expert’s 

knowledge is still involved. Also, a large number of labeled data is needed during the 

design process. 

With the fast growing of Internet and the large and complex network systems, it becomes 

impossible for a security officer to look for intrusive activities by manually analyzing the 

traffic data. Thus data mining technique has caught researchers’ attention because it is 

capable of extracting useful information by sorting through a large amount of data. The 

intrusion detection is therefore treated as a data analysis process with a data-centric point 

of view [43]. The technique is defined as an information discovery task that looks for 

patterns in the network traffic data and can be applied to both misuse and anomaly 

intrusion detections. The data mining procedure from data collection to model 

computation can be made totally automatic. Unlike hand coding intrusion signatures into 

the systems [44], [45], data mining reduces the effort on manually analyzing and 

encoding intrusion patterns. However, it suffers from the degree of complexity if the raw 

data is formed by a great amount of data with a large number of features. For avoiding 

too many information included, feature selection or feature extraction technique is always 

applied to reduce the dimensionality of the original feature space. 



 

23 

Generally speaking, two data mining techniques, association rules and decision trees, are 

mostly applied to intrusion detection tasks. In the works of Lee and Stolfo [46], they 

created a framework: Mining Audit Data for Automated Models for Intrusion Detection 

(MADAM ID). Their idea was using frequent episode algorithm and association rules to 

compute patterns from system audit data and extract predictive features from the patterns. 

Then RIPPER classification algorithm [47] was applied to generate intrusion detection 

rules such as Equation 2.3, which represents the telnet connection and is a guessing 

password attack if the number of failed logins is greater than 4. 

guess:- failed_logins ≥ 4            (2.3) 
 
Although the design process from extracting discriminative features to generating 

detection rules is totally automatic, the amount of labeled network traffic is usually large, 

which the expert-based labeling process is very tedious and time-consuming. In addition, 

labeling a large number of network traffic can possibly lead to errors [11]. 

The other typical data mining approach is associated with decision trees. Levin [6] used a 

data mining tool, Kernel Miner, to generate decision trees for classifying normal behavior 

and attacks in KDD99 data set. By randomly choosing 10% data from the entire training 

data set, they constructed 218 decision trees for normal and four attack classes (DoS, 

Probe, U2R, and R2L). The result showed that the system achieved satisfactory detection 

rates on normal examples, DoS and Probe attacks, but failed on detecting U2R and R2L 

attacks. The system can only correctly detect 12.3% and 8.4% of U2R and R2L attacks, 

respectively, and misclassify most of them that belong to the new attack types not shown 

in the training set. Examples of using decision trees technique can also be found in the 

publications of Sabhnani and Serpen [9], [48]-[50]. In their works, they focused on 



 

24 

detecting both U2R and R2L attacks. They analyzed training and testing sets of KDD99 

data set through C4.5 decision trees algorithm [51] and concluded that no pattern 

classification algorithm or machine learning could be trained to successfully demonstrate 

misuse detection on both U2R and R2L attack categories. The reason is that not only 

these two attacks are content-based (embedded in the data portions of the packets) but 

also the testing set has extensive new types of attacks that are not correlated with attacks 

shown in the training set.  

2.5 Feature Selection Techniques 

For designing an intrusion detection system, a training set involving thousands of traffic 

connections is always required. In each traffic connection, it includes a number of 

features plus a class label of normal or a type of attack. By the use of misuse or anomaly 

detection technique, a model can be induced and used to classify future traffic into 

malicious activities or normal usage behavior.  

Theoretically and ideally, the ability to discriminate attack from normal behavior should 

be performed better if more features are added during the detection process. However, the 

answer is sometimes negative. The reason is that some of the features may be irrelevant 

with poor prediction ability to the target class, and some of the features may be redundant 

due to they are highly inter-correlated with one of more of the other features [52]. 

Therefore, analysis of traffic features is a very critical step in the development of 

intrusion detection system. Of the large number of features included in the high 

dimensional data set, it is very important to have a good understanding which features are 

truly essential in detecting the attacks; which are less significant in only providing the 



 

25 

auxiliary information; and which are redundant that can be discarded. Based on the 

understanding of the significance of these features, irrelevant and redundant features can 

be discarded effectively. The remaining relevant features thus contain most significant 

information related to the given intrusion detection task. The feature selection result is 

helpful to speed up the detection time and to enhance the detection accuracy. The 

maximum overall performance can therefore be achieved. 

Generally, the algorithms of feature selection are mainly divided into two categories, 

filter and wrapper, as defined in the work of John et al. [53]. Filter method operates 

without engaging any information of induction algorithm. By using prior knowledge such 

as features should have strong correlation with the target class or should uncorrelate to 

each other, filter method selects the best subset of features. Example is the work of 

Kayacık et al. [54]. They performed feature relevance analysis in the KDD99 training set. 

In order to get feature relevance measure for attacks, they applied information gain to 

binary classification (normal and attack) and reported their chosen relevant features for 

normal behavior and part of the attacks. In their paper, they only reported the feature 

selection result but didn’t demonstrate any evaluation of it. During the feature selection 

process, only the irrelevant features were considered to be removed. However, there was 

no description about the setting of threshold, which is critical in the elimination of the 

irrelevant features. Also, the information gain is possibly biased if feature with more 

values, i.e., the features with greater numbers of value will gain more information than 

those with fewer values even if the former ones are actually less informative than the 

latter ones.  



 

26 

On the other hand, wrapper method employs a predetermined induction algorithm to find 

a subset of features with the highest evaluation by searching through the space of feature 

subsets and evaluating quality of selected features. The process of feature selection acts 

like “wrapped around” an induction algorithm. Machine learning algorithms such as ID3 

[55] and C4.5 [51] are commonly used as the induction algorithm. Since wrapper method 

includes a specific induction algorithm to optimize feature selection, it often provides an 

accurate classification result than that of filter approach. However, wrapper method is 

more time consuming than filter method due to it is strongly coupled with an induction 

algorithm with repeatedly calling the algorithm to evaluate the performance of each 

subset of features. It thus becomes unpractical to apply a wrapper method to select 

features from a large data set that contains numerous features and instances [56]. 

Furthermore, wrapper approach is required to re-execute its induction algorithm for 

selecting features from data set while the algorithm is replaced with a dissimilar one. It is 

less independent of any induction algorithms than filter is.  

The work of Mukkamala and Sung [57] is an example of using wrapper method. With the 

use of KDD99 data set, they applied both Support Vector Machines (SVM) and Support 

Vector Decision Function Ranking Method (SVDFRM) to rank important input features 

for the intrusion detection task. For each feature, it was deleted from the training and 

testing sets and the remaining ones were used to train the classifier. Then the classifier’s 

performance was compared with that of using full feature set. Finally, the importance of 

the feature was ranked according to a set of rules based on the performance comparison. 

Equation 2.4 shows one of the rules. 

 



 

27 

IF accuracy decreases AND training time increases AND testing time decreases       (2.4) 
THEN the feature is important 

 
With its iterative search and evaluation procedure, the forty-one features were grouped 

into important features, secondary features, and unimportant features for normal, DoS, 

Probe, U2R, and R2L attacks. Table 2.1 shows their experimental results in which group 

1 represents important features, group 2 represents secondary features, and group 3 

represents unimportant features. This work used wrapper approach to execute its SVM-

base induction algorithm. Without doubt, this process was computationally expensive to 

determine the final subset of features because the induction algorithms were iteratively 

executed on data sets that is with a large number of records and features. 

Table 2.1. Experimental Results of the Work of Mukkamala and Sung 

SVM 

Normal {1,3,5,6,8-10,14,15,17,20-23,25-29,33,35,36,38,39,41}, 
<2,4,7,11,12,16,18,19,24,30,31,34,37,40>, (13,32) 

Probe {3,5,6,23,24,32,33}, <1,4,7-9,12-19,21,22,25-28,34-41>, 
(2,10,11,20,29,30,31,36,37) 

DoS {1,3,5,6,8,19,23-28,32,33,35,36,38-41}, <2,7,9-11,14,17,20,22,29,30,34,37>, 
(4,12,13,15,16,18,19,21,3) 

U2R {5,6,15,16,18,32,33}, <7,8,11,13,17,19-24,26,30,36-39>, 
(9,10,12,14,27,29,31,34,35,40,41) 

R2L {3,5,6,24,32,33}, <2,4,7-23,26-31,34-41>, (1,20,25,38) 

SVDFRM 

Normal {1-6,10,12,17,23,24,27,28,29,31-34,36,39},  
<11-14,16,19,22,25,26,30,35,37,38, 40,41>, (7-9,15,18,20,21) 

Probe {1-6,23,24,29,32,33}, <10,12,22,28,34-36,38-41>,  
(7-9,11,13-21,25-27,30,31,37,40) 

DoS {1,5,6,23-26,32,36,38,39}, <2,3,4,10,12,29,33,34>,  
(7-9,11,13-22,27,28,30,31,35-37,40,41) 

U2R {1-6,12,23,24,32,33}, <4,10,13,14,17,22,27,29,31,34,36,37,39>, 
(7-9,11,15,16,18-21,25,26,28,30,35,38,40,41) 

R2L {1,3,5,6,32,33}, <2,4,10,12,22-24,29,31,34,36,37,38,40>, 
(7-9,11,13-21,25-28,30,35,39,41) 



 

28 

2.6 Multiple Classifiers Systems 

Ensemble is to combine the outputs of a set of base classifiers together in a proper way 

when classifying input data. The fused result is expected to perform a better outcome 

than that of any individual base classifier within the ensemble. In the schemes of building 

an ensemble classifier, three distinct topologies are frequently engaged, they are 

cascading, parallel, and hierarchical structures [58]. Figure 2.2 illustrates these three 

basic frameworks. In the cascading structure, the output from the previous classifier is 

fed into the next one. By cascading all the classifiers together, the final result is obtained 

at the last classifier’s output of the chain. While each previous classifier’s output is the 

input of succeeding classifier, the latter classifier has difficulty to correct inaccuracy 

made by former one. In the parallel structure, the predictions of base classifiers are 

integrated to produce a fused output of the ensemble. The combination method is the key 

factor to decide if the result is successful or not. A careful choosing of combination 

methods can lead the ensemble classifier to a supreme performance, and on the contrary 

to poor consequence with an improper selection of combination methods. The 

hierarchical structure is a combination of cascading and parallel configurations. It is 

possible to alleviate both shortcomings of cascading and parallel structures and thus to 

achieve an optimal classification result. 

The types of decision generated by the individual base classifier can be classified into 

three major categories: abstract form, rank level, and measurement level [59]. The 

abstract form is that a classifier only outputs a solitary class label for an input pattern. 

The rank level is that a classifier ranks a list of classes in accordance with the degrees of 



 

29 

belief on classes the input pattern belongs to. The list is always sorted in descending way 

where the first and the last components are the highest and lowest ranked output classes, 

respectively. The measurement level is that the classifier assigns a level of confidence to 

each class for expressing the classifier’s degree of belief for an input pattern. Among the 

combination methods that work with abstract form outputs, the popular methods are 

behavior knowledge space method, majority voting, weighted majority voting, naive 

bayes method. For measurement level outputs, the combination methods are Dempster-

Shafer method, MAX, MIN, SUM, PROD, AVG, and MED methods that the ensemble 

Figure 2.2. Three Topologies of Ensemble Classifiers  

Result Input Data Classifier 1 Classifier 2 Classifier n 

(a) Cascading 

Result 
Input Data 

Classifier 1 

Classifier 2 

Classifier n 

(b) Parallel 

C
om

biner 

Result 

Classifier n +1 

Input Data 

Classifier 1 

Classifier 2 

Classifier n 

(c) Hierarchical 

C
om

biner 



 

30 

selects the maximum, minimum, summation, product, average, or median value of the 

combined classifiers as its output. 

Example is the work of Giacinto and Roli [60]. In their research, they restricted the 

problem domain in the ftp service of the KDD99 data set and selected 30 out of the 41 

available features from the data set. They built three neural networks using 4 intrinsic 

features, 19 traffic features, and 7 content features, respectively. Also, they built one 

neural networks using 30 features for the sake of comparison. All of the networks were 

three layers fully-connected multi-layer networks, which each had 5 output neurons (for 

normal and four attack classes), a number of input neurons that equal to the number of 

features, and a hidden layer made up of 5 neurons for the networks using distinct features 

and 15 neurons for the network trained using all of the 30 features. For performing the 

ensemble operation, they carried out three fusion techniques: the majority voting rule, the 

average rule, and the belief function to combine the outputs from the networks trained on 

three distinct features together. The results showed that all of the fusion techniques 

improved the overall detection performance compared with those of individual classifiers 

and the classifier using 30 features. However, it also showed that the ensemble model did 

not improve the detection on unknown attacks in testing set, which had around 15% error 

rates. During the entire course of work, they only used 725 training connections and 

7,436 testing connections but did not explain the reason. It explicitly hints that the neural 

networks could need a long time for training. The work of Mukkamala et al. [61] is 

another example using multiple classifiers approach. They used the KDD99 data set and 

performed five-class (normal, DoS, Probe, U2R, and R2L) classification. They designed 

two ensemble models. One consisted of three multilayer feedforward neural networks and 



 

31 

the other was made up of neural networks, SVM and MARS (Multivariate Adaptive 

Regression Splines). By using the majority voting technique, individual base classifiers’ 

outcomes of each ensemble model were combined together. The experimental results 

showed that each ensemble outcome outperformed that of its every base classifier. In one 

of their experiments, they fused three base classifiers’ outputs with 48%, 0%, and 16% 

accuracies together and get 56% ensemble accuracy. However, Hansen and Salamon [62] 

had proved that multi-classifiers will only work when it is possible to build individual 

classifiers which are more than 50% accurate. But, in the paper they did not describe the 

input features of every individual base classifier. This is very important because base 

classifiers should be independent of each other, otherwise no improvement can be 

obtained through the combination.  



 

32 

CHAPTER III 

CORRELATION-BASED FEATURE SELECTION 

 

In an intrusion detection task, the quantity of network traffic data is enormous with a 

large amount of features. The objective of feature selection is to reduce the 

dimensionality of the original feature space with a way to select a subset of features. 

However, the problem is how to select the feature subset, which still can represent 

sufficient information about the original data set. For solving this problem, approaches 

based on information gain are employed in this dissertation in order to find the strength 

of predictive from features to targets and the strength of correlation between features 

themselves. As described in Section 2.5, the algorithms of feature selection are mainly 

divided into two categories, filter and wrapper. Since filter method is computational 

efficient than wrapper method, we choose it when the number of features is large. In the 

following, we will address aspects of feature selection based on filter method because the 

size of data collected from the network is always large which includes many traffic 

records with a number of various features. Our approach uses the concept of information 

theory to evaluate the worth of features and eliminate both irrelevant and redundant 

features. The approach is close to the Fast Correlation-Based Filter (FCBF) [63], however 

the difference is we treat the correlation between features in a global perspective. We 

measure the total amount of information associated with a feature as the summation of 

the inter-correlations to all of the rest of the features, but FCBF only considers on a 

feature of rest ones at a time. Figure 3.1 shows FCBF feature selection scheme. 



 

33 

First of all, the algorithm calculates the symmetrical uncertainty (SU) [65] value for each 

feature to the class C, selects the relevant features whose SU values are larger than a 

predefined threshold, and orders them in a descending order. In Figure 5, five features are 

selected as relevant features and ranked in descending order. In the second step, it 

processes the relevant features to remove the redundant ones. The algorithm starts from 

the left-most feature Fi and calculates its SU value with the remaining ones (the one Fj 

right next to Fi to the last one). If SUi,j ≥ SUj,c, Fj is considered as a redundant feature and 

is removed from the list. After one round of removing features based on Fi, the algorithm 

takes the feature right next to Fi as the new reference to repeat the process. It stops until 

no more features can be selected. By using this technique, some so called redundant 

features can be removed quickly. However, FCBF may be tricked in a situation where the 

dependence between a pair of features is weak but the total inter-correlated strength of 

one feature to the others is strong. So the FCBF possibly will keep a feature that its 

information can be found in the remaining selected subset of features. In addition, FCBF 

requires adjusting a threshold for its feature selection procedure, while our algorithm 

does not. 

In the following sections, we first introduce the theoretical framework which forms the 

base of our proposed approach in measuring the goodness between features, and between 

F1 F2 F3 F4 F5 CF1 F2 F3 F4 F5 C

 
 

Figure 3.1. FCBF Feature Selection Scheme 



 

34 

features and classes. We then describe our proposed feature selection algorithm in 

Section 3.2.  

3.1. Theoretical Framework  

In information theory, entropy [64] is a measure of the amount of uncertainty about a 

source of messages. The entropy of variable Y before and after observing values of 

another variable X can be described by. 

∑−=
i

ii ypypYH )(log)()( 2            (3.1) 

and 

)(log)()()( 2 ji
i

ji
j

j xypxypxpXYH ∑∑−=          (3.2) 

Here p(yi) is the prior probabilities for all values of random variable Y and p(yi|xj) is the 

conditional probability of yi given xj. By treating Y as classes and X as features in a data 

set, the entropy is 0, i.e., without any uncertainty at all if all members of a feature belong 

to the same class. On the other hand, members in a feature set are totally random to a 

class if the value of entropy is 1. The range of entropy is between 0 and 1. 

The amount by which the entropy of Y decreases reflects additional information about Y 

provided by X. This is called information gain (or mutual information) [55] as shown in 

Equation 3.3.  

( ) ( ) ( )
( ) ( )YXHXH

XYHYHXYI
−=
−=;

           (3.3) 

It measures how well a given variable separates instances into another variable. The 

function I(Y; X) is symmetrical, i.e., the amount of information gained about Y after 



 

35 

observing X is equal to the information gained about X after observing Y. Symmetry is a 

desired property for correlation measurements between features. However, information 

gain is biased if feature with more values, which the features with greater numbers of 

values will gain more information than those with fewer values even if the former ones 

are actually less informative than the latter ones. Also, the range of information gain is 

not from 0 to 1. Its values should be normalized in order to ensure they are comparable 

and have the same affect. Therefore, we choose SU as our tool to find the strength of 

predictive from features to target classes and that of correlations between features 

themselves. Its definition is shown in the following equation. 

( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
+

⋅=
YHXH

XYIXYSU ;2;            (3.4) 

It averages the values of two uncertainty variables, compensates for information gain’s 

bias toward features with more values, and normalizes its values to the range [0, 1]. A 

value of 1 indicates that knowing the value of either one completely predicts the value of 

the other and a value of 0 indicates that X and Y are independent each other. In addition, it 

still treats a pair of features symmetrically.  

In the following study, we apply SU measure to calculate the correlation between features 

and target class. If a feature has a low SU to the target class, it implies that the feature has 

poor prediction ability to the class. On the other hand, the feature has strong prediction 

ability to the class if the SU is high. Once having all the symmetric uncertainties between 

features and the target class, features can be ranked in descending order according to their 

degrees of association to the target class Y. Those features which have the lowest ranks 

are considered as irrelevant features and will be filtered out. 



 

36 

Similarly, we apply SU measure to pairs of features. If the measure of mutual information 

between a pair of features is low, it represents these two features are independent to each 

other, i.e., knowing one feature cannot provide any information about the other. On the 

contrary, the two features are highly inter-correlated with each other if they have a high 

mutual information measure. This means that one feature contains similar information 

about the other and implies that knowing one feature can gain necessary information 

about the other. Under this circumstance, one of them can be considered as a redundant 

feature and can be discarded.  

For a better understanding of the idea of redundant feature, we use Venn diagram to 

illustrate correlations among multiple features X1, X2 and X3. As shown in Figure 3.2, 

SU(X1; X3) = b + c, SU(X1; X2) = c and SU(X2; X3) = c + d. Obviously, some redundant 

information will be included if we choose all three features since the information 

included in SU(X1; X3), SU(X1; X2), and SU(X2; X3) is b + 3c + d, which is greater than b + 

c + d in SU(X1, X2; X3). Therefore, removing redundant features from the original feature 

space is necessary in order to discard needless information. The intrusion detection 

f 

X3 

Figure 3.2. Illustration of Correlations of Three Features in Venn Diagram 

X2 
e 

d 

b a 

c 

X1 
f 



 

37 

processing time can therefore be reduced by the use of a subset of the original feature 

space.   

In Figure 3.2, feature X3 is highly inter-correlated with both features X1 and X2. By using 

Shannon’s information-theoretic measure, we get the joint entropy:  

( ) ( )
( ) ( ) ( ) ( )[
( )]32

31321321

321

;
;;,,

,,

XXSU
XXSUXXXSUXHXXH

fedcbaXXXH

−
−++=

+++++=
     (3.5) 

The larger mutual information SU(X1; X3) and SU(X2; X3) are, the smaller area f will be. 

When f is very small, it represents that X3 heavily depends on both X1 and X2. The 

measure of joint entropy H(X1, X2, X3) is approximately equal to H(X1, X2). It implies that 

the total amount of information of X1, X2, and X3 can be represented by the amount of 

information of X1 and X2. Feature X3 is considered as a redundant feature and can be 

removed with only losing a little information of the original feature space. Finally, we 

select the feature that is neither an irrelevant feature nor a redundant feature and call this 

type of feature as “significant feature”.  

3.2 Feature Selection Algorithm 

Table 3.1 describes our proposed feature selection algorithm. The algorithm mainly 

consists of two parts for achieving the goal of reducing dimensionality of the original 

feature space. In the first part (lines 1-5), the algorithm removes irrelevant features with 

poor prediction ability to target class. Given a data set with a number of input features 

and a target class, the algorithm first calculates the mutual information between features 

and class. The algorithm then ranks the features in descending order according to their 



 

38 

degrees of association to the target class. Once the input features’ degrees of importance 

are ranked, those terms whose information measure are equal to zero are removed. 

The second part of the algorithm (lines 6-12) eliminates redundant features that are inter-

correlated with one or more of other features. It starts with calculating the inter-correlated 

strengths of each pair of features. The total amount of mutual information for each 

feature is acquired by adding all mutual information measures together that relate to that 

feature. For adjusting the discriminative power of mutual information performed on 

feature-to-feature and feature-to-class to the same level, we introduce factor w and its 

Table 3.1. Feature Selection Algorithm 

  
1 // Remove irrelevant features 

2 Input original data set D that includes features X and target class Y  

3 For each feature Xi  

      Calculate mutual information SU(Y; Xi) 

4 Sort SU(Y; Xi) in descending order 

5 Put Xj whose SU(Y; Xi) > 0 into relevant feature set RXY 

6 // Remove redundant features 

7 Input relevant feature set RXY 

8 For each feature Xj 

      Calculate pairwise mutual information  

      SU(Xj; Xk) ∀j ≠ k 

9 SXX = Σ (SU(Xj; Xk)) 

10 Calculate means µR and µS of RXY and SXX , respectively. 

w =  µS /µR 

11 R = w⋅RXY - SXX 

12 Select Xj whose R > 0 into final set F 

  



 

39 

value is equal to the mean of summation of feature-to-class information divided by the 

mean of summation of feature-to-feature information. By multiplying w to each feature-

to-class measure, both feature-to-class and feature-to-feature reach to the same important 

rank. Finally, the differences of them are computed and we only keep those features 

whose values are greater than zero; which means the selected features are the most 

“significant features” that restrain indispensable information of the original feature space. 

 



 

40 

CHAPTER IV 

FUZZY BELIEF k-NN ANOMALY DETECTION 

 

This chapter presents an intrusion detection method named fuzzy believe k-NN anomaly 

detection. It is a combination of fuzzy clustering technique and Dempster-Shafer theory 

since both of them have merit of resolving the uncertainty problems caused by limited 

and ambiguous information during a decision process. Also, the k-NN technique is 

applied to speed up the detection process.  

In the first part of this chapter, we describe the reason of choosing anomaly detection 

technique. Then, we explain the importance of considering the problems of uncertainty 

while designing intrusion detection models. Finally, we present our proposed fuzzy 

believe k-nearest neighbors anomaly detection design. 

4.1 Anomaly Detection  

As described in Section 2.3, two approaches are typically used for detecting intruders of 

the information from network traffic or system audit trail. They are misuse detection and 

anomaly detection. Misuse detection models known attack behavior and anomaly 

detection models normal behavior. The main drawback of misuse detection technique is 

that it cannot detect unknown intrusions. Whenever a novel attack is discovered, it is 

necessary to spend a number of hours or days on the development of this new attack 

signature and then to update it manually into the intrusion detection system. Maintenance 

of the knowledge database therefore becomes an extremely tedious task. Moreover, 



 

41 

misuse detection approach becomes impractical while the number and types of intrusions 

increase dramatically with the networks grow rapidly. Human analysis becomes 

insufficient to catch the growing speed of intrusions. 

A misuse intrusion detection system can neither cover all intrusive behavior space nor 

include all normal behavior space. This is due to the fact that there is not only a large 

amount of vulnerabilities that already have been discovered [1] but also an unknown 

number of vulnerabilities that may be immediately exposed. So it is very difficult to 

model such behavior spaces completely and correctly in reality. Additionally, computer 

attacks are usually polymorphic [66]. Computer hackers in general use different 

approaches to exploit a same vulnerability. The attack codes may look different from the 

known signature but are functionally equivalent. For example, the Internet worms are 

polymorphic and spread automatically across networks by exploiting vulnerabilities [67]. 

These worms are able to mutate as they spread across the network by using self-

encryption mechanisms or semantics-preserving code manipulation techniques. Hence, it 

is correspondingly difficult to generate all possible combinations to cover the variations 

of attacks using misuse detection technique. It is necessary to develop an efficient way 

that is able to identify different variations of a same type of attack.   

To address the above problems, an obvious solution would be to develop intrusion 

detection systems using anomaly detection, which are totally orthogonal to misuse based 

models. The anomaly based models have been successfully implemented by modeling 

what is normal instead of what is anomalous. It is advantageous to distinguish any 

deviations from normal behavior. Consequently, unusual or abnormal patterns are 

possible to be discovered. Furthermore, it offers the ability to resist polymorphic attacks 



 

42 

at the moment that novel attacks are constantly being introduced to the networks today. 

The anomaly based models provide a much more feasible approach by the use of 

generalizing the signatures of attacks than generating a number of signatures that cover 

possible variations of attack as in misuse based models. 

4.2 Handling of Uncertainty  

Uncertainties exist in our daily life. Sometimes the uncertainty is totally random, e.g., the 

future state of weather and the occurrence of failure of our home appliances. In other 

occasions it happens due to lack of knowledge or unpredictable factors such as the trend 

of stock and whether a war is going to happen. Therefore, people generally classify 

uncertainties into two categories, aleatory uncertainty and epistemic uncertainty, based on 

their fundamental difference in nature. Aleatory uncertainty is also known as variability, 

random uncertainty, stochastic uncertainty, objective uncertainty, and irreducible 

uncertainty [68], [69]. It is caused by inherent random variations associated with the 

physical system or the environment under consideration. Examples can be found in the 

outcomes while rolling a dice, the location and time of occurrence of future earthquakes, 

and the variability of a machining operation. The random nature of aleatory uncertainty is 

inherent. The occurrence of an event is not predicable even a large quantity of past data is 

collected.  

The second type of uncertainty is epistemic uncertainty. This uncertainty is also referred 

to as imprecision, reducible uncertainty, subjective uncertainty, parameter uncertainty, 

model form uncertainty, and state-of-knowledge uncertainty [68], [69]. On the contrary to 

aleatory uncertainty that uncertainty arises from the system itself, epistemic uncertainty is 



 

43 

an uncertainty that is due to a lack of knowledge or information of processes of the 

system or the environment. Since it is not caused by the inherent random variations of the 

system but by the incomplete information or knowledge, the uncertainty is possible to be 

reduced by including new knowledge or information about the system or environmental 

factors. Examples of epistemic uncertainty can be seen when there are insufficient 

experimental data to describe physical parameters of a new material, limited 

understanding of a physics phenomena, and imperfect measurement of a complex 

physical model.  

Actually, epistemic uncertainty does happen in intrusion detection tasks. From the 

decision-based perspective, the goal of intrusion detection is to make decisions on 

whether future traffic data are malicious or normal. For effectively and precisely making 

the decisions, data are collected in advance for analysis in either misuse or anomaly 

detection case. However, the collected data always enclose uncertainty when only limited 

information about intrusive activities is available. In real world modern computer systems 

and networks, hackers constantly develop new attack codes to exploit security 

vulnerabilities of organizations everyday. Not only are these attacks becoming more 

numerous, they are also becoming more sophisticated. Accordingly, it is not realistic to 

cover all intrusive behavior space completely for the use of decision making in an 

intrusion detection system.  

Uncertainty is also occurred due to ambiguous information about computer users’ 

activities. The patterns generated from users’ behavior cannot be specifically defined as 

normality and abnormality. In order to illustrate this type of uncertainty, let us consider 

the following example of a person who tries to access an account from a remote machine. 



 

44 

A user attempts to retrieve forgotten passwords when he/she logins his/her own account, 

this action is considered as a normal behavior. On the other hand, the action that a hacker 

attempts to access other people’s accounts by guessing passwords is definitely an 

intrusive activity. Thus, uncertainty is involved during the process of classification. If the 

guessing passwords behavior of a hacker is considered as a normal activity, then the 

intrusion can never be detected. If the retrieving forgotten passwords behavior of a user is 

considered as an intrusive activity, then the system administrators may fire an alarm but 

actually there is no intrusion happened. Hence, uncertainty is necessary to be concerned 

in the imprecise available data set during the intrusion detection procedure.  

4.3 Approach 

Intrusion detection in fact is a classification task that classifies network traffics into 

normal usage category or attack category. In our work, the main goal is to identify U2R 

and R2L attacks from the KDD99 intrusion detection benchmark data set. For 

successfully achieving the goal, we divide the development of an intrusion detection 

system into two phases: training phase and classification phase. In the training phase, 

decision rules are generated in accordance with the clustering result of provided training 

data. The rules are used for classifying future network traffic whether is a normal activity 

or an attack in the classification phase. Figure 4.1 depicts the general operation scheme of 

the proposed approach. The details are described as follows. 

A. The Training Phase 

Let us assume the available information in a given training set is from a network with N 

traffic connections, and each of them is composed of n distinct features with positive 



 

45 

numeric values. We denote the training set as T, the training traffic connection as x, and 

the set of features in each connection as F. Equations 4.1 and 4.2 denote T and F, 

respectively. 

}...,,,{ 21 NxxxT =             (4.1) 

and 

}...,,,{ 21 nfffF =             (4.2) 

As described in the previous section, a training traffic connection sometimes could not be 

crisply defined as normality or abnormality. The boundary between normal activities and 

abnormal ones are always unclear. Crisp clustering algorithms cannot handle this 

ambiguity problem among network activities. Therefore, we decide to apply fuzzy c-

Means (FCM) clustering technique developed by Dunn in 1973 [14] and improved by 

Bezdek in 1981 [13] to the following study. It allows one piece of data with gradual 

memberships to the clusters rather than completely assigning to just one cluster. By using 

this feature of FCM, the problem of ambiguity between attacks and normal activities can 

Training Phase                   Classification Phase 

 
Rule 
Set 

Figure 4.1. Intrusion Detection Scheme 

Data 
Set 

 

Data 
Fusion 

Belief 
Assignment 

Decision 
Making 

 
State 

Network Traffic Data 



 

46 

be solved. The connection could be assigned to diverse classes with different degrees of 

memberships. We denote the set L as a number of p possible classes. 

{ }plllL ...,,, 21=                         (4.3) 

The clustering procedure is done by using iterative optimization technique to minimize an 

objective function J. 

∑∑
= =

−=
N

i

p

j
jiij cxuJ

1 1

2σ                        (4.4) 

where the parameter σ is a weighting exponent on each fuzzy membership and has a 

value in the range [1, ∞). This parameter determines the amount of fuzziness in the 

classification process. When it is set to 1, the FCM approaches a hard c-Means algorithm, 

i.e., the membership grade assigning to cluster is either 0 or 1. As this parameter becomes 

larger, the fuzzier are the membership assignments to the clusters. Also, convergence of 

the algorithm tends to be slower as the value of σ increases. Normally, its value is in the 

range of 1.25 to 2 [70]. xi is the ith connection of the training set, cj is the center of cluster 

j, and uij is the membership grade of xi in the cluster j with a value between 0 and 1. || || 

denotes norm expressing the distance between any measured data and the cluster center. 

The membership grades uij and cluster centers cj are updated by the following 

expressions, 

∑

∑

=

== N

i
ij

N

i
iij

j

u

xu
c

1

1

σ

σ

             (4.5) 

and 



 

47 

∑
=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
=

p

k ki

ji

ij

cx
cx

u

1

1
2

1

σ

            (4.6) 

By iteratively updating the cluster centers and the membership grades for each training 

connection, FCM moves the cluster centers gradually to their correct values. Finally, the 

iteration stops when ε<−+ )()1( k
ij

k
ijij uumax , where ε is a selected threshold for 

terminating the iteration process and k denotes the number of iterations.   

The connection that lies “closer” to the center of a class has a higher membership grade 

to that class. On the contrary, the connection that lies “farther” away from the center of a 

class has a lower membership grade to that class. Training connections are grouped into p 

classes such that each connection has a certain membership grade to every class. The set 

of cluster centers C and membership partition matrix U are shown below. 

{ }pcccC ...,,, 21=              (4.7) 

and 

]...,,,[ 21 ipii uuuU =             (4.8) 

where i is the connection number of the training set and p is the number of possible 

classes. For each cluster center, it has a number of n values.  

Within each row of U, the p membership grades are treated intuitively to be our degrees 

of confidence on p classes that a connection can belong to. Consequently, we can build p 

decision rules from a connection and each consists of a number of feature values F, a 

class label l, and a confidence value α.  

{ } α,,: lFrwhererR UUU =              (4.9) 



 

48 

The confidence values are in proportion to the correspondent membership grades that a 

connection belongs to certain classes. For a training connection, only portion of our belief 

is devoted to a certain class in a rule whereas the rest of beliefs are committed to other 

classes in other rules. The summation of the degrees of confidence on rules that generated 

from a training connection must be equal to 1. It is not possible that the connection can 

belong to any other classes except these p classes. 

1
1

=∑
=

p

j
ijα            (4.10) 

where i is the connection number and j is the class number. Since the training set has N 

connections and each contains a number of p membership grades, totally N times p 

decision rules can therefore be generated.  

In addition to the rules created from membership partition matrix U, a number of p rules 

are generated from the cluster centers. In each rule, the antecedent part includes n values 

of a cluster center and the corresponding class label. The degree of confidence is 

designated to 1 because we have full confidence that the cluster center should belong to 

that partitioned class without any doubt.  

{ } 1,,: == αlcrwhererR CCC         (4.11) 

With Equations 4.9 and 4.11, totally (N+1)p rules are included in the decision rule set R. 

These rules will act as pieces of evidence to assign beliefs to an incoming connection in 

the decision making stage.  

CU RRR U=            (4.12) 



 

49 

B. The Classification Phase 

In the classification problem of intrusion detection, a complete prior knowledge regarding 

the probability distributions of attacks and normal behavior is not available. Also, the 

amount of traffic data for design is always limited. Hence, we decide to incorporate 

Dempster-Shafer theory into this phase because it does not require an assumption 

regarding the probability of the individual classes. It computes the probability that 

evidences support the attack or normal class. Also, this theory offers a solution for the 

mathematical representation of uncertainty. It is suitable for anomaly detection on unseen 

network traffic by using limited information on the uncertainty. With the combination of 

accumulative evidences from an insufficient amount of information, it is capable of 

making decision on a traffic whether it is normality or abnormality. In this phase, the 

pieces of evidences will be derived from the decision rules of the training phase.  

Dempster-Shafer theory also known as Evidence Theory or Theory of Believe Functions, 

was introduced by Glenn Shafer in the late 1970s [16] based on the work of Arthur 

Dempster [15]. It starts by defining a sample space named frame of discernment (or 

simply frame), which is a finite set of mutually exclusive and exhaustive hypotheses in a 

problem domain under consideration. For adopting the theory into our intrusion detection 

design, we identify the set of class labels L as the frame of the problem domain. The 

possible subset A of L represent hypothesis that one could present evidence. The set of all 

possible subsets of L, including itself and the null set ∅ , is called a power set and 

designated as 2L. Assume v be an incoming traffic connection to be classified. To classify 

v means to assign it to one of the members in L, i.e., to assign v to a member of p classes: 

v ∈ lq, q = 1, 2, …, p.  



 

50 

A piece of evidence that influences our degree of belief on a hypothesis can be quantified 

by a mass function which is denoted as m(⋅). It is a mapping function and defined as m: 2L 

→ [0, 1] such that 

∑
⊆

=
LA

Am 1)(            (4.13) 

and 

0)( =∅m            (4.14) 

where A⊆L is called a focal element of m if m(A) > 0. The quantity m(A) is defined as the 

hypothesis A’s basic probability assignment. It can be interpreted as the portion of total 

belief to hypothesis A given the available evidence. For example, if m(A) = 0.2, then it 

means that one’s belief committed to A is 20%. The left 80% beliefs are committed to 

other focal elements of frame L. 

We treat the set of decision rules as pieces of evidence that alters our degrees of belief to 

which class v should belong while classifying it into the correct class. If the distance is 

large between v and a decision rule, it represents that v is “far” from the rule, i.e., the rule 

only has a little influence on v. On the other hand, we have stronger belief that v should 

belong to the same class of the rule if v is “close” to it, which means the distance has a 

smaller value. Here, distances from v to all decision rules are computed and the most 

informative rules are selected. By using this technique, the computational time is less 

than that of using the whole set of rules. Additionally, the weighted k-NN rule [70] is 

used to assign different weights to the selected rules.  

⎪⎩

⎪
⎨
⎧

=

≠
−
−

=
),(),(1

),(),(
),(),(
),(),(

1

1
1

vxdvxd

vxdvxd
vxdvxd
vxdvxd

w
k

k
k

ik

i       (4.15) 



 

51 

where xi is the ith rule, xk and x1 are the farthest and nearest rule of v, respectively, and d 

is the Euclidean distance between v and a rule. This weighting factor is used to give each 

decision rule a different amount of influence in a way that closer rule to v has larger 

influence. The factor is calculated such that the nearest neighbor of v has a weight value 

of 1 and the farthest kth neighbor has a value of 0. Since the range of this factor is from 0 

to 1, the resulting weights possibly have very similar values. Therefore, for further 

differentiating the rules’ degrees of importance to v, the confidence value α is added to 

alter the degree of our belief on v.   

iiq wlm α⋅=)(            (4.16) 

where i is the rule number and q is the corresponding class number of the ith rule. Up to 

this stage, each rule creates a number of belief assignment indicating the degrees that v 

belongs to certain classes. If the value of m is large, it means that we have a strong belief 

that v belongs to the class of which m indicates. Otherwise v should belong to other 

classes if m is small. Nevertheless, we need to notice that a belief should also be 

designated to the frame (with every class labels). The reason is that only part of our 

beliefs is committed to single class for a given training connection, and the rest of our 

belief should be assigned to the frame. According to Dempster-Shafer theory, the 

summation of all mass functions inferred from one training connection is equal to 1.  

Thus, the belief belonged to the frame becomes one minus the summation of beliefs of all 

of the single class.  

∑
=

−=
p

i
qi lmLm

1
)(1)(           (4.17) 



 

52 

From the mass function given by Equation 4.16, the belief function Bel and plausibility 

function Pl can be derived to characterize certain hypotheses. They are shown in the 

following equations, 

)()( jj lmlBel =           (4.18) 

)(1)( jj lBellPl −=           (4.19) 

where j is class number and jl  is the hypothesis “not lj” with value between 0 and 1. 

Belief function is a measure of the total amount of belief that directly supports for a given 

hypothesis. The greater the support assigns to a hypothesis, the higher belief that the 

hypothesis is true. It can be regarded as a lower bound that indicates the impact of 

evidence of the hypothesis. Plausibility quantifies the extent to which one doubts the 

hypothesis. It shows the belief on the given hypothesis can only up to this value, which is 

an upper bound on the belief. The gap between them indicates the uncertainty about the 

hypothesis. It is a good reference in deciding whether more evidences are needed or not. 

Haralick and Shapiro [72] represent those various measurements over the interval unit as 

shown in Figure 4.2.  

Now let us assume that the frame of the problem domain includes normal and attack 

classes. A network traffic connection is coming and the goal is to decide whether it is a 

normal activity or an attack by the use of belief and plausibility functions. Suppose we 

have two pieces of evidence regarding the connection and the mass functions are 0.1 and 

0.2 for normal class and attack class, respectively. By using Equations 4.18 and 4.19, the 

belief and plausibility that support for normal class are 0.1 and 0.8 and for the attack class 

are 0.2 and 0.9, respectively. From the observation of the gap between belief and 



 

53 

plausibility, it has a high degree of uncertainty. This indicates that more evidences are 

required to be incorporated so that we can make a better decision that the connection is a 

normal activity or an attack. 

Generally speaking, the mass function is a piece of evidence that supports certain 

hypothesis concerning to the class member of a rule. When more evidences appear with 

same class label, those evidences can be integrated to generate a single belief function 

which represents the total support for the same class. Dempster Rule of Combination is 

applied here to combine all the beliefs induced from distinct pieces of information with 

same class label together. Using this combination rule, the final belief on every subset of 

class set can be obtained. In our case, a number of belief functions for single classes and 

one belief function for the class set will be generated.  

Now assume that there are two mass functions m1 and m2 induced by distinct items of 

evidence X and Y. By using Dempster Rule of Combination, these two independent  

evidences can be fused into a single belief function Z that expresses the support of the 

hypotheses in both evidences. The combination result is called orthogonal sum of m1 and 

m2 and noted as m = m1 ⊕ m2. 

Belief Bel(A)                 Uncertainty                      Non-belief Bel(~A) 

Figure 4.2. Functions of Belief and Plausibility 

Plausibility Pl(A) 

Double Pl(~A) 

0                           j                                                   k                                 1 



 

54 

1
21

21

21

)()(
)()(

)()(
)( −

=
∅≠

= ⋅⎟
⎠
⎞

⎜
⎝
⎛ ⋅=

⋅

⋅
= ∑

∑

∑
kYmXm

YmXm

YmXm
Zm

ZYX
YX

ZYX

I

I

I      (4.20) 

where 

1

21

1

21
1 )()(1)()(

−

∅=

−

∅≠

− ⎟
⎠
⎞

⎜
⎝
⎛ ⋅−=⎟

⎠
⎞

⎜
⎝
⎛ ⋅= ∑∑

YXYX
YmXmYmXmk

II

     (4.21) 

where the factor k-1 is the renormalization constant. Using the above equations, the final 

belief on single class and the frame are obtained. In an intrusion detection task, a number 

of p belief functions for single classes and one belief function for class set will be 

generated. For example, totally four final belief functions are obtained if there are three 

classes in the frame. There are three belief functions for single class and one belief 

function for the frame. They give fused allocations of belief and emphasize the agreement 

between multiple sources.  

Let us continue with the previous example that we already have two pieces of evidence 

regarding a connection. The mass functions of corresponding evidences are 0.1 and 0.2 

for normal class and attack class, respectively. Now assume that we have two more 

pieces of evidence regarding the same traffic connection and the correspondent mass 

functions are 0.3 and 0.6 for normal class and attack class, respectively. Table 4.1 shows 

the information of this example. The frame is 

{ } { }ANllL ,, 21 ==           (4.22) 

By using Dempster Rule of Combination, the above evidences can be aggregated into two 

fused belief functions Bel(N) and Bel(A). First, the renormalization constant factor k-1 is 

calculated in Equation 4.23. Then, individual fused mass functions can be obtained by 

using Equation 4.24. Equations 4.25 to 4.27 show the fused results. 



 

55 

( )
( )

14.1
)06.006.0(1

)]()()()([1

)()(1

)()(

1

1
2121

1

21

1

21
1

=
+−=

+−=

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−=

⎟
⎠
⎞

⎜
⎝
⎛ ⋅=

−

−

−

∅=

−

∅≠

−

∑

∑

NmAmAmNm

AmNm

AmNmk

AN

AN

II

I

I

       (4.23) 

[ ] 1
212121 )()()()()()()( −⋅⋅+⋅+⋅= klmLmLmlmlmlmlm qqqqq      (4.24) 

m(N) = m1⊕m2(N) = (0.03 + 0.01 + 0.21)⋅k-1 = 0.28 = Bel(N)     (4.25) 

m(A) = m1⊕m2(A) = (0.12 + 002 + 0.42)⋅k-1 = 0.64 = Bel(A)     (4.26) 

m(L) = m(N, A) = m1⊕m2 (N, A) = [m1(N, A)⋅m2(N, A)]⋅k-1 = 0.07⋅ k-1 = 0.08   (4.27) 

The two fused belief functions m(N) and m(A) express the total support of normal class 

and attack class, respectively. The plausibility and uncertainty functions for both normal 

and attack classes can be derived using Equations 4.28 to 4.31. 

( ) ( ) ( ) 36.064.0111 =−=−=−= ABelNBelNPl       (4.28) 

( ) ( ) ( ) 72.028.0111 =−=−=−= NBelABelAPl        (4.29) 

U(N) = Pl(N) - Bel(N) = 0.36 - 0.28 = 0.08       (4.30) 

U(A) = Pl(A) - Bel(A) = 0.72 - 0.64 = 0.08       (4.31) 

Table 4.1. Connection Information of the Example 

 m1(N) = 0.1 m1(A) = 0.2 m1(N, A) = 0.7 
m2(N) = 0.3 m(N) = 0.03 m(NIA) = 0.06 m(N) = 0.21 
m2(A) = 0.6 m(NI A) = 0.06 m(A) = 0.12 m(A) = 0.42 
m2(N, A) = 0.1 m(N) = 0.01 m(A) = 0.02 m(N, A) = 0.07

     * Normal and Attack are abbreviated as N and A, respectively. 
        Uncertainty between belief and plausibility is abbreviated as U. 



 

56 

The gap between belief and plausibility is 0.08. We can tell that uncertainty is reduced 

significantly after incorporating more evidences. We have stronger believe that the 

connection should be an attack.  

At the data fusing level, each piece of evidence initializes the finite amount of belief to 

hypotheses of the frame. Part of the belief is allocated to the single class and part of it is 

allocated to the frame. To decide which class v should belong to, Equation 4.32 shows the 

pignistic probability function and it is applied to make the final decision.  

p
LmlmlBp qq

)()()( +=          (4.32) 

where q is the class number and p is the number of classes. The function quantifies our 

beliefs to individual classes with pignistic probability distribution. These probabilities 

distributed from zero to one and the summation of them equals to one. For making an 

optimal decision, v is assigned to a class with the highest pignistic probability. Continue 

with the example, the degrees of final belief on normal and attack classes are shown in 

Equation 4.33 and 4.44, respectively. Table 4.2 shows the computation result. 

Table 4.2. Data Fusion Result 

 {N} {A} {N, A} 
m1 0.1 0.2 0.7 

Bel1 0.1 0.2 1 
Pl1 0.8 0.9 1 
m2 0.3 0.6 0.1 

Bel2 0.3 0.6 1 
Pl2 0.4 0.7 1 
m 0.28 0.64 0.08 

Bel 0.28 0.64 1 
Pl 0.36 0.72 1 
U 0.08 0.08  
Bp 0.32 0.68  

 



 

57 

Bp(N) = m(N) + m(L)/2 = 0.28 + 0.08/2 = 0.32       (4.33) 

and 

Bp(A) = m(A) + m(L)/2 = 0.64 + 0.08/2 = 0.68       (4.34) 

 

 

 

 

 

 



 

58 

CHAPTER V 

EVALUATION OF FEATURE SELECTION ALGORITHM 

 

In order to test the effectiveness of our feature selection method and compare it with 

other methods, we test our method in a various sizes of data sets. In this chapter, the data 

sets involved during the experiment are first introduced. We then demonstrate the 

experimental methodology, followed by a discussion of the experiment results.   

5.1 DARPA KDD99 Intrusion Detection Evaluation Data Set  

In the beginning of the research of intrusion detection, the most preliminary step is to 

prepare a data set that is good for developing an intrusion detection algorithm and for 

future test. Some people built their own simulated network environment and collected 

data by using sniff software such as tcpdump [73]. Although they included attacks 

purposely, it is often difficult to build a large network with hundreds of computer to 

mimic the real network scenario. Also the results of the specific simulated network 

environment could not be compared with those from different networks. On the other 

hand, people can use an existing data set to design and test their intrusion detection 

systems and the most popular one is DARPA KDD99 Intrusion Detection Evaluation data 

set [74]. The data set, also known as “DARPA Intrusion Detection Evaluation data set”, 

has been chosen for analyzing the performance of our proposed classifier. It was created 

by Lincoln Laboratory at MIT [17] and was used in The Third International Knowledge 

Discovery and Data Mining Tools Competition, which was held in conjunction with 



 

59 

KDD-99 The Fifth International Conference on Knowledge Discovery and Data Mining 

with the main objective of intrusion detection and report [74].   

It is a tailor-designed data set for the research of intrusion detection and includes a wide 

variety of intrusions from a simulated network environment. Although some people 

criticize that the data set deliberates mix different types of legitimate traffic (different 

ports and client platforms) with attacks, it is still the most realistic and publicly available 

one with a full list of actual attacks [75]. Consequently, people have been using it for 

designing and evaluating their intrusion detection systems. Also, the best is they can 

compare their experimental results with those from others.  

For acquiring the evaluation data set, Lincoln Labs built a Local Area Network (LAN) to 

simulate a typical U.S. Air Force LAN. The LAN was operated as if it were a true Air 

Force environment, but peppered it with multiple attacks. The victim machines subjected 

to these attacks ran Linux, SunOSTM, and SolarisTM operating systems. The data set was 

acquired from raw tcpdump data for a length of nine weeks. It is made up of a large 

number of network traffic activities that include both normal and malicious connections. 

In the KDD99 data set, three independent sets are included, they are “whole KDD”, “10% 

KDD”, and “corrected KDD”. In our experiment, “10% KDD” and “corrected KDD” are 

taken as our training and testing set, respectively. The training set contains a total of 22 

training attack types, with an additional 17 types in the testing set. Totally 39 attack types 

are included and they fall into four main classes, DoS, Probe, U2R, and R2L. Table 5.1 

summarizes the connection distributions of training and testing sets we have used during 

the entire work. Table 5.2 lists the attacks and note that the 22 types of attacks in training 

set are marked underline. Figure 5.1 shows the detailed distributions of DoS, Probe, U2R, 



 

60 

and R2L attacks. The signatures in DoS and Probe attacks in the testing set are very 

similar to those present in the provided training set. However, the types of attack of U2R 

and R2L attacks differ significantly between the training and the testing sets. In the 

testing set, over 80% U2R attacks and 60% R2L attacks are new to the training set. 

Each connection is a sequence of TCP packets starting and ending at some well defined 

times. The set describes each connection in terms of 41 features plus a label of either 

normal or a type of attack. The content of these features are continuous, discrete, or 

symbolic with vary scales and ranges. These features can be classified into four classes, 

basic, content, time-based, and host-based features. Table 5.3 shows the detailed 

information of these 41 features. Features 1 to 9 are basic features that are derived from 

packet header without inspecting the payload. Features 10 to 22 are content features that 

are obtained by analyzing the payload of the original TCP packets. Features 23 to 31 are 

time-based traffic features that capture properties of connections in the past 2 seconds. 

Table 5.1. Connection Distributions  

Data Set Normal DoS R2L U2R Probe Total 
Training Set 97,277 391,458 1,126 52 4,107 494,020 
Testing Set 60,593 229,853 16,189 228 4,166 311,029 

 
Table 5.2. Thirty-Nine Attacks 

DoS R2L U2R Probe
apache2, back, 

land, mailbomb, 
netpune, pod, 
processtable, 

smurf, teardrop, 
udpstorm. 

ftp_write, guess_passwd, 
imap, multihop, named, 

phf, sendmail, 
snmpgetattack, 

snmpguess, spy, 
warezclient, warezmaster, 

worm, xlock, xsnoop.

buffer_overflow, 
httptunnel, 

loadmodule, perl, 
ps, rootkit, 

sqlattack, xterm. 

ipsweep, mscan, 
nmap, portsweep, 

saint, satan.

 



 

61 

Features 32 to 41 are host-based traffic features that examine a number of connections 

using a window of 100 connections instead of a 2-second time window.  

5.2 UCI Data Sets  

In our experiment, six different sizes of data sets are chosen from the UCI Machine 

Learning Repository [76]. In the following we briefly describe the six data sets. 

0 50000 100000 150000 200000 250000 300000
apache2

back

land

mailbomb

netpune

pod

processtable

smurf

teardrop

udpstorm

0 500 1000 1500 2000
ipsweep

mscan

nmap

portsweep

saint

satan

 
 

(a) DoS attacks                                                 (b) Probe attacks 
 

0 20 40 60 80 100 120 140 160
buffer_overflow

httptunnel

loadmodule

perl

ps

rootkit

sqlattack

xterm

0 1000 2000 3000 4000 5000 6000 7000 8000
ftp_write

guess_passwd

imap

multihop

named

phf

sendmail

snmpgetattack

snmpguess

spy

warezclient

warezmaster

worm

xlock

xsnoop

 
 

(c) U2R attacks                                                 (d) R2L attacks 
 

Figure 5.1. Distributions of Four KDD99 Attack Categories  
   : Training Set          : Testing Set 

 



 

62 

Table 5.3. Forty-One Features  

No. Feature Description Type 
1 duration length (no. of seconds) of the connection  continuous 

2 protocol_type type of the protocol discrete 

3 service network service on the destination  discrete 

4 flag status flag of the connection discrete 

5 src_bytes no. of data bytes from source to destination continuous 

6 dst_bytes no. of data bytes from destination to source continuous 

7 land 1 if connection is from/to the same host/port; 0 otherwise discrete 

8 wrong_fragment no. of wrong fragments continuous 

9 urgent no. of urgent packets continuous 

10 hot no. of “hot” indicators continuous 

11 num_failed_logins no. of failed logins continuous 

12 logged_in 1 if successfully logged in; 0 otherwise discrete 

13 num_compromised no. of “compromised” conditions continuous 

14 root_shell 1 if root shell is obtained; 0 otherwise continuous 

15 su_attempted 1 if “su root” command attempted; 0 otherwise continuous 

16 num_root no. of “root” accesses continuous 

17 num_file_creations no. of file creation operations continuous 

18 num_shells no. of shell prompts continuous 

19 num_access_files no. of operations on access control files continuous 

20 num_outbound_cmds no. of outbound commands in an ftp session continuous 

21 is_host_login 1 if the login belongs to the “hot” list; 0 otherwise discrete 

22 is_guest_login 1 if the login is a “guest” login; 0 otherwise discrete 

23 count no. of connections to the same host as the current connection in the past two seconds continuous 

24 srv_count no. of connections to the same service as the current connection in the past two seconds continuous 

25 serror_rate % of connections that have “SYN” errors continuous 

26 srv_serror_rate % of connections that have “SYN” errors continuous 

27 rerror_rate % of connections that have “REJ” errors continuous 

28 srv_rerror_rate % of connections that have “REJ” errors continuous 

29 same_srv_rate % of connections to the same service  continuous 

30 diff_srv_rate % of connections to different services continuous 

31 srv_diff_host_rate % of connections to different hosts continuous 

32 dst_host_count count of connections having the same destination host continuous 

33 dst_host_srv_count count of connections having the same destination host and using the same service continuous 

34 dst_host_same_srv_rate % of connections having the same destination host and using the same service continuous 

35 dst_host_diff_srv_rate % of different services on the current host  continuous 

36 dst_host_same_src_port_rate % of connections to the current host having the same src port continuous 

37 dst_host_srv_diff_host_rate % of connections to the same service coming from different hosts  continuous 

38 dst_host_serror_rate % of connections to the current host that have an S0 error continuous 

39 dst_host_srv_serror_rate % of connections to the current host and specified service that have an S0 error continuous 

40 dst_host_rerror_rate % of connections to the current host that have an RST error continuous 

41 dst_host_srv_rerror_rate % of connections to the current host and specified service that have an RST error continuous 



 

63 

Abalone: This data set is used for predicting the age of abalone from physical 

measurements. It includes totally 4,177 data records and each of them consists of eight 

features and one class label. Features include length (continuous), diameter (continuous), 

height (continuous), whole weight (continuous), shucked weight (continuous), viscera 

weight (continuous), shell weight (continuous), rings (integer). Classes are M (man), F 

(female), and I (infant).  

Cmc: The data set is provided to study the problem of predicting the current 

contraceptive method choice (no use, long-term methods, or short-term methods) of a 

woman based on her demographic and socio-economic characteristics. It contains 1,473 

data records and each has nine features. Features are wife’s age (numerical), wife’s 

education (categorical), husband’s education (categorical), number of children ever born 

(numerical), wife’s religion (binary), wife’s now working (binary), husband’s occupation 

(categorical), standard-of-living index (categorical), and media exposure (binary). 

Classes are 1 (no-use), 2 (long-term), and 3 (short-term). 

Ionosphere: This is radar data that were collected by a system in Goose Bay, Labrador. 

It has 351 data records and each one has thirty four continuous features plus a class label. 

It is used for binary classification tasks and therefore the class label is either good or bad. 

Pima: This data set collects information from patients who are all females over 21-year 

old of Pima Indian heritage. It includes 768 data records and has eight features which are 

number of times pregnant, plasma glucose concentration a 2 hours in an oral glucose 

tolerance test, diastolic blood pressure, triceps skin fold thickness, 2-hour serum insulin, 

body mass index, diabetes pedigree function, and age. Classes are 0 and 1. 



 

64 

Wdbc: For the study of breast tumor diagnosis, this data set provides 569 data records 

and each one comprises an ID number plus thirty features that describe characteristics of 

the cell nuclei presented in the image. The class label is M (malignant) or B (benign). 

Wine: This data set includes 178 data records that represent the chemical analysis results 

of wines grown in the same region in Italy but derived from three different cultivars. 

Each data record has thirteen features, alcohol, malic acid, ash, alcalinity of ash, 

magnesium, total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color 

intensity, hue, OD280/OD315 of diluted wines, and praline, plus a class label (1, 2, or 3).   

5.3 Experimental Methodology 

A. Discretization of Features 

In the six UCI data sets and KDD99 data set, each record is composed by a set of 

features. The type of features is either discrete or continuous which the former is a 

qualitative scale and the latter is quantitative. For qualitative scales, the values are simply 

labels without any order involved. They could be symbolic or numeric values where are 

distinct and separated. Also, it is a form of categorical data that has no “numeric” 

meaning. By using the features of KDD99 data set as an example, the value of feature 

protocol_type is one of the symbolic set {icmp, tcp, udp}. The numeric value of feature 

logged_in is 1 or 0 to represent the user successfully logged in the system or not. For 

quantitative scales, the data are characterized by numeric values within a finite interval. 

The distance between any two adjacent values is not necessary the same. Examples can 

be found in feature duration where it is given by numeric values to represent the lengths 

of record, and the values are within an interval [0, 58,329].  



 

65 

Since SU is calculated for discrete features only, all the continuous features in a given 

data set are necessary to be discretized prior to the feature selection analysis. Thus, we 

apply discretization method to transform continuous features to discrete ones prior to the 

analysis. For a numeric feature, cut points effectively decompose the range of continuous 

values into a number of intervals. These intervals can then be treated as categorical 

values of a discrete feature. In our work, equal frequency binning technique [77] is 

applied to each continuous feature individually. It is an unsupervised discretization 

method with no class information involved. It sorts the observed values of a continuous 

feature and then divides these values into a specified number of intervals. Each of the 

intervals has an approximate equal number of values. With the use of discretization of 

features, the complexity of every continuous feature is reduced as well.  

B. Experimental Methodology 

In order to evaluate the performance of our proposed feature selection algorithm on data 

sets, two representative feature selection algorithms, CFS [77] and FCBF [63], built on 

the top of SU are chosen. CFS method uses a correlation-based heuristic search algorithm 

to evaluate the worth of subsets of features. It considers good feature subsets that are 

highly correlated with the class, yet uncorrelated with one another. The heuristic 

algorithm measures the merit of feature subsets from pairwise feature correlations and 

then the subset with the highest merit found during the search is reported. Rather than 

scoring the worth of subsets of features of CFS approach, FCBF method measures 

correlations between features and classes and correlations between pairs of features as 

well. It then selects features which are highly correlated with the class to predict but are 

less correlated to any feature already selected. In addition, we apply two machine 



 

66 

learning algorithms, naive bayes and C4.5 algorithm, to evaluate the detection accuracy 

on the selected features for each feature selection algorithm. 

The experiments are performed on the six UCI data sets and binary classification 

(normal/attack) of KDD99 data set. Four new sets of data are generated from KDD99 

data set according to the normal class and four categories of attack (DoS, Probe, U2R and 

R2L). In each data set, connections with the same attack category and all the normal ones 

are included. For each set, we run our proposed approach and the other two feature 

selection algorithms CFS and FCBF, and record those features selected by each 

algorithm. Throughout the entire experiments, the threshold of FCBF is set to 0. We then 

apply C4.5 and naive bayes machine learning algorithms on each original full data set as 

well as each newly obtained data set that includes only those selected features from 

feature selection algorithms. By applying 10-fold cross-validation evaluation on each 

data set, classification accuracy of six UCI data sets and standard measurements, such as 

the detection rate (DR), false positive rate (FPR), and overall classification rate (CR), for 

evaluating the performance of intrusion detection tasks are reported. The denotations of 

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) are 

defined as follows.  

• True Positive (TP): The number of malicious records that are correctly identified. 

• True Negative (TN): The number of legitimate records that are correctly classified. 

• False Positive (FP): The number of records that were incorrectly identified as attacks 

however in fact they are legitimate activities. 

• False Negative (FN): The number of records that were incorrectly classified as 

legitimate activities however in fact they are malicious. 



 

67 

Equations 5.1 to 5.3 describe DR, FPR, and CR, respectively. 

FNTP
TPDR
+

=                        (5.1) 

FPTN
FPFPR
+

=                        (5.2) 

FNFPTNTP
TNTPCR

+++
+

=                       (5.3) 

5.4 Experimental Results  

Based on our developed feature selection algorithm, Tables 5.4 and 5.5 summarize the 

selected features from our approach as well as those selected by CFS and FCBF 

algorithms of UCI and KDD99 data sets, respectively. Table 5.6 summarizes the 

classification accuracy of the six UCI data sets. Tables 5.7 and 5.8 summarize the 

percentages of DRs and FPRs performed on KDD99 data set with C4.5 and naive bayes 

learning algorithms, respectively. For an intrusion detection task, abnormal activities are 

expected to be correctly identified and normal activities are anticipated not to be 

misclassified. Therefore, a higher DR and a lower FPR are desired. In addition, we show 

the results of SU measures of feature to class and feature to feature of KDD99 data sets in 

Tables 5.9 and 5.10, respectively. 

From Table 5.6, our approach shows higher averaged accuracies in comparison with the 

outcomes of CFS and FCBF feature selection algorithms. Especially in the abalone data 

set, we get the highest classification accuracy by using 2 out of 8 features performed on 

C4.5 learning algorithm, which is better than that of using full feature set. The averaged 

accuracies of Tables 5.7 and 5.8 also show that our approach outperform over CFS and 



 

68 

FCBF feature selection algorithms. The averaged DRs and the averaged FPRs of our 

experimental results are better than those of using full feature set performed on C4.5 and 

naive bayes, respectively.  

In the Normal-DoS data set, the difference in DRs is very slight for all of the feature 

selection algorithms. With our approach, the DR is the same as that of using full feature 

set in C4.5 learning algorithm. In the Normal-U2R and Normal-R2L data sets, we have 

satisfactory DRs and FPRs. Though CFS and FCBF approaches achieve low FPRs, they 

have very poor DRs. In the Normal-Probe data set, both CFS and FCBF approaches fail 

to achieve an acceptable presentation on DRs while using naive bayes leaning algorithm, 

whereas our approach gains very high DRs performed on both leaning algorithms. 

For any of the feature selection algorithms, FPRs are low because sufficient normal 

records present in any of those four data sets. As for the number of misclassification 

Table 5.4. Selected Features of UCI Data Sets 

Data Set Ours CFS FCBF 
Abalone 3,8 2,3,6,8 8 

Cmc 1,4 2,4 2,4 
Ionosphere 1,5,6,8,9,16,33,34 1,33 1,33 

Pima 2,5,6,8 2,5,6 2 
Wdbc 1,3,4,6-8,11,13,14,21,23,24,26-28 8,21,23,24,28 24 
Wine 1,7,10,11-13 1,7,10-13 1,2,4,5,7,10-13

 
Table 5.5. Selected Features of KDD99 Data Sets 

Data Set Ours CFS FCBF 
Normal-DoS 1-6,12,23,24,31,32,37 3,6,12,37 3,12,31,32 

Normal-Probe 1-4,12,16,25,27-30,40 3,4,25,29 3,26,27,29  
Normal-U2R 1-3,10,16 10 10,16 
Normal-R2L 1-5,10,22 10 5,10,39 

 



 

69 

attack records, our approach provides acceptable DRs on Normal-DoS, Normal-Probe 

and Normal-R2L data sets using both C4.5 and naive bayes learning algorithms. It is not 

only because each of the above data set supplies sufficient attack records but also most of 

the attacks have a same attack signature. For example, the DoS attack type includes near 

400,000 data records distributed in 10 different attacks, which 99% of the attacks are 

netpune and smurf attacks. In the Probe attack category, 95% of attacks are ipsweep, 

portsweep and satan that are distributed in 4,107 attacks. As for R2L attack class, more 

than 90% of attacks are warezclient attack while 8 different kinds of attacks present. In 

contrast, the classification presented on Normal-U2R data set is satisfactory neither on 

full feature set approach nor on one of three feature selection algorithms. The Normal-

U2R data set includes 52 attack records which are insufficient for learning on a 

classification algorithm. The experimental results have been published in [78]. 

 



 

70 

Table 5.6. CRs of C4.5 and Naive Bayes Using Full and Selected Feature Sets of  
UCI Data Sets 

C4.5  Naive Bayes 
Data Set 

Full Set Ours CFS FCBF  Full Set Ours CFS FCBF
Abalone 51.90 56.00 51.90 51.90  63.23 53.60 51.90 51.90 

Cmc 63.68 54.65 52.89 52.89  53.36 52.61 52.27 52.27 
Ionosphere 74.93 74.93 74.93 74.93  99.15 97.72 94.02 94.02 

Pima 65.10 65.10 65.10 65.10  89.97 87.50 85.03 77.34 
Wdbc 62.74 62.74 62.74 62.74  99.30 99.30 99.65 94.02 
Wine 94.94 94.94 94.94 94.94  98.88 97.75 97.75 98.88 

Average 68.88 68.06 67.08 67.08  83.98 81.41 80.10 78.07 

 
Table 5.7. DRs of C4.5 and Naive Bayes Using Full and Selected Feature Sets of  

KDD99 Data Sets 

C4.5  Naive Bayes 
Data Set 

Full Set Ours CFS FCBF  Full Set Ours CFS FCBF
Normal-DoS 99.97 99.97 99.86 99.31  99.12 99.16 99.37 99.19 

Normal-Probe 98.51 97.78 95.52 94.91  98.27 96.54 62.53 45.31 
Normal-U2R 48.08 48.08 0 7.69  82.69 69.23 0 7.69 
Normal-R2L 93.52 97.69 0 27.44  99.11 93.25 0 33.84 

Average 85.02 85.88 48.85 57.34  94.80 89.55 40.48 46.51 

 
Table 5.8. FPRs of C4.5 and Naive Bayes Using Full and Selected Feature Sets of 

KDD99 Data Sets 

C4.5  Naive Bayes 
Data Set 

Full Set Ours CFS FCBF  Full Set Ours CFS FCBF
Normal-DoS 0.04 0.03 2.19 7.58  0.01 0.01 2.76 7.77 

Normal-Probe 0.02 0.38 0.36 0.36  1.29 0.87 0.15 0.10 
Normal-U2R 0 0 0 0  0.63 0.50 0 0 
Normal-R2L 0.01 0.01 0 0.02  1.31 0.49 0 0.08 

Average 0.02 0.11 0.64 1.99  0.81 0.47 0.73 1.99 

 

 



 

71 

Table 5.9. SU Measure of Feature (F) to Class (C) of KDD99 Data Set 
Normal-DoS  Normal-Probe  Normal-U2R  Normal-R2L 

Feature SU(F; C)  Feature SU(F; C)  Feature SU(F; C)  Feature SU(F; C)
12 0.5939  29 0.2427  10 0.0552  10 0.2000 
3 0.4638  27 0.2263  16 0.0131  22 0.1919 
6 0.4578  25 0.2243  1 0.0037  3 0.0484 

37 0.3639  4 0.2223  3 0.0033  39 0.0184 
5 0.3423  30 0.1941  33 0.0011  38 0.0171 

32 0.3352  28 0.1460  25 0.0010  33 0.0161 
2 0.3284  38 0.1374  41 0.0009  4 0.0154 

36 0.3126  40 0.1365  29 0.0008  5 0.0143 
23 0.2698  41 0.1248  40 0.0007  1 0.0129 
31 0.2418  12 0.1232  30 0.0006  40 0.0125 
24 0.1699  3 0.1071  36 0.0006  37 0.0114 
35 0.1344  35 0.0875  32 0.0005  36 0.0111 
1 0.1211  2 0.0695  4 0.0005  6 0.0100 

34 0.1158  37 0.0549  5 0.0005  2 0.0086 
33 0.1104  26 0.0493  37 0.0004  23 0.0063 
39 0.1100  34 0.0466  6 0.0004  24 0.0063 
38 0.1028  23 0.0417  27 0.0004  35 0.0061 
26 0.0898  5 0.0408  24 0.0003  32 0.0050 
25 0.0893  33 0.0389  35 0.0003  12 0.0045 
30 0.0891  39 0.0350  31 0.0003  31 0.0045 
4 0.0743  36 0.0336  23 0.0002  41 0.0038 

29 0.0670  6 0.0304  34 0.0002  34 0.0038 
41 0.0397  32 0.0173  39 0.0002  30 0.0017 
40 0.0119  31 0.0158  38 0.0002  29 0.0016 
13 0.0022  24 0.0124  2 0.0002  26 0.0016 
28 0.0014  1 0.0065  26 0.0002  25 0.0007 
10 0  16 0.0023  12 0.0001  28 0.0004 
27 0  7 0  28 0  27 0.0001 
7 0  8 0  7 0  7 0 
8 0  9 0  8 0  8 0 
9 0  10 0  9 0  9 0 

11 0  11 0  11 0  11 0 
14 0  13 0  13 0  13 0 
15 0  14 0  14 0  14 0 
16 0  15 0  15 0  15 0 
17 0  17 0  17 0  16 0 
18 0  18 0  18 0  17 0 
19 0  19 0  19 0  18 0 
20 0  20 0  20 0  19 0 
21 0  21 0  21 0  20 0 
22 0  22 0  22 0  21 0 



 

72 

Table 5.10. SU Measure of Feature to Feature of KDD99 Data Set 



 

73 

CHAPTER VI 

EVALUATION OF FUZZY BELIEF INTRUSION DETECTION 

 

In this chapter, we first test the feasibility of proposed fuzzy belief k-NN classifier in 

intrusion detection task, and compare its result with those of three other k-NN based 

classifiers: k-NN classifier [18], fuzzy k-NN classifier [79], and evidence-theoretic k-NN 

classifier [80]. Then we apply the experimental results of Chapter V to all four classifiers 

for observing the dissimilarities between applying full feature set and selected feature 

subsets.   

6.1 Experimental Methodology 

A. Data Preprocessing 

Duplicated connections were removed from the original training and testing data sets.  

The new training set has 145,585 connections that are distributed as 87,831 normal 

connections, 54,572 DoS attacks, 2,131 Probe attacks, 52 U2R attacks, and 999 R2L 

attacks. The new testing set has 51,041 connections that are distributed as 47,913 normal 

connections, 23,568 DoS attacks, 2,682 Probe attacks, 215 U2R attacks, and 2,913 R2L 

attacks. In each connection, features represented by symbolic values and class labels are 

replaced by numeric values for the use of classifiers. For example, the values of icmp, 

tcp, and udp of feature protocol_type are replaced by values 1, 2, and 3, respectively. 

Class labels for normal connections, U2R attacks and R2L attacks are substituted by 



 

74 

values 1, 2, and 3, respectively. In addition, values of each feature are normalized 

between 0 and 1 in order to offer equal importance among features. 

B. Experimental Methodology 

In order to evaluate the detection performance of the proposed fuzzy belief k-NN 

classifier, three pattern classification algorithms are selected to compare with. One is k-

NN classifier and the other two are fuzzy k-NN classifier and evidence-theoretic k-NN 

classifier that built on the base of k-NN rule. 

The k-NN classifier is simple but effective in many pattern classification applications. 

For an input to be classified, k nearest training patterns are obtained based on the 

Euclidean distance measurement between the input and every training pattern. The input 

is then simply assigned to the class by majority voting, i.e., the input is classified to the 

most frequent class label among the k nearest training patterns. However, a major 

drawback of k-NN algorithm is that the precision of classification may decrease if all 

selected k nearest training patterns are equally important without considering the 

differences of distances [80]. To eliminate this drawback, fuzzy k-NN classifier assigns 

multiple membership grades to classes rather than a single class. By using the distance 

differences from the k nearest training patterns, the degrees of membership grades to 

classes are determined. As the evidence-theoretic k-NN classifier, it incorporates 

Dempster-Shafer theory to treat the k nearest training patterns of an input pattern as 

pieces of evidence to support certain hypotheses about the classes. By deriving evidences 

from both class labels and distances between input and k nearest training pattern pairs, 

these evidences are then combined into final beliefs with respect to each subset of the set 

of classes. 



 

75 

6.2 Experimental Results 

Generally, a large amount of traffic records are essential for a classifier to be trained 

when using anomaly detection and the consequence is that a long computational time is 

required to reach a final decision. But unfortunately, the intrusion detection system has to 

perform its analysis as quick as possible, otherwise serious damages could happen and 

possibly cause millions of dollars loss. Therefore, only a small amount of connections are 

included in our experiments for training the classifiers. It not only speeds up the 

classification process but also simulates the uncertainty caused by lack of network traffic 

information.  

The experiments are performed on the binary (normal/attack) classification. To minimize 

the inaccuracy and variation factor of experiment results, 10 trials are performed in every 

U2R and R2L detection task. In each trial, certain percentages of normal and attack 

connections are randomly selected from the training and testing sets. For detecting U2R 

attacks, the training and testing sets comprise 930 (878 normal and 52 U2R) and 694 (479 

normal and 215 U2R) connections, respectively. For detecting R2L attacks, the training 

and testing sets include 977 (878 normal and 99 R2L) and 770 (479 normal and 291 R2L) 

connections, respectively.  

To detect the attacks, training and testing are performed in each trial. In the training 

phase, the four classifier, k-NN, fuzzy k-NN, evidence-theoretic k-NN, and fuzzy belief 

k-NN, are constructed. The testing data are then fed into the trained classifiers to identify 

intrusions in the testing phase. 



 

76 

We evaluate the performances of the four classifiers using distinct values of k that ranges 

from 1 to 10. Tables 6.1 and 6.2 summarize the maximum, minimum, and averaged rates 

of U2R and R2L attacks, respectively. Figures 6.1 and 6.2 show FPRs, DRs, CRs, and 

Receiver Operating Characteristics (ROC) graphs of U2R and R2L attacks, respectively. 

A ROC graph is a plot with FPR on the X axis and DR on the Y axis. Since these four 

classifiers are discrete classifiers, each of them produces a single point representing the 

pair of FPR and DR in the ROC space.  

The results show that DRs of our classifier are much higher than those of other three 

classifiers in detecting both U2R and R2L attacks. With our proposed classifier, a high 

averaged DR of 98.16% is achieved when detecting U2R attacks. By using only one 

nearest training connections for each testing connection, 98.33% DR has been reached. 

On the contrary, the other three classifiers can only reach around 15% DRs no matter 

fewer or more nearest training connections are applied. While detecting R2L attacks, the 

averaged DR of 67.88% has been achieved. However the other three classifiers provide 

only around 20% DRs. For the other three k-NN based classifiers, evidence-theoretic k-

NN classifier has a slightly better performance over k-NN and fuzzy k-NN classifiers. It 

indicates that Dempster-Shafer theory of evidence-theoretic k-NN classifier provides a 

degree of influence while detecting attacks in network traffic. 

For identifying the normal connections in our classifier, the averaged FPRs are 13.71% 

and 11.58% for U2R and R2L attacks, respectively. Three classifiers have very low FPRs 

because they treat most network traffic data as normal connections no matter they are 

normal or malicious activities. The above observation can be explained from the ROC 

graphs. 



 

77 

Table 6.1. FPRs and DRs Performed on Four Classifiers of Normal-U2R Data Sets  
with k Ranging From 1 to 10 

   FPR    DR  
  Max Min Avg.  Max Min Avg. 

k-NN  0.56 0.04 0.20  20.14 8.37 12.87
Fuzzy k-NN  0.56 0.15 0.27  20.14 11.67 15.49

Evidence-Theoretic k-NN  0.56 0.08 0.31  21.81 13.26 16.87
Fuzzy Belief k-NN  14.99 12.73 13.71  98.47 97.77 98.16

 
 
 
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10

k

FP
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

k

D
R

 
(a) False Positive Rates                                         (b) Detection Rates  

 

0.7

0.75

0.8

0.85

0.9

0.95

1 2 3 4 5 6 7 8 9 10

k

C
R

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2

FPR

D
R

 
(c) Overall Classification Rates                                       (d) ROC Graphs  

 
 

Figure 6.1. ROC Graphs of Four Classifiers Performed on Normal-U2R Data Set 
x: k-NN, ∆: Fuzzy k-NN, �: Evidence-Theoretic k-NN, •: Fuzzy Belief k-NN 



 

78 

Table 6.2. FPRs and DRs Performed on Four Classifiers of Normal-R2L Data Sets  
with k Ranging From 1 to 10 

   FPR    DR  
  Max Min Avg.  Max Min Avg. 

k-NN  0.56 0.15 0.36  23.51 14.26 18.91
Fuzzy k-NN  0.56 0.19 0.33  26.29 15.26 20.92

Evidence-Theoretic k-NN  0.61 0.25 0.39  25.67 16.22 21.50
Fuzzy Belief k-NN  12.17 10.92 11.58  71.17 64.23 67.88

 
 
 
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10

k

FP
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

k

D
R

 
(a) False Positive Rates                                         (b) Detection Rates  

 

0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

0.81

0.83

0.85

1 2 3 4 5 6 7 8 9 10

k

C
R

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

FPR

D
R

 
(c) Overall Classification Rates                                       (d) ROC Graphs  

 
 

Figure 6.2. ROC Graphs of Four Classifiers Performed on Normal-R2L Data Set 
x: k-NN, ∆: Fuzzy k-NN, �: Evidence-Theoretic k-NN, •: Fuzzy Belief k-NN 



 

79 

 In a ROC graph, the point (0, 1) represents the classifier performs a perfect 

classification; it classifies all positive cases and negative cases correctly. On the contrary, 

the point (1, 0) represents the classifier in the worst case, i.e., it classifies all cases 

incorrectly. The lower left point (0, 0) represents the classifier never reports any false 

positive errors, while the upper right point (1, 1) has an opposite policy that the classifier 

predicts all cases to be positive. From both ROC graphs of U2R and R2L attacks, we can 

see points of k-NN, fuzzy k-NN, and evidence-theoretic k-NN classifiers are all gathering 

near point (0, 0), which indicate all of them seldom report false positive errors and 

correctly predict a few of attacks. However, all the points of fuzzy believe k-NN classifier 

are close to point (0, 1), which have higher DRs and have lower FPRs as well.  

In summary, our classifier has a better performance compared with the other three 

classifiers. By including only a small portion of connections from the training set of 

KDD99, we achieve high DRs of identification of both U2R and R2L attacks.  

Once we finish the feasibility test of fuzzy belief k-NN classifier, the results obtained in 

Chapter V can thus be provided to classifiers to identify traffic data in a shorter period of 

time. Tables 6.3 and 6.4 summarize the averaged FPRs and the averaged DRs performed 

on four classifiers with k ranging from 1 to 10 of Normal-U2R and Normal-R2L data sets, 

respectively.  

In the comparison of four classifiers performed in different feature sets, k-NN, fuzzy k-

NN, and evidence-theoretic k-NN classifiers have similar detection performances using 

either full feature set or one of selected feature subsets, which all the three k-NN based 

classifiers have poor detection performances. The maximum DRs in rows 1 to 3 of Tables 

6.3 and 6.4 are 19.64% and 26.33% for Normal-U2R and Normal-R2L data sets, 



 

80 

respectively. With our proposed fuzzy belief k-NN classifier, the results of using three 

feature selection algorithms differ a lot, which our selected features provide much 

accurate DRs than those from CFS and FCBF. In the last row, the DRs of our approach 

reach 83.86% and 69.82% for Normal-U2R and Normal-R2L data sets, respectively. Both 

CFS and FCBF achieve low FPRs in the data sets because they treat most of the network 

traffic data as normal usages no matter the traffic are normal or malicious activities. For a 

better demonstration, Figure 6.3 shows the ROC graphs of four classifiers performed on 

Normal-U2R and Normal-R2L data sets using our selected feature subset with k ranging 

from 1 to 10. It shows the points of k-NN, fuzzy k-NN, and evidence-theoretic k-NN 

classifiers are all gathering near point (0, 0), which indicates that none of them can 

correctly identify attacks. However, all the points of fuzzy believe k-NN classifier are 

much closer to point (0, 1), which have higher DRs and have lower FPRs as well.  

Table 6.3. Averaged Rates Performed on Four Classifiers of Normal-U2R Data Set  
with k Ranging From 1 to 10 

 Full Set  Ours  CFS  FCBF 
Classifier 

 FPR DR  FPR DR  FPR DR  FPR DR 
k-NN  0.20 12.87  2.55 18.03  0.20 15.07  0.21 15.21 

Fuzzy k-NN  0.27 15.49  2.50 18.47  0.19 14.52  0.20 15.27 
Evidence-Theoretic k-NN  0.31 16.87  2.65 19.64  0.23 16.99  0.26 18.48 

Fuzzy Belief k-NN  13.71 98.16  9.54 83.86  0.25 11.72  0.16 7.32 
 

Table 6.4. Averaged Rates Performed on Four Classifiers of Normal-R2L Data Set  
with k Ranging From 1 to 10 

 Full Set  Ours  CFS  FCBF 
Classifier 

 FPR DR  FPR DR  FPR DR  FPR DR 
k-NN  0.36 18.91  3.68 20.41  0.26 14.42  3.05 19.31 

Fuzzy k-NN  0.33 20.92  19.30 23.58  0.26 15.30  3.05 19.68 
Evidence-Theoretic k-NN  0.39 21.50  8.76 26.33  0.27 15.84  4.50 26.23 

Fuzzy Belief k-NN  11.58 67.88  9.86 69.82  0.18 7.78  0.19 7.98 
 



 

81 

In Figure 6.4, we show the result of fuzzy belief k-NN classifier using full feature set and 

three feature subsets selected by our developed feature selection algorithm, CFS, and 

FCBF. For both data sets using features from CFS and FCBF, the diagrams show that all 

of the points are in the vicinity of (0, 0), which represents all the traffic are classified as 

normal activities and only a very few amount of attacks are correctly detected. In the left 

diagram, the DR with full feature set is higher than that of using our feature subset, 

however our selected features provide a better FPR result than that of using full feature 

set. In the right diagram, we notice that the points with our selected features are closer to 

point (0, 1) than those of using full feature set, which show that our selected features 

achieve better detection outcomes in both DR and FPR than those of using full feature 

set. In addition to the consideration of detection performance, we furthermore consider 

the detection processing time because an intrusion detection system has to perform its 

analysis as fast as possible before the attacks make any damage to the protected system. 

Consequently, we compare the computation time of fuzzy belief k-NN classifier using 

full feature set and our selected feature subset. Figure 6.5 illustrates the detection time on 

each testing connection of both data sets. The results show that we successfully reduce 

the computation time if our selected feature subset is used. Our approach only take about 

25% of the time with full feature set in Normal-U2R and Normal-R2L data sets. The 

related works have been published in [81]-[84]. 



 

82 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12

FPR

D
R

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

FPR

D
R

 
Figure 6.3. The Performance of Four Classifiers Using Normal-U2R (left) and  

Normal-R2L (right) Data Sets  
x: k-NN, ∆: Fuzzy k-NN, �: Evidence-Theoretic k-NN, •: Fuzzy Belief k-NN 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2

FPR

D
R

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

FPR

D
R

 
Figure 6.4. The Performance of Fuzzy Belief k-NN Classifier Using Normal-U2R (left)  

and Normal-R2L (right) Data Sets  
x: Full Feature Set, ∆: CFS, �: FCBF, •: Ours 

 

0 1 2 3 4 5 6 7

(c)

(b)

(a)

Time (ms)
 

Figure 6.5. Detection Time of One Connection Using Fuzzy Belief k-NN Classifier 
(a) With all 41 features 
(b) With 5 selected features in Normal-U2R set  
(c) With 7 selected features in Normal-R2L set  



 

83 

CHAPTER VII 

ENSEMBLE INTRUSION DETECTION 

 

An ensemble of classifiers is a set of base classifiers, whose classification decisions are 

combined together in some way to achieve a better performance than that of individual 

base classifier. In the intrusion detection task, we apply different feature subsets to base 

classifiers. We call it as ensemble feature selection. Also, we apply data mining technique 

to promote the FPR.  

7.1 Ensemble Intrusion Detection Model 

While designing an intrusion detection system, detection accuracy and speed are two 

important considerations. The system needs to perform a proper detection task with low 

FPR on normal computer usages and high DR on malicious activities. Also, this system 

has to perform its analysis as soon as possible before the attacks make any damage to the 

protected system. In the past, approaches to intrusion detection based on ensemble 

techniques have been investigated with the use of different feature subsets [60] or soft 

computing techniques [61] in every individual classifier. However, they only focused on 

improving DR in known and unknown intrusions but did not consider reducing the 

number of false alarms. Therefore, we propose an ensemble model that includes an 

ensemble feature selecting classifier and a data mining classifier to act as anomaly 

detection and misuse detection to improve the DR and FPR, respectively. The former 

consists of a set of base feature selecting classifiers and each uses partial feature space. 



 

84 

The latter applies data mining technique to look for patterns of normal activities. We 

believe that the overall performance of this ensemble architecture is better than that of 

each individual classifier. Also, DR, FPR, and detection speed are more accurate and 

faster than those of using full feature set. Figure 7.1 depicts our design. 

A. Ensemble Feature Selection Classifier 

In an ensemble classifier design, it is important to understand that individual base 

classifiers should be independent of each other. If the base classifiers provide similar 

outputs, then no significant improvement of the ensemble result can be obtained through 

the combination process. It is critical to notice the diversity among base classifiers in 

order to get effective and correct classification result. Hence, we decide to use ensemble 

feature selection approach to be our feature selecting classifier structure. By choosing 

dissimilar feature subsets for various base feature selecting classifiers, the diversity 

among these classifiers is expected to be maximized to achieve a better result. In our 

Ensemble Feature Selecting Classifier 

Figure 7.1. Ensemble Intrusion Detection Model  

Result 

C
om

biner 

Selected Features Classifier 

Content Features Classifier 

Basic Features Classifier 

Traffic Features Classifier 

Data Mining  
Classifier 

Network 
Traffic 



 

85 

design, we select four distinct subsets of features to be the foundation of the base 

classifiers. One subset consists of features selected by our feature selection algorithm. 

The other three are the partitions of the original 41 features that are 9 basic features (1 to 

9), 13 content features (10 to 22), and 19 traffic features (23 to 41).  

Besides the notability of multiplicity among the base classifiers, the right choice of a 

combination method is another important issue in creating a successful ensemble result. 

As described in Section 2.6, research has shown that there are many methods [59] 

available for combining the abstract form outputs of the base classifiers into an ensemble 

result. However, some of them in fact are not suitable for our ensemble intrusion 

detection design. For example, the behavior knowledge space method requires enough 

representative data sets to estimate high order distribution of classifiers’ outputs. 

Otherwise overfitting is likely to occur, and the generalization error quickly increases 

[85]. In our designed intrusion detection model, we only use a very small amount of 

traffic data that is insufficient to offer behavior knowledge space method a representative 

number of observations. While the majority voting ensemble approach is used for 

integration, Hansen and Salamon [62] had proved that the ensemble only works if the CR 

of individual base classifier is higher than 50% accurate and independent of each other. 

However, we cannot guarantee that all the classification accuracies of our designed four 

base classifiers would satisfy the above requirement. Accordingly, naive bayes ensemble 

is selected to combine the decisions of base classifiers together. Based on its probabilistic 

approach, the evidences of base classifiers are computed and the most appropriate class 

can then be chosen. Its operation is explained as follows. 



 

86 

Let the possible classes of a system be  Llll p ∈...,,, 21  and these p classes are mutually 

exclusive and exhaustive, i.e., the decision result of the system belongs to only one of the 

classes. The set }...,,,{ 21 mdddD =  denotes a set of m base feature selecting classifiers 

and each of them is built from a feature subset of the feature space }...,,,{ 21 nfffF = . 

The output of each base classifier o is an abstract form class label. Then the objective is 

to find the probability over a class member l conditional on the outcomes of m classifiers, 

h1 through hm.  

∏
=

=
m

j
iijim loPlhhP

1
1 )|()|...,,(            (7.1) 

∑
=

=
p

i
iimm lPlhhPhhP

1
11 )()|...,,()...,,(           (7.2) 

Here, )|...,,( 1 im lhhP  is the conditional probability of mhh ...,,1  given li and P(oij|li) is the 

conditional probability of oij given li. The prior probability of each class is P(li) 

and )...,,( 1 mhhP  is the probability of mhh ...,,1 . 

Based on the Bayes theorem, we have 

)...,,(
)()|...,,()...,,|(

1

1
1

m

iim
mi hhP

lPlhhPhhlP =          (7.3) 

where i is the number of possible classes ranging from 1 to p. This posterior probability 

collects all evidences from base classifiers and integrates them together. Finally, the 

naive bayes classifier infers the state of system by choosing a class that achieves the 

highest posterior probability. 

To illustrate how naive bayes ensemble method works, we assume there are 4 intrusion 

detection base feature selecting classifiers h1, h2, h3, and h4 that are built by features 



 

87 

selected by our feature selection algorithm, 9 basic features, 13 content features, and 19 

traffic features, respectively. The intrusion detection task is a binary assignment, i.e., 

each base classifier assigns the network traffic data into either normal activity l1 or attack 

l2.  

Suppose we have tested an amount of network traffic data and the distributions of the 

normal activities and attacks of the testing set are 60% and 40%, respectively. The FPRs 

and DRs of four base feature selecting classifiers are shown in Table 7.1. Here the goal is 

to classify a future network traffic data x into normal activity if 

),,,|(),,,|( 4321243211 hhhhlPhhhhlP > , else into attack category. Now assume a traffic 

data passes through these 4 base classifiers. The first, second and fourth classifiers 

identify it as a normal usage, however the third one recognizes it as an attack. Then, 

1944.0)1.01(3.0)1.01()2.01()|()|,,,(
4

1
1114321 =−⋅⋅−⋅−==∏

=j
j loPlhhhhP     (7.4) 

006.0)9.01(5.0)6.01()7.01()|()|,,,(
4

1
2224321 =−⋅⋅−⋅−==∏

=j
j loPlhhhhP     (7.5) 

11904.04.0006.06.01944.0

)()|,,,(),,,(
2

1
43214321

=⋅+⋅=

= ∑
=i

ii lPlhhhhPhhhhP         (7.6) 

Table 7.1. Intrusion Detection Accuracies of Four Base Feature Selecting Classifiers 

 Classifier 1 Classifier 2 Classifier 3 Classifier 4 
FPR 20% 10% 30% 10% 
DR 70% 60% 50% 90% 

 



 

88 

Hence, the joint posterior probabilities of ),,,|( 43211 hhhhlP  and ),,,|( 43212 hhhhlP  

based on the above calculation and the prior probabilities of normal activities and attacks 

are 

9798.0
11904.0

6.01944.0
),,,(

)()|,,,(),,,|(
4321

114321
43211 =

⋅
==

hhhhP
lPlhhhhPhhhhlP      (7.7) 

0202.0
11904.0

4.0006.0
),,,(

)()|,,,(),,,|(
4321

224321
43212 =

⋅
==

hhhhP
lPlhhhhPhhhhlP      (7.8) 

We have 97.98% degree of confidence that the incoming traffic data x belongs to class l1 

which is greater than that of class l2. We therefore conclude x is a normal computer user 

activity. 

B. Data Mining Classifier 

Having finished the process of ensemble classification, another important concern is the 

problem of false alarm rate. Due to the entire scope of both normal and attack behavior is 

covered during the training procedure, much study has shown that one of the most 

common problems of anomaly intrusion detection is too many false alarms might happen 

likely resulted from normal behavior. Hence, we suggest a two levels model that 

combines parallel and serial ensemble topologies together for getting a better quality of 

detection. In the second level data mining classifier, we utilize data mining technique to 

construct a filter to eliminate false alarms.  

Data mining technique provides strategy to find useful information from large amount of 

data and induce inferences from those information. Here, we use C4.5 decision trees 

algorithm to extract patterns from training data. The goal is to find rules that represent 



 

89 

normal behavior of network traffic stream for our intrusion detection task. In this way, we 

can write decision rules as follows. 

Rule: IF conditions of features THEN the traffic is a normal behavior 

In each rule, the antecedent part consists of a number of conditions that are satisfied by 

the features. The consequent action of that rule is defined as the analyzed network traffic 

data is a normal behavior. 

The data mining classifier compares the result of first level ensemble classifier with those 

well defined normal patterns, and the normal computer user activity to the system can be 

identified if the data is matched with one of these defined patterns. The data mining 

classifier has a higher priority to determine a traffic data is whether a normal behavior or 

not if it has a disagreement with the result of ensemble classifier. 

7.2 Experimental Results  

 Continuing on the experiments of Chapters V and VI, we perform experiments over the 

KDD99 data set. As shown in the previous section, we propose a two levels model, 

ensemble feature selecting classifier and data mining classifier, to classify network traffic 

into normal and malicious activities. In the experiments, we first implement the data 

mining classifier which uses C4.5 decision trees algorithm to extract rules from the 

training set. 

Next, we implement the ensemble feature selecting classifier, which is constructed by 

four individual base classifiers and each models the system behavior from a single aspect 

of view point. By varying the feature subsets and maximizing the disagreement among 

four base classifiers, we use four distinct feature representations from the original feature 



 

90 

space, they are our feature selection result, the 9 basic features, the 13 content features, 

and the 19 traffic features. For each base classifier, fuzzy belief k-NN algorithm is used. 

Using the same experimental setup in Section 6.2, the experiments are performed on the 

binary (normal/attack) classification and 10 trials are performed for each k nearest 

neighbor experiment. For detecting U2R attacks, the training and testing sets include 930 

(878 normal and 52 U2R) and 694 (479 normal and 215 U2R) connections, respectively. 

For detecting R2L attacks, the training and testing sets include 977 (878 normal and 99 

R2L) and 770 (479 normal and 291 R2L) connections, respectively. The results of our 

experiments are summarized in Tables 7.2 and 7.3 for Normal-U2R and Normal-R2L data 

sets, respectively. For each of them, the tables show the averaged FPR, DR, and CR on 

the test sets of four base classifiers trained using full feature set and four diverse feature 

subsets. The averaged accuracies are reported with k ranging from 1 to 10 where the 

classification algorithm is run 10 times for each k. 

Table 7.2. DRs of Classifiers Performed on Normal-U2R Data Set 

Full Set Ours Basic  Content  Traffic 
Classifier 

FPR DR FPR DR FPR DR FPR DR FPR DR 

k-NN 0.20 12.87 2.55 18.03 6.33 19.98 0.09 18.57 1.06 15.12 

Fuzzy k-NN 0.27 15.49 2.50 18.47 5.94 26.40 0.09 26.40 0.99 15.85 

Evidence-Theoretic k-NN 0.31 16.87 2.65 19.64 7.16 28.74 0.12 20.24 1.13 15.80 

Fuzzy Belief k-NN 13.71 98.16 9.54 83.86 9.48 59.01 11.38 74.42 39.74 54.26 

 

Table 7.3. DRs of Classifiers Performed on Normal-R2L Data Set 

Full Set Ours Basic  Content  Traffic 
Classifier 

FPR DR FPR DR FPR DR FPR DR FPR DR 

k-NN 0.36 18.91 3.68 20.41 8.11 17.14 0.24 22.62 1.43 28.71 

Fuzzy k-NN 0.33 20.92 19.30 23.58 21.48 24.39 0.25 24.39 1.41 28.80 

Evidence-Theoretic k-NN 0.39 21.50 8.76 26.33 10.73 20.40 0.27 26.65 1.52 29.60 

Fuzzy Belief k-NN 11.58 67.88 9.86 69.82 9.70 60.66 11.43 53.07 19.65 51.66 
 



 

91 

The results show that three classifiers, k-NN, fuzzy k-NN and evidence-theoretic k-NN 

classifiers, performed in different feature sets have similar detection performances using 

either full feature set or one of feature subsets, which all of them have poor detection 

performances. In rows 1 to 3 of Tables 7.2 and 7.3, the maximum DRs are 28.74% and 

29.60% for Normal-U2R and Normal-R2L data sets, respectively. These three classifiers 

have low FPRs because they treat most network traffic data as normal connections no 

matter these connections are normal or malicious activities. With our proposed fuzzy 

belief k-NN classifier, we achieve higher averaged accuracies in comparison with the 

outcomes of the other three k-NN based classifiers. Especially in the Normal-R2L data 

set, we get the highest classification accuracy by using 7 out of 41 features, which is 

better than that of using full feature set. 

Having built individual base feature selecting base classifiers, we then proceed to 

generate the ensemble one by fusing the outputs of base classifiers together. In addition, 

we utilize data mining technique to look for patterns of normal activities in training set 

and then to produce a set of ten decision rules which cover 95% of normal behavior. With 

the combination of ensemble feature selecting classifier and data mining classifier, the 

final intrusion detection model is thus obtained. Figures 7.2 and 7.3 show the 

comparisons between fuzzy belief k-NN classifier using full feature set and ensemble 

intrusion detection model. Table 7.4 shows the decision rules.  

With our proposed ensemble model, we achieve 95.45% and 87.33% averaged CRs for 

Normal-U2R and Normal-R2L data sets, respectively, which are higher than 89.97% and 

80.66% of the single fuzzy belief k-NN classifier using full feature set. As shown in the 

ROC graphs, all the points of ensemble model are much closer to point (0, 1) than those 



 

92 

of classifier using full feature set, which indicate the ensemble model not only has a high 

DR but also has a low FPR. To show the performance of ensemble model for specific 

intrusions, Table 7.5 describes the detailed DRs. The result shows that our model is 

capable of detecting most of the intrusions, especially 7 intrusions (loadmodule, perl, 

sqlattack, imap, worm, xlock, and xsnoop) are detected perfectly. In addition, we test the 

detection time on each testing connection and illustrate the result in Figure 7.4. The 

results show that we successfully reduce the detection time which our ensemble model 

0.875

0.9

0.925

0.95

0.975

1 2 3 4 5 6 7 8 9 10

k

C
R

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.03 0.06 0.09 0.12 0.15

FPR

D
R

 
Figure 7.2. CRs (left) and ROC Graph (right) of Normal-U2R Data Set with  

k Ranging From 1 to 10 
x: Fuzzy Belief k-NN Classifier Using Full Feature Set 

•: Ensemble Intrusion Detection Model 
 

0.775

0.8

0.825

0.85

0.875

0.9

1 2 3 4 5 6 7 8 9 10

k

C
R

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.03 0.06 0.09 0.12 0.15

FPR

D
R

 
Figure 7.3. CRs (left) and ROC Graph (right) of Normal-R2L Data Set with  

k Ranging From 1 to 10 
x: Fuzzy Belief k-NN Classifier Using Full Feature Set 

•: Ensemble Intrusion Detection Model 
 



 

93 

only needs 0.44 and 0.41 of that of classifier using full feature set in Normal-U2R and 

Normal-R2L data sets, respectively. The results have been published in [86]. 

Table 7.4. Decision Rules 

Rule 1 Rule 2 Rule 3 
IF wrong_fragment < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = tcp AND 
    service = http 
THEN normal connection 

IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = tcp AND 
    service  = smtp  
THEN normal connection 

IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate >= 1 AND 
    hot < 1 AND 
    service  = 20 AND 
    diff_srv_rate  < 0.01 AND 
    flag = REJ 
THEN normal connection 

Rule 4 Rule 5 Rule 6 
IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = udp AND 
    dst_host_rerror_rate < 0.01 AND 
    diff_srv_rate  < 0.01 AND 
    src_bytes >= 30 AND 
    src_bytes < 158  
THEN normal connection 

IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = udp AND 
    dst_host_rerror_rate < 0.01 AND 
    diff_srv_rate  >= 0.5  
THEN normal connection 

IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = tcp AND 
    service  = 17 AND 
    dst_bytes < 29 AND 
    duration < 1 AND 
    src_bytes >= 5 AND 
    src_bytes < 30  
THEN normal connection 

Rule 7 Rule 8 Rule 9 
IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = tcp AND 
    service  = ftp_data AND 
    dst_bytes < 29 AND 
    duration < 1 AND 
    src_bytes >= 32 AND 
    src_bytes < 246  
THEN normal connection 

IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = tcp AND 
    service  = ftp_data AND 
    dst_bytes < 29 AND 
    duration < 1 AND 
    src_bytes >= 248 AND 
    src_bytes < 334  
THEN normal connection 

IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = tcp AND 
    service  = ftp_data AND 
    dst_bytes < 29 AND 
    duration < 1 AND 
    src_bytes >= 335 AND 
    src_bytes < 644  
THEN normal connection 

Rule 10   
IF wrong_fragment  < 3 AND 
    num_compromised < 1 AND  
    srv_serror_rate  < 0.06 AND 
    rerror_rate < 0.06 AND 
    flag = SF AND 
    hot < 1 AND 
    protocol_type = tcp AND 
    service  = ftp_data AND 
    dst_bytes < 29 AND 
    duration < 1 AND 
    src_bytes >= 726  
THEN normal connection 

  



 

94 

Table 7.5. Detection Performances of Ensemble Model 

Normal-U2R  Normal-R2L  
FPR 3.13 FPR 3.15 
DR 92.30 DR 71.66 

buffer_overflow
loadmodule

perl 
rootkit 

httptunnel 
ps

sqlattack 
xterm

97.00
100.00
100.00
50.77
98.92
77.19

100.00
67.08

ftp_write 
guess_passwd

imap
multihop 

phf
warezmaster

named
sendmail

snmpgetattack
snmpguess

worm
xlock 

xsnoop

93.75 
97.96 

100.00 
92.96 
0.00 

74.61 
77.40 
57.58 
0.00 
1.15 

100.00 
100.00 
100.00 

 

0 1 2 3 4 5 6 7

(c)

(b)

(a)

Time (ms)
 

Figure 7.4. Detection Time on One Connection  
(a) Full Feature Set 
(b) Ensemble Model in Normal-U2R set  
(c) Ensemble Model in Normal-R2L set  

 



 

95 

CHAPTER VIII 

CONCLUSIONS 

 

This research presents a solution to the problem of quickly and accurately detecting 

computer intrusions from network traffic data. The goal of our work has been set to 

detect attacks that attackers use illegal approaches to gain access to the target host and 

thus further to exploit the system’s vulnerabilities. The proposed solution includes three 

major parts. They are feature selection algorithm, fuzzy belief machine learning 

algorithm, and ensemble intrusion detection model.  

8.1 Feature Selection Algorithm  

 The first question in intrusion detection design is what features of a network traffic 

should be used to build the model. We start with our research on studying this problem 

and developing a correlation-based feature selection algorithm to select a set of most 

significant features that reserve vital information of traffic data. For evaluating the 

performance of our algorithm, six small and four large databases are used. We observe 

that the classification accuracy is improved by using our selected features from the 

original feature set, e.g., the CR of the abalone set performing on C4.5 algorithm with 2 

out of 8 features, the DR of Normal-DoS set performing on Naive Bayes algorithm with 

12 out of 41 features, and the DR of Normal-R2L set performing on C4.5 algorithm with 

7 out of 41 features. We also observe that our algorithm has a superior performance 

compared with that of two participating correlation-based feature selection algorithms, 



 

96 

CFS and FCBF, in both small and large data sets. Especially in the Normal-U2R and 

Normal-R2L data sets, CFS can detect none of the attacks and FCBF can only detect 

around 7% and 30% of U2R and R2L attacks, respectively. On the other hand, the 

detection performance of our selected features is close to that of using full feature set. 

The result shows that our algorithm approach can be a practical feature selector to select 

informative features from data sets for classification tasks. 

8.2 Fuzzy Belief Machine Learning Algorithm  

We study the problems of uncertainty and ambiguity in audit network traffic data. The 

key idea is to imitate ambiguous of users’ activities by fuzzy clustering technique, and to 

simulate uncertainty caused by limited information by incorporating only a small amount 

of network traffic data for analysis. With the use of Dempster-Shafer theory, we identify 

future network traffic by fusing evidences found in clustering development. Also, we 

employ k-NN technique to speed up the detection process. The experimental result shows 

that our approach is capable of detecting U2R attacks with an averaged DR of 98.16% 

using the full feature space. While detecting R2L attacks, we achieve an averaged DR of 

67.88%. Compared with the past research results [6]-[12] having very low DRs, we 

successfully improve the detection on those two attacks that contain degrees of 

ambiguous information. However, we do have relatively high false alarm rates of 13.71% 

and 11.58% for U2R and R2L attacks, respectively. That is the stimulus that we 

incorporate data mining technique in the ensemble model, which we hope to further 

reduce the number of false alarms.  



 

97 

8.3 Ensemble Intrusion Detection Model  

Having finished the development of feature selection and fuzzy belief machine learning 

algorithms, we then integrate them together to check whether our selected feature set is 

feasible to be applied to our developed detection method or not. The experimental result 

shows a DR of 83.86% is achieved in detecting U2R attacks, which drops a lot compared 

with the rate of using full feature set. It indicates that five features selected from the 

training set are not sufficient to cover all the attacks information that appears in the 

testing set. On the other hand, we get a DR of 69.82% in detecting R2L attacks by using 

only seven features, which is higher than that of full feature set. Also, the false alarm 

rates are reduced to 9.54% and 9.86% for U2R and R2L attacks, respectively.  

For further improving the detection performance, we propose an ensemble intrusion 

detection model that consists of a set of feature selecting base fuzzy belief classifiers and 

a data mining classifier. The basic idea is using ensemble feature selection technique to 

promote the DR and data mining technique to reduce the number of false alarms. It is a 

combination of both anomaly detection and misuse detection. With our proposed 

ensemble model, we achieve 92.30% and 71.66% averaged DRs and 3.13% and 3.15% 

averaged false alarm rates in detecting U2R and R2L attacks, respectively. The false 

alarm rate is significant improved from around 10% to 3%. As for the CRs, the averaged 

rates are 95.45% and 87.33% for U2R and R2L attacks, respectively, which are higher 

than 89.97% and 80.66% if a single fuzzy belief machine learning algorithm with full 

feature set is used. This indicates that the detection performance is successfully improved 

through our proposed ensemble intrusion detection model. 



 

98 

8.4 Future Work  

Up to now, this dissertation has developed an intrusion detection system based on 

ensemble of multiple base classifiers. However, there are several topics that deserve to be 

future studied. 

• False alarms: In the design of an intrusion detection system, not only a high DR is 

necessary but also a low false alarms rate is required. Though it is not easy to control 

the false alarm rate because many unusual events sometimes are classified to hostile 

activities and most of these unusual events are actually normal behavior. In our 

research, we use data mining technique to extract decision rules from training set and 

achieve about 3% false alarms rate. We believe that this rate can be further reduced in 

the future if a more dedicated rule set can be built.  

• Respond to the intrusions: In our work we focus on developing a detection method 

which can efficiently and effectively differentiate intrusive activities from large 

volume of network events. We believe that the response to the intrusions is also 

equally important. Once an intrusion is happened, it is necessary to properly present 

the alarm in order that system administrator can make proper and prompt decision. In 

a word, to find a method to integrate the intrusion detection system with the intrusion 

response system deserves further research. 

• Feature selection: Feature selection plays an important role on both speed and 

accuracy of intrusion detection. It selects the most informative features that cover 

normal and intrusive activities by analyzing large quantity of network traffic data. In 

this dissertation we have developed a feature selection algorithm based on 



 

99 

symmetrical uncertainty measure to remove the worthless information from the 

original high dimensional database. However, we think there are still some issues that 

can be explored in order to get a better performance, e.g., relevant and redundant 

features analysis and discretization methods.  

• Multiple identification ability: The KDD99 data set includes four groups of attacks 

and each uses diverse skill to explore system’s vulnerabilities. In our work we use 

binary classification technique to identify a network event as either normality or 

abnormality. The future research will be directed to upgrade the system with multiple 

identification ability, i.e., the system will be able to classify a network traffic data into 

normal activity or one of four attacks.  

• Real time attack detection: We have made contributions in detecting both U2R and 

R2L attacks off-line in a publicly available intrusion detection database DARPA 

KDD99. However, the database we used is eight years old that is not enough to reflect 

the current status of Internet. In the future, the research can be expanded to the live 

Internet traffic based on our past achievement.  



 

100 

REFERENCES 

1. CERT Coordination Center, Software Engineering Institute, Carnegie Mellon 
University. URL: http://www.cert.org (Last browsed in December 2007) 

 
2. H. Debar, “An Introduction to Intrusion-Detection Systems,” Proceedings of 

Connect’2000, Doha, Qatar, April 2000. 
 
3. J. P. Anderson, Computer Security Threat Monitoring and Surveillance, Technical 

Report, James P. Anderson Co., Fort Washington, PA, April 1980. 
 
4. I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature Selection,” 

Journal of Machine Learning Research, Volume 3, pp. 1157-1182, 2003. 
 
5. K. Jones and R. S. Sielken, Computer System Intrusion Detection: A Survey, 

Technical Report, Computer University of Virginia, 2000. 
 
6. I. Levin, “KDD-99 Classifier Learning Contest LLSoft’s Results Overview,” ACM 

SIGKDD Explorations Newsletter, Volume 1, issue 2, pp. 67-75, January 2000.  
 
7. H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “On the Capability of an 

SOM Based Intrusion Detection System,” Proceedings of the International Joint 
Conference on Neural Networks, Volume 3, pp. 1808-1813, July 2003. 

 
8. M. Sabhnani and G. Serpen, “Application of Machine Learning Algorithms to KDD 

Intrusion Detection Dataset within Misuse Detection Context,” Proceedings of the 
International Conference on Machine Learning, Models, Technologies and 
Applications, Las Vegas, NV, pp. 209-215, June 2003. 

 
9. M. Sabhnani and G. Serpen, “Why Machine Learning Algorithms Fail in Misuse 

Detection on KDD Intrusion Detection Data Set,” Intelligent Data Analysis, Volume 
8, Number 4, pp. 403-415, 2004. 

 
10. D. Song, M. I. Heywood, and A. N. Zincir-Heywood, "Training Genetic 

Programming on Half a Million Patterns: An Example from Anomaly Detection," 
IEEE Transactions on Evolutionary Computation, 9(3), pp. 225-240, 2005. 

 
11. S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Clustering-based Network Intrusion 

Detection,” International Journal of Reliability, Quality, and Safety Engineering,  
2005. 

 
12. K. M. Faraoun and A. Boukelif, “Neural Networks Learning Improvement using the 

k-Means Clustering Algorithm to Detect Network Intrusions,” International Journal 
of Computational Intelligence, Volume 3, Number 2, pp. 161-168, 2006. 



 

101 

13. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, 
Plenum Press, New York, 1981. 

 
14. J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and its Use in Detecting 

Compact Well-Separated Clusters,” Journal of Cybernetics, Volume 3, pp. 32-57, 
1973. 

 
15. A. P. Dempster, “A Generalization of Bayesian Inference,” Journal of the Royal 

Statistical Society, Series B, Volume 30, pp. 205-247, 1968. 
 
16. G. Shafer, A Mathematical Theory of Evidence, Princeton, University Press, 

Princeton, NJ, 1976. 
 
17. DARPA Intrusion Detection Evaluation, MIT Lincoln Laboratory.  

URL: http://www.ll.mit.edu/IST/ideval/ (Last browsed in December 2007) 
 
18. E. Fix and J. L. Hodges, “Discriminatory Analysis: Nonparametric Discrimination: 

Consistency Properties,” Report Number 4, Project Number 21-49-004, USAF 
School of Aviation Medicine, Randolph Field, Texas, 1951. 

 
19. E. Denning, “An Intrusion-Detection Model,” IEEE Transactions on Software 

Engineering, Volume 13, Number 2, pp. 222-232, 1987. 
 
20. S. E. Smaha, “Haystack: An Intrusion Detection System,” Fourth Aerospace 

Computer Security Applications Conference, pp. 37-44, Austin, Texas, 1988.  
 
21. J. D. Howard, An Analysis of Security Incidents on the Internet 1989 – 1995, 

Dissertation, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1997.  
 
22. M. Dekker, “Security of the Internet,” The Froehlich/Kent Encyclopedia of 

Telecommunications, Volume 15, pp. 231-255, New York, 1997. 
 
23. T. Crothers, Implementing Intrusion Detection Systems, A Hands-On Guide for 

Securing the Network, Wiley Publishing, Inc., 2003. 
 
24. H. G. Kayacık, Hierarchical Self Organizing Map Based IDS on KDD Benchmark, 

Master Thesis, Dalhouse University, Halifax, Nova Scotia, Canada, 2003. 
 
25. S. Kumar, Classification and Detection of Computer Intrusions, PhD Thesis, Purdue 

University, 1995.  
 
26. J. Z. Lei and A. Ghorbani, “Network Intrusion Detection Using an Improved 

Competitive Learning Neural Network,” 2nd Annual Conference on Communication 
Networks and Services Research, pp. 190-197, 2004. 

 



 

102 

27. S. Zanero and S. M. Savaresi, “Unsupervised Learning Techniques for an Intrusion 
Detection System,” Proceedings of the 14th ACM Symposium on Applied 
Computing, 2004. 

 
28. Sourcefire Inc, URL: http://www.snort.org (Last browsed in December 2007) 
 
29. S. Northcutt and J. Novak, Network Intrusion Detection, 2003. 
 
30. J. Cannady, “Artificial Neural Networks for Misuse Detection,” Proceedings of the 

1998 National Information Systems Security Conference, pp. 443-456, Arlington, 
VA., 1998. 

 
31. T. Kohonen, “Automatic Formation of Topological Maps of Patterns in a Self-

Organizing System,” Proceedings of 2nd Scandinavian Conference on Image 
Analysis, pp. 214-220, Helsinki, Finland, 1981.  

 
32. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal 

Representations by Error Backpropagation,” Processing of Parallel Distributed, 
Volume 1, The MIT Press, pp. 318-362, 1986.  

 
33. O. Depren, M. Topallar, E. Anarim and M. K. Ciliz, “An Intelligent Intrusion 

Detection System (IDS) for Anomaly and Misuse Detection in Computer Networks,” 
Expert Systems with Applications, Volume 29, Issue 4, pp. 713-722, November 
2005. 

 
34. L. L. DeLooze, “Attack Characterization and Intrusion Detection using an Ensemble 

of Self-Organizing Maps,” 2006 International Joint Conference on Neural Networks, 
pp. 2121-2128, Vancouver, BC, Canada, July, 2006. 

 
35. L. A. Zadeh, “Fuzzy Sets,” Infomation Control, Volume 8, pp. 338-353, 1965. 
 
36. S. M. Bridges and R. B. Vaughn, “Intrusion Detection via Fuzzy Data Mining,” 

Proceedings of the 12th Annual Canadian Information Technology Security 
Symposium, pp.109-122, Ottawa, Canada, June 2000. 

 
37. J. T. Yao, S. L. Zhao, and L. V. Saxton, “A Study on Fuzzy Intrusion Detection,” 

Proceedings of SPIE, Data Mining, Intrusion Detection, Information Assurance, And 
Data Networks Security, Orlando, Florida, USA, pp. 23-30, 2005. 

 
38. J. E. Dickerson and J. A. Dickerson, “Fuzzy Network Profiling for Intrusion 

Detection,” Proceedings of NAFIPS 19th International Conference of the North 
American Fuzzy Information Processing Society, pp. 301-306, Atlanta, July 2000. 

 
39. J. E. Dickerson, J. Juslin, O. Koukousoula, and J. A. Dickerson, “Fuzzy Intrusion 

Detection,” IFSA World Congress and 20th North American Fuzzy Information 



 

103 

Processing Society International Conference, Volume 3, pp. 1506-1510, Vancouver, 
British Columbia, July 2001. 

 
40. A. Abraham and R. Jain, “Soft Computing Models for Network Intrusion Detection 

Systems,” Soft Computing in Knowledge Discovery: Methods and Applications, 
Studies in Fuzziness and Soft Computing, Springer Verlag, Chapter 16, Germany, 
2004. 

 
41. J. Gomez and D. Dasgupta, “Evolving Fuzzy Classifiers for Intrusion Detection,” 

Proceedings of the IEEE Workshop on Information Assurance, West Point, NY June 
2002. 

 
42. G. Florez, S. M. Bridges, and R. B. Vaughn, “An Improved Algorithm for Fuzzy 

Data Mining for Intrusion Detection,” Proceedings of the North American Fuzzy 
Information Processing Society Conference, CDROM Proceeding, New Orleans, 
LA, June, 2002. 

 
43. W. Lee and S. J. Stolfo, “Data Mining Approaches for Intrusion Detection,” 

Proceedings of the 7th USENIX Security Symposium, San Antonio, Texas, 1998. 
 
44. S. Kumar and E. H. Spafford, “A Software Architecture to Support Misuse Intrusion 

Detection,” Proceedings of the 18th National Conference on Information Security, pp. 
194-204. 1995. 

 
45. K. Ilgun, R. A. Kemmerer, and P. A. Porras, “State Transition Analysis: A Rule-

Based Intrusion Detection Approach,” IEEE Transactions on Software Engineering, 
Volume 21, Number 3, pp. 181-199, March 1995.  

 
46. W. Lee and S. J. Stolfo, “A Framework for Constructing Features and Models for 

Intrusion Detection Systems,” ACM Transactions on Information and System 
Security, Volume 3, Number 4, pp. 227-261, 2000.  

 
47. W. W. Cohen, “Fast Effective Rule Induction,” Proceedings of 12th International 

Conference on Machine Learning, San Mateo, CA, 1995.  
 
48. M. Sabhnani and G. Serpen, “KDD Feature Set Complaint Heuristic Rules for R2L 

Attack Detection,” Security and Management, pp. 310-316, 2003. 
 
49. M. Sabhnani and G. Serpen, “Formulation of a Heuristic Rule for Misuse and 

Anomaly Detection for U2R Attacks in Solaris Operating System Environment,” 
Security and Management, pp. 390-396, 2003. 

 
50. G. Serpen and M. Sabhnani, “Measuring Similarity in Feature Space of Knowledge 

Entailed by Two Separate Rule Sets,” Knowledge Based Systems, Volume 19, 
Number 1, pp. 67-76, 2006.  



 

104 

51. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993. 
 
52. I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature Selection,” 

Journal of Machine Learning Research, Volume 3, pp. 1157-1182, 2003. 
 
53. G. John, R. Kohavi, and K. Pfleger, “Irrelevant Features and the Subset Selection 

Problem,” Proceedings ML-94, pp. 121-129, Morgan Kaufmann, 1994. 
 
54. H. G. Kayacık, A. N. Zincir-Heywood, and M. I. Heywood, “Selecting Features for 

Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection 
Datasets,” Third Annual Conference on Privacy, Security and Trust, St. Andrews, 
New Brunswick, Canada, October 2005. 

 
55. J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, Volume 1, pp. 81-

106, 1986. 
 
56. J. Biesiada and W. Duch, “Feature Selection for High-Dimensional Data: A 

Kolmogorov-Smirnov Correlation-Based Filter Solution,” Proceedings of the 4th 
International Conference on Computer Recognition Systems, 2005. 

 
57. S. Mukkamala and A. H. Sung, “Feature Selection for Intrusion Detection Using 

Neural Networks and Support Vector Machines”, Journal of the Transportation 
Research Board of the National Academics, Transportation Research Record No 
1822, pp. 33-39, 2003.  

 
58. Y. Lu, “Knowledge Integration in a Multiple Classifier System,” Application 

Intelligence, 6(2), pp. 75–86, 1996. 
 
59. L. Xu, A. Krzyzak and C.Y. Suen, “Several Methods for Combining Multiple 

Classifiers and Their Applications in Handwritten Character Recognition,” IEEE 
Transactions on System, Man and Cybernetics, SMC-22(3), pp. 418-435, 1992. 

 
60. G. Giacinto and F. Roli, “Intrusion Detection in Computer Networks by Multiple 

Classifier Systems,” 16th International Conference on Pattern Recognition, Volume 
2, pp. 390-393, 2002. 

 
61. S. Mukkamala, A. H. Sung, and A. Abraham, “Intrusion Detection Using an 

Ensemble of Intelligent Paradigms,” Journal of Network and Computer Applications, 
Volume 28, Issue 2, pp. 167-182, 2005. 

 
62. L. K. Hansen and P. Salamon, “Neural Network Ensembles,” IEEE Transactions on 

Pattern Analysis Machine Intelligence, 12(10), pp. 993-1001, 1990. 
 



 

105 

63. L. Yu and H. Liu, “Feature Selection for High-Dimensional Data: A Fast 
Correlation-Based Filter Solution,” Proceedings of The Twentieth International 
Conference on Machine Leaning, pp. 856-863, Washington, D.C., August, 2003. 

 
64. C. Shannon, “A Mathematical Theory of Communication,” Bell System Technical 

Journal, 1948. 
 
65. W. H. Press, B. P. Flannery, S. A. Teukolski, and W. T. Vetterling, Numerical 

Recipes in C, Cambridge University Press, 1988. 
 
66. S. Zanero and S. M. Savaresi, “Unsupervised Learning Techniques for an Intrusion 

Detection System,” Proceedings of the 14th ACM Symposium on Applied 
Computing, 2004. 

 
67. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymorphic Worm 

Detection Using Structural Information of Executables,” 8th Symposium on Recent 
Advances in Intrusion Detection, Lecture Notes in Computer Science, Springer 
Verlag, USA, September 2005. 

 
68. J. M. Booker, M. C. Anderson, M. A. Meyer, “The Role of Expert Knowledge in 

Uncertainty Quantification (Are We Adding More Uncertainty or More 
Understanding?),” Seventh Army Conference on Applied Statistics, pp. 155-161, 
2001. 

 
69. W. L Oberkampf, J. C. Helton, C. A. Jos lyn, S. F. Wojtkiewicz, and S. Ferson, 

“Challenge Problems: Uncertainty in System Response Given Uncertain 
Parameters,” Reliability Engineering and System Safety, Volume 85, pp. 11-19, 
2004. 

 
70. T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd Edition, John Wiley & 

Sons, Ltd., 2005. 
 
71. S. A. Dudani, “The Distance-Weighted k-NN Rule,” IEEE Transactions on Systems, 

Man and Cybernetics, Volume 6, Number 4, pp. 325-327, 1976. 
 
72. R. Haralick and L. Shapiro, Computer and Robot Vision, Volume 2, Addison-Wesley, 

1993.  
 
73. Tcpdump. URL: http://www.tcpdump.org/ (Last browsed in December 2007) 
 
74. KDD’99 archive: The Fifth International Conference on Knowledge Discovery and 

Data Mining. URL: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
(Last browsed in December 2007) 

 



 

106 

75. U. Aickelin, J. Twycross, and T. Hesketh-Roberts, “Rule Generalization in Intrusion 
Detection Systems Using SNORT,” International Journal of Electronic Security and 
Digital Forensics, Volume 1, Number 1, pp. 101-116, May 2007. 

 
76. C. L. Blake and C. J. Merz, UCI Repository of Machine Learning Databases, 1998. 

URL: http://mlearn.ics.uci.edu/MLRepository.html (Last browsed in December 2007) 
 
77. M. Hall, Correlation Based Feature Selection for Machine Learning, Doctoral 

Dissertation, The University of Waikato, Department of Computer Science, 1999. 
 
78. Te-Shun Chou, Kang K. Yen, Jun Luo, Niki Pissinou, and Kia Makki, “Correlation-

Based Feature Selection for Intrusion Detection Design,” IEEE Military 
Communications Conference, Orlando, FL, October 2007. 

 
79. M. Keller, M. R. Gray, and J. A. Givens Jr., “A Fuzzy k-Nearest Neighbor 

Algorithms,” Transactions on Systems, Man and Cybernetics, Volume SMC-15(4), 
pp. 580-585, 1985. 

 
80. T. Denoeux, “A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer 

Theory,” IEEE Transactions on Systems, Man and Cybernetics, Volume 25, Number 
5, pp. 804-813, May 1995. 

 
81. Te-Shun Chou, Kang K. Yen, Jun Luo, “Network Intrusion Detection Design Using 

Feature Selection of Soft Computing Paradigms,” International Journal of 
Computational Intelligence, Volume 4, Number 3, pp. 205-217, 2007. 

 
82. Te-Shun Chou, Kang K. Yen, Niki Pissinou, and Kia Makki, “Fuzzy Belief 

Reasoning for Intrusion Detection Design,” IEEE The third International Conference 
on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, 
Taiwan, November 2007.  

 
83. Te-Shun Chou, Kang K. Yen, and Jun Luo, “Feature Reduction and Fuzzy Belief 

Intrusion Detection Design,” The 11th World Multi-Conference on Systemics, 
Cybernetics and Informatics jointly with The 13th International Conference on 
Information Systems Analysis and Synthesis, pp. 262-267, Orlando, FL, July 2007. 

 
84. Te-Shun Chou and Kang K. Yen, “Fuzzy Belief k-Nearest Neighbors Anomaly 

Detection of User to Root and Remote to Local Attacks,” 8th Annual IEEE SMC 
Information Assurance Workshop, pp. 207-213, West Point, NY, June 2007. 

 
85. S. Raudys and F. Roli, “The Behavior Knowledge Space Fusion Method: Analysis of 

Generalization Error and Strategies for Performance Improvement,” Proceedings of 
International Workshop on Multiple Classifier Systems, pp. 55-64, Guildford, 
Surrey, June 2003. 

 



 

107 

86. Te-Shun Chou, Kang K. Yen, Niki Pissinou, and Kia Makki, “Ensemble of Multiple 
Classifiers in Network Intrusion Detection Design,” Computers & Security, 2007. (in 
review) 

 



 

108 

 

 

 

 

 

APPENDIX 

Matlab Code List of Fuzzy Belief k-NN Classifier Evaluation 



 

109 

som_read_data.m 
% Read data from an ascii file 
function sData = som_read_data(filename, varargin) 
error(nargchk(1, 3, nargin)) % check no. of input args is correct 
dont_care = 'NaN';  % default don't care string 
comment_start   = '#';  % the char a SOM_PAK command line starts with 
comp_name_line  = '#n';  % string denoting a special command line, 

% which contains names of each component 
label_name_line = '#l';  % string denoting a special command line, 

% which contains names of each label 
block_size = 1000;  % block size used in file read 
kludge = num2str(realmax, 100);  % used in sscanf                 
% open input file 
fid = fopen(filename); 
if fid < 0 
  error(['Cannot open ' filename]);  
end 
% process input arguments 
if nargin == 2  
  if isstr(varargin{1}) 
    dont_care = varargin{1}; 
  else 
    dim = varargin{1}; 
  end 
elseif nargin == 3 
  dim = varargin{1}; 
  dont_care = varargin{2}; 
end 
 % if the data dimension is not specified, find out what it is 
 if nargin == 1 | (nargin == 2 & isstr(varargin{1})) 
   fpos1 = ftell(fid); c1 = 0;   % read first non-comment line 
  while c1 == 0, 
    line1 = strrep(fgetl(fid), dont_care, kludge); 
    [l1, c1] = sscanf(line1, '%f '); 
  end 
  fpos2 = ftell(fid); c2 = 0;   % read second non-comment line 
  while c2 == 0, 
    line2 = strrep(fgetl(fid), dont_care, kludge); 
    [l2, c2] = sscanf(line2, '%f '); 
  end 
  if (c1 == 1 & c2 ~= 1) | (c1 == c2 & c1 == 1 & l1 == 1) 
    dim = l1; 
    fseek(fid, fpos2, -1); 
  elseif (c1 == c2) 
    dim = c1; 
    fseek(fid, fpos1, -1); 
    warning on 
    warning(['Automatically determined data dimension is ' num2str(dim) '. Is it correct?']);  
  else 
    error(['Invalid header line: ' line1]); 
  end 
end  
% check the dimension is valid 
if dim < 1 | dim ~= round(dim)  



 

110 

  error(['Illegal data dimension: ' num2str(dim)]); 
end 
% read data 
sData = som_data_struct(zeros(1, dim), 'name', filename);  
lnum = 0;   % data vector counter 
data_temp = zeros(block_size, dim); 
labs_temp = cell(block_size, 1); 
comp_names = sData.comp_names; 
label_names = sData.label_names; 
form = [repmat('%g',[1 dim-1]) '%g%[^ \t]']; 
limit = block_size; 
while 1, 
  li = fgetl(fid);   % read next line 
  if ~isstr(li), break, end;   % is this the end of file?  
  % all missing vectors are replaced by value realmax because 
  % sscanf is not able to read NaNs   
  li = strrep(li, dont_care, kludge);      
  [data, c, err, n] = sscanf(li, form); 
  if c < dim   % if there were less numbers than dim on the input file line 
    if c == 0 
      if strncmp(li, comp_name_line, 2)   % component name line? 
    li = strrep(li(3:end), kludge, dont_care); i = 0; c = 1; 
    while c 
      [s, c, e, n] = sscanf(li, '%s%[^ \t]'); 
      if ~isempty(s), i = i + 1; comp_names{i} = s; li = li(n:end); end 
    end 
    if i ~= dim  
      error(['Illegal number of component names: ' num2str(i) ... 
                ' (dimension is ' num2str(dim) ')']);  
    end 
      elseif strncmp(li, label_name_line, 2)   % label name line? 
    li = strrep(li(3:end), kludge, dont_care); i = 0; c = 1; 
    while c 
      [s, c, e, n] = sscanf(li, '%s%[^ \t]'); 
      if ~isempty(s), i = i + 1; label_names{i} = s; li = li(n:end); end 
    end 
      elseif ~strncmp(li, comment_start, 1)   % not a comment, is it error? 
    [s, c, e, n] = sscanf(li, '%s%[^ \t]'); 
    if c 
      error(['Invalid vector on input file data line ' ... 
         num2str(lnum+1) ': [' deblank(li) ']']), 
    end 
      end 
    else 
      error(['Only ' num2str(c) ' vector components on input file data line ' ... 
         num2str(lnum+1) ' (dimension is ' num2str(dim) ')']); 
    end 
  else 
    lnum = lnum + 1;   % this was a line containing data vector 
    data_temp(lnum, 1:dim) = data';   % add data to struct 
    if lnum == limit   % reserve more memory if necessary 
      data_temp(lnum+1:lnum+block_size, 1:dim) = zeros(block_size, dim); 
      [dummy nl] = size(labs_temp); 
      labs_temp(lnum+1:lnum+block_size,1:nl) = cell(block_size, nl); 



 

111 

      limit = limit + block_size; 
    end 
    % read labels 
    if n < length(li) 
      li = strrep(li(n:end), kludge, dont_care); i = 0; n = 1; c = 1; 
      while c 
    [s, c, e, n_new] = sscanf(li(n:end), '%s%[^ \t]'); 
    if c, i = i + 1; labs_temp{lnum, i} = s; n = n + n_new - 1; end 
      end 
    end 
  end 
end 
% close input file 
if fclose(fid) < 0, error(['Cannot close file ' filename]); 
else fprintf(2, '\rdata read ok\n'); end 
% set values 
data_temp(data_temp == realmax) = NaN; 
sData.data        = data_temp(1:lnum,:); 
sData.labels      = labs_temp(1:lnum,:); 
sData.comp_names  = comp_names; 
sData.label_names = label_names; 
return; 
 
dataprocess.m 
% Separate data to normal, dos, probe, u2r and r2l categories 
function [all_normal_data, all_normal_labels, ... 

 all_dos_data, all_dos_labels, ... 
 all_probe_data, all_probe_labels, ... 
 all_u2r_data, all_u2r_labels, ... 
 all_r2l_data, all_r2l_labels] = dataprocess(data, labels) 

% label has three groups 
% type: different attacks 
% category: 0:normal, 1:dos, 2:probe, 3:r2l ,4:u2r 
% binary -- 0:normal, 1:attack 
% find records in each category from set 
normal = find(strcmp(labels(:,2), '0')); 
dos = find(strcmp(labels(:,2), '1')); 
probe = find(strcmp(labels(:,2), '2')); 
u2r = find(strcmp(labels(:,2), '4')); 
r2l = find(strcmp(labels(:,2), '3')); 
% all records in each category -- data 
all_normal_data = data(normal(1:size(normal)),:); 
all_dos_data = data(dos(1:size(dos)),:); 
all_probe_data = data(probe(1:size(probe)),:); 
all_u2r_data = data(u2r(1:size(u2r)),:); 
all_r2l_data = data(r2l(1:size(r2l)),:); 
% all records in each category -- label 
all_normal_labels = labels(normal(1:size(normal)),:); 
all_dos_labels = labels(dos(1:size(dos)),:); 
all_probe_labels = labels(probe(1:size(probe)),:); 
all_u2r_labels = labels(u2r(1:size(u2r)),:); 
all_r2l_labels = labels(r2l(1:size(r2l)),:); 
 
 



 

112 

transfer.m 
% Randomly select records for normal, dos, probe, u2r and r2l category  
function [transfer_data,transfer_labels,left_data,left_labels] = transfer(A,B,fetch_number) 
% A, B: original data set 
% fetch_number: number of select records  
FETCH = zeros(1,fetch_number); 
zero_array = find(FETCH==0); 
while ~isempty(zero_array) 
  rand('state', sum(100*clock));   
  a = ceil(rand(1)*size(A,1)); 
  origial_array = find(FETCH==a); 
  while ~isempty(origial_array) 
      a = ceil(rand(1)*size(A,1)); 
      origial_array = find(FETCH==a); 
  end 
  FETCH(zero_array(1)) = a; 
  zero_array = find(FETCH==0); 
end 
transfer_data = A(FETCH,:); 
transfer_labels = B(FETCH,:); 
index_A = 1:size(A,1); 
index_B = 1:size(B,1); 
left_data = A(setdiff(index_A,FETCH),:); 
left_labels = B(setdiff(index_B,FETCH),:); 
  
clust_normalize.m 
% Normalization of features  
function data=clust_normalize(data,method); 
% method can be 'var'or 'range' 
%   'var'      Variance is normalized to one (linear operation). 
%   'range'  Values are normalized between [0,1] (linear operation). 
data.Xold=data.X; 
if strcmp(method,'range') 
     data.min=min(data.X); 
     data.max=max(data.X); 
     array = (repmat(max(data.X),... 
     size(data.X,1),1)-repmat(min(data.X),size(data.X,1),1)); 
     index = find(array==0); 
     array(index) = 1; 
     data.X=(data.X-repmat(min(data.X),size(data.X,1),1))./array; 
elseif strcmp(method,'var') 
   array = (repmat(std(data.X),size(data.X,1),1));   
   index = find(array==0); 
   array(index) = 1;      
   data.X=(data.X-repmat(mean(data.X),size(data.X,1),1))./array; 
   data.mean=mean(data.X); 
   data.std=std(data.X); 
else 
     error('Unknown method given') 
end 
 
fselection.m 
% Feature selection 
function [traindata, testdata] = fs(data1, data2, f_s, w) 



 

113 

% f_s = 1: yes 
% w: feature set 
j = 1; 
if f_s 
   for i = 1:41 
       if w(i) ~= 0  
            traindata(:,j) = w(i).*data1(:,i); 
            testdata(:,j) = w(i).*data2(:,i); 
            j = j + 1; 
       end 
   end 
else 
    traindata = data1; 
    testdata = data2; 
end 
 
celltonum.m 
% Convert cell to number 
function [train_labels_num, test_labels_num] = celltonum(train_labels, test_labels) 
train_labels_num = zeros(size(train_labels,1),size(train_labels,2)); 
for i=1:1:size(train_labels,1) 
    for j=1:1:size(train_labels,2) 
        temp = cell2mat(train_labels(i,j)); 
        train_labels_num(i,j) = str2num(temp); 
    end 
end 
% to add 1 because the class of fknn needs to start from 1, but the class 
% label of train.labels starts from 0. same as test.labels 
train_labels_num = train_labels_num+1; 
test_labels_num = zeros(size(test_labels,1),size(test_labels,2)); 
for i=1:1:size(test_labels,1) 
    for j=1:1:size(test_labels,2) 
        temp = cell2mat(test_labels(i,j)); 
        test_labels_num(i,j) = str2num(temp); 
    end 
end 
test_labels_num = test_labels_num+1; 
 
fcm_order_binary.m 
% For FCM to find clustering order (final_perms) 
function [finalperms, fcm_labels] = fcm_order_binary(U, labels) 
% permutation (all combinations) of classes 
class = cell([2,1]); 
class{1}='0'; 
class{2}='1'; 
fcmcluster = perms(class); 
temp_current_no = 0; 
final_perms = 0; % 1xN where N = no of class, e.g. 0 1 
correct_no = 0; 
for (j = 1:1:size(fcmcluster,1)) 
     temp_perms = fcmcluster(j,:);  
     for (i=1:1:size(U,2)) 
          maxU = max(U(:,i)); 
          temp = U(:,i); 



 

114 

          index = find(temp == maxU); 
          temp_fcmlabels(i) = temp_perms(index); 
     end 
     temp_correct = find(strcmp(temp_fcmlabels(:),labels(:,2))); 
     temp_correct_no = length(temp_correct); 
     if temp_correct_no > correct_no 
        correct_no = temp_correct_no; 
        final_perms = temp_perms; 
        fcmlabels = temp_fcmlabels; 
     end     
end      
for i = 1:1:size(final_perms,2) 
    temp = cell2mat(final_perms(i)); 
    finalperms(i) = str2num(temp)+1; 
end 
for i = 1:1:size(fcmlabels,2) 
    temp = cell2mat(fcmlabels(i)); 
    fcm_labels(i) = str2num(temp)+1; 
end 
 
fknn.m 
% Fuzzy k-nearest neighbor classification algorithm 
function [predicted,memberships, numhits] = fknn(data, labels, test, ... 
                testlabels, k_values, info, fuzzy) 
if nargin<7 
    fuzzy = true; 
end 
num_train = size(data,1); 
num_test  = size(test,1); 
% scaling factor for fuzzy weights. see [1] for details 
m = 2; 
% convert class labels to unary membership vectors (of 1s and 0s) 
max_class = max(labels); %original 
temp = zeros(length(labels),max_class); 
for i=1:num_train 
    temp(i,:) = [zeros(1, labels(i)-1) 1 zeros(1,max_class - labels(i))]; 
end 
labels = temp; 
clear temp; 
% allocate space for storing predicted labels  
predicted = zeros(num_test, length(k_values)); 
% allocate space for 'numhits'. This will only be used if 'testlabels' is provided 
numhits = zeros(length(k_values),1); 
% will the memberships be stored? if yes, allocate space 
store_memberships = false; 
if nargout > 1, 
    store_memberships=true; 
    memberships = zeros(num_test, max_class, length(k_values)); 
end 
% BEGIN kNN 
% for each test point, do: 
t0=clock; 
tstart = t0; 
for i=1:num_test 



 

115 

    distances = (repmat(test(i,:), num_train,1) - data).^2; 
    % for efficiency, no need to take sqrt since it is a non-decreasing function 
    if size(distances,2) ~= 1 % add   
        distances = sum(distances');  
    else %add 
        distances = distances'; % add 
    end % add    
    % sort the distances 
    [junk, indeces] = sort(distances); 
    for k=1:length(k_values) 
    neighbor_index = indeces(1:k_values(k)); 
    weight = ones(1,length(neighbor_index)); 
    if fuzzy,  
        % originally, this weight calculation should be:  
        % weight = distances(neighbor_index).^(-2/(m-1)); 
        % but since we didn't take sqrt above and the inverse 2th power 
        % the weights are:  
        % weight = sqrt(distances(neighbor_index)).^(-2/(m-1)); 
        % which is equaliavent to: 
        weight = distances(neighbor_index).^(-1/(m-1)); 
        % set the Inf (infite) weights, if there are any, to  1. 
        if max(isinf(weight)) 
        warning(['Some of the weights are Inf for sample: ' ... 
            num2str(i) '. These weights are set to 1.']); 
        weight(isinf(weight))=1; 
        end 
    end 
    test_out = weight*labels(neighbor_index,:)/(sum(weight)); 
    if store_memberships, memberships(i,:,k) = test_out; end; 
    % find predicted class (the one with the max. fuzzy vote) 
    [junk, index_of_max] = max(test_out'); 
    predicted(i,k) = index_of_max; 
    % compute current hit rate, if test labels are given 
    if ~isempty(testlabels) && predicted(i,k)==testlabels(i) 
        numhits(k) = numhits(k)+1; 
    end 
    end 
    % print info 
    if mod(i,info)==0 
    elapsed = etime(clock, t0); 
    fprintf(1,['%dth sample done.  Elapsed (from previous info): %.2f' ... 
                   ' sn.  Estimated left: %.2f sn.\n\tHit rate(s) so far:   '], ... 
        i, elapsed, etime(clock, tstart)*((num_test-i)/i) ); 
    for k=1:length(k_values) 
        fprintf(1,'%3d: %.3f\t',k_values(k), 100*numhits(k)/i); 
    end 
    fprintf(1,'\n'); 
    t0=clock; % start timer again 
    end 
end 
 
knndsinit.m 
% Initialise parameter gamma and alpha of the BPA  
% Modifiy from Thierry Denoeux, http://www.hds.utc.fr/~tdenoeux/software.htm 



 

116 

% Last browsed in December 2007 
function [gamm,alpha] = knndsinit1(x,S); 
 [Napp,nent]=size(x); 
M=max(S); 
for i=1:M, 
  ii=find(S==i);Nii=length(ii); 
  D=zeros(1,Nii); 
  for j=1:Nii 
   D(1,j) = D(1,j) + sum(sqrt(sum(((ones(Nii,1)*x(ii(j),:))-x(ii,:))'.^2)')'); 
  end; 
Dm(i) = sum(D)/(Nii*Nii - Nii); 
end; 
gamm = ones(1,M) ./ Dm; 
gamm=gamm'; 
alpha=.95; 
 
knndsval.m 
% K-nearest neighbour classification rule based on Dempster-Shafer theory 
% Modifiy from Thierry Denoeux, http://www.hds.utc.fr/~tdenoeux/software.htm 
% Last browsed in December 2007 
function [m,L] = knndsval(xapp,Sapp,K,gamm,alpha,loo,xtst); 
 [Napp,nent]=size(xapp); 
M=max(Sapp); % original 
if loo, 
   xtst=xapp; 
end; 
 [Ntst,nent]=size(xtst); 
% Computation of the K-nearest neighbors in the training set 
  dst=[];ist=[]; 
  for i = 1:Ntst, 
    if size(xapp,2) ~= 1 % add   
        dist=sum(((ones(Napp,1)*xtst(i,:))-xapp)'.^2)';  
    else % add 
        dist=(((ones(Napp,1)*xtst(i,:))-xapp)'.^2)'; %add 
    end % add    
    [dss,iss]=sort(dist); 
    dst = [dst dss(1+loo:K+loo)]; % distance matrix: MxN  where M=k, N=number of testing records 

         % each testing record has M nearest neighbors  
    ist = [ist iss(1+loo:K+loo)]; % index matrix: MxN   

      % each testing record has M nearest training record number  
  end; 
% Computation of the BPA 
m = classdstst(alpha,gamm,xtst,dst,ist,Sapp,K);  
[temp,L]=max(m(:,1:M)'); 
L=L'; 
function m = classdstst(alpha,gamm,xtst,ds,is,Sapp,K); 
N= max(size(xtst)); 
M=max(Sapp); % original 
m = [zeros(M,N);ones(1,N)];  
cppv=zeros(N,1); 
for i=1:N, 
   for j=1:K, 
     m1 = zeros(M+1,1); 
     m1(Sapp(is(j,i))) = alpha*exp(-gamm(Sapp(is(j,i))).^2*ds(j,i)); 



 

117 

     m1(M+1) = 1 - m1(Sapp(is(j,i))); 
     m(1:M,i) = m1(1:M).*m(1:M,i) + m1(1:M)*m(M+1,i) + m(1:M,i)*m1(M+1); 
     m(M+1,i) = m1(M+1) * m(M+1,i);     
  end; 
end; 
m=m./(ones(M+1,1)*sum(m)); 
m=m'; 
 
myknn_binary.m 
% Fuzzy Belief k-NN Classification Algorithm 
% Modifiy from Thierry Denoeux, http://www.hds.utc.fr/~tdenoeux/software.htm 
% Last browsed in December 2007 
function [m,L1] = myknn(xapp,Sapp,K,U,loo,xtst,finalperms); 
 [Napp,nent]=size(xapp); 
if loo, 
   xtst=xapp; 
end; 
 [Ntst,nent]=size(xtst); 
% Computation of the K-nearest neighbours in the training set 
  dst=[];ist=[]; 
  for i = 1:Ntst, 
    if size(xapp,2) ~= 1 % add   
        dist=sum(((ones(Napp,1)*xtst(i,:))-xapp)'.^2)';  
    else % add 
        dist=(((ones(Napp,1)*xtst(i,:))-xapp)'.^2)'; %add 
    end % add     
    [dss,iss]=sort(dist); 
    dst = [dst dss(1+loo:K+loo)]; % distance matrix: MxN  where M=k, N=number of testing records 

         % each testing record has M nearest neighbors  
    ist = [ist iss(1+loo:K+loo)]; % index matrix: MxN   

      % each testing record has M nearest training record number  
  end; 
N= max(size(xtst)); 
% M=max(Sapp); 
M=2; % binay classification 
m = [zeros(M,N);ones(1,N)];  
cppv=zeros(N,1); 
% distance weighted 
dw(K,N) = 0; 
for i = 1:N 
    for j = 1:K 
        if dst(j,i) == max(dst(:,i)) 
            dw(j,i) = 1; 
        else 
            dw(j,i) = (max(dst(:,i))-dst(j,i))/(max(dst(:,i))-min(dst(:,i))); 
        end 
    end 
end 
for i=1:N 
    num=ones(M+1,1); 
    for j=1:K 
           m1 = zeros(M+1,1); 
           m1(1:M) = U(1:M,ist(j,i))*dw(j,i);  
           m1(M+1) = 1 - sum(m1); 



 

118 

           m(1:M,i) = m1(1:M).*m(1:M,i)+ m1(1:M)*m(M+1,i) + m(1:M,i)*m1(M+1); 
           m(M+1,i) = m1(M+1) * m(M+1,i); 
    end 
end 
m(3,:) = 1-m(1,:)-m(2,:); 
m=m./(ones(M+1,1)*sum(m)); 
m=m'; 
 [temp,L]=max(m(:,1:M)'); 
L=L'; 
L1=zeros(size(L,1),1); 
for i = 1:1:size(L,1) 
    if L(i)==1 
        L1(i)=finalperms(1); 
    elseif L(i)==2 
        L1(i)=finalperms(2); 
    end 
end 
 
weight.m 
% Weighting for myknn_binary_w.m 
function w = weight(data,labels,m) 
for i=1:size(data,1) 
    if labels(i,2) == 1 
       S(i,1) = 1; 
       S(i,2) = 0; 
    else 
       S(i,1) = 0; 
       S(i,2) = 1; 
    end 
end 
w = ones(size(data,1),3); 
for i = 1:size(data,1)-1 
    w(i,1:2) = 2*(m(i,1:2).*w(i,1:2)-S(i,1:2)).*m(i,1:2); 
    w(i+1,1:2) = w(i+1,1:2)+0.1*w(i,1:2); 
end 
w = w(size(w,1),:); 
 
myknn_binary_w.m 
% weighted fb_knn 
% Modifiy from Thierry Denoeux, http://www.hds.utc.fr/~tdenoeux/software.htm 
% Last browsed in December 2007 
function [m,L1] = myknn(xapp,Sapp,K,U,loo,xtst,finalperms,w); 
 [Napp,nent]=size(xapp); 
if loo, 
   xtst=xapp; 
end; 
 [Ntst,nent]=size(xtst); 
% Computation of the K-nearest neighbours in the training set 
 dst=[];ist=[]; 
  for i = 1:Ntst, 
    if size(xapp,2) ~= 1 % add   
        dist=sum(((ones(Napp,1)*xtst(i,:))-xapp)'.^2)';  
    else % add 
        dist=(((ones(Napp,1)*xtst(i,:))-xapp)'.^2)'; % add 



 

119 

    end % add   
    [dss,iss]=sort(dist); 
    dst = [dst dss(1+loo:K+loo)]; % distance matrix: MxN  where M=k, N=number of testing records 
                    % each testing record has M nearest neighbors  
    ist = [ist iss(1+loo:K+loo)]; % index matrix: MxN   
               % each testing record has M nearest training record number  
  end; 
N= max(size(xtst)); 
M=2; % binay classification 
m = [zeros(M,N);ones(1,N)];  
cppv=zeros(N,1); 
% distance weighted 
dw(K,N) = 0; 
for i = 1:N 
    for j = 1:K 
        if dst(j,i) == max(dst(:,i)) 
            dw(j,i) = 1; 
        else 
            dw(j,i) = (max(dst(:,i))-dst(j,i))/(max(dst(:,i))-min(dst(:,i))); 
        end 
    end 
end 
for i=1:N 
    num=ones(M+1,1); 
    for j=1:K 
           m1 = zeros(M+1,1); 
           m1(1:M) = U(1:M,ist(j,i))*dw(j,i);  
           m1(M+1) = 1 - sum(m1); 
           m(1:M,i) = m1(1:M).*m(1:M,i)+ m1(1:M).*m(M+1,i) + m(1:M,i).*m1(M+1); 
           m(M+1,i) = m1(M+1) * m(M+1,i); 
     end 
end 
m(3,:) = 1-m(1,:)-m(2,:); 
m=m./(ones(M+1,1)*sum(m)); 
m=m'; 
for i=1:N 
    m(i,1:M+1)=m(i,1:M+1).*w; 
end 
m(3,:) = 1-m(1,:)-m(2,:); 
 [temp,L]=max(m(:,1:M)'); 
L=L'; 
L1=zeros(size(L,1),1); 
for i = 1:1:size(L,1) 
    if L(i)==1 
        L1(i)=finalperms(1); 
    elseif L(i)==2 
        L1(i)=finalperms(2); 
    end 
end 
 
accuracy_binary.m 
% Detection performance 
function [correct_normal_rate, correct_attack_rate] = ... 
    accuracy_binary(labels_num, predicted, normal_record_no, attack_record_no, attack_index, attack_label) 



 

120 

% normal 
correct_normal = find(labels_num(:,2)==1 & predicted(:)==1); 
correct_normal_no = length(correct_normal); 
correct_normal_rate = correct_normal_no / normal_record_no; 
n_a = find(labels_num(:,2)==1 & predicted(:)==attack_label); 
n_a_no = length(n_a); 
% attack 
correct_attack = find(labels_num(:,2)==attack_index & predicted(:)==attack_label); 
correct_attack_no = length(correct_attack); 
correct_attack_rate = correct_attack_no / attack_record_no; 
a_n = find(labels_num(:,2)==attack_index & predicted(:)==1); 
a_n_no = length(a_n); 
fprintf('\n');  
 
ensemble_mv.m 
% Ensemble using majority voting 
function [e_result, predict] = ensemble_mv(A_predicted, B_predicted, C_predicted, test_label) 
predict = [A_predicted B_predicted C_predicted test_label(:,3)]; 
e_result = zeros(size(A_predicted)); 
for i=1:size(e_result) 
    if predict(i,1) == 1 && predict(i,2) == 1 && predict(i,3) == 1  
       e_result(i) = 1; 
    elseif predict(i,1) == 2 && predict(i,2) == 2 && predict(i,3) == 2  
       e_result(i) = 2; 
    elseif predict(i,1) == 1 && predict(i,2) == 1 && predict(i,3) == 2  
       e_result(i) = 1; 
    elseif predict(i,1) == 1 && predict(i,2) == 2 && predict(i,3) == 1  
       e_result(i) = 1; 
    elseif predict(i,1) == 2 && predict(i,2) == 1 && predict(i,3) == 1  
       e_result(i) = 1;        
    elseif predict(i,1) == 2 && predict(i,2) == 2 && predict(i,3) == 1  
       e_result(i) = 2;     
    elseif predict(i,1) == 2 && predict(i,2) == 1 && predict(i,3) == 2  
       e_result(i) = 2; 
    elseif predict(i,1) == 1 && predict(i,2) == 2 && predict(i,3) == 2  
       e_result(i) = 2; 
    end 
end 
predict = [predict e_result]; 
 
ensemble_avg.m 
% Selects average value of the combined classifiers as the ensemble output 
function [m, e_result, predict] = ensemble_avg(A_memberships, A1, A2, index, ... 

    B_memberships, B1, B2, ... 
    C_memberships, C1, C2, ... 
    D_memberships, D1, D2, ... 
    test_label) 

e_memberships = zeros(size(A_memberships),2); 
e_result = zeros(size(e_memberships),1); 
A_memberships = [A_memberships(:,1) A_memberships(:,2) A_memberships(:,3)]'; 
B_memberships = [B_memberships(:,1) B_memberships(:,2) B_memberships(:,3)]'; 
C_memberships = [C_memberships(:,1) C_memberships(:,2) C_memberships(:,3)]'; 
D_memberships = [D_memberships(:,1) D_memberships(:,2) D_memberships(:,3)]'; 
M=2; 



 

121 

N = size(e_result); 
m = [zeros(M,N);ones(1,N)];  
for i=1:N 

m(1,i) = A_memberships(1,i)*A1+B_memberships(1,i)*B1+… 
   C_memberships(1,i)*C1+D_memberships(1,i)*D1; 

m(2,i) = A_memberships(2,i)*A2+B_memberships(2,i)*B2+… 
   C_memberships(2,i)*C2+D_memberships(2,i)*D2; 

end 
m=m./(ones(M+1,1)*sum(m)); 
for i=1:size(e_result) 
    if (m(1,i) - m(2,i)) > 0 
            e_result(i) = 1; 
    else 
            e_result(i) = 2; 
    end 
end 
predict = e_result; 
 
ensemble_m.m 
% Ensemble using Dempster-Shafer theory 
function [m, e_result, predict] = ensemble_m(A_memberships, A_predicted, index, ... 

  B_memberships, B_predicted, ... 
  C_memberships, C_predicted, ... 
  D_memberships, D_predicted, ... 
  test_label) 

predict = [A_predicted B_predicted C_predicted D_predicted test_label(:,3)]; 
e_memberships = zeros(size(A_memberships),2); 
e_result = zeros(size(e_memberships),1); 
A_memberships = [A_memberships(:,1) A_memberships(:,2) A_memberships(:,3)]'; 
B_memberships = [B_memberships(:,1) B_memberships(:,2) B_memberships(:,3)]'; 
C_memberships = [C_memberships(:,1) C_memberships(:,2) C_memberships(:,3)]'; 
D_memberships = [D_memberships(:,1) D_memberships(:,2) D_memberships(:,3)]'; 
M=2; 
N = size(e_result); 
m = [zeros(M,N);ones(1,N)];  
for i=1:N 
    num=ones(M+1,1); 
    for j=1:4 
           m1 = zeros(M+1,1); 
           if j==1 
              m1(1:M) = A_memberships(1:M,i); 
           elseif j==2 
              m1(1:M) = B_memberships(1:M,i); 
           elseif j==3 
              m1(1:M) = C_memberships(1:M,i); 
           elseif j==4 
              m1(1:M) = D_memberships(1:M,i); 
           end   
           m1(M+1) = 1 - sum(m1); 
           m(1:M,i) = m1(1:M).*m(1:M,i)+ m1(1:M)*m(M+1,i) + m(1:M,i)*m1(M+1); 
           m(M+1,i) = m1(M+1) * m(M+1,i); 
     end 
end 
m(3,:) = 1-m(1,:)-m(2,:); 



 

122 

m=m./(ones(M+1,1)*sum(m)); 
for i=1:size(e_result) 
    if m(1,i) >= m(2,i) 
       e_result(i) = 1; 
    else 
       e_result(i) = 2; 
    end 
end 
predict = [predict e_result]; 
 
ensemble4.m 
% Ensemble using naive bayes 
function [result] = ensemble4(A1, A2, A_p, B1, B2, B_p, C1, C2, C_p, D1, D2, D_p, P1, P2) 
predict = [A_p B_p C_p D_p]; 
P_1 = zeros(size(A_p)); 
P_2 = zeros(size(A_p)); 
for i = 1:size(A_p) 
    if predict(i,:) == [1 1 1 1]  
           P_1(i) = A1*B1*C1*D1*P1 / (A1*B1*C1*D1*P1 + (1-A2)*(1-B2)*(1-C2)*(1-D2)*P2); 
    elseif predict(i,1) == [2 2 2 2]  
           P_1(i) = (1-A1)*(1-B1)*(1-C1)*(1-D1)*P1 / ((1-A1)*(1-B1)*(1-C1)*(1-D1)*P1 + 
A2*B2*C2*D2*P2); 
    elseif predict(i,1) == [1 1 1 2]  
           P_1(i) = A1*B1*C1*(1-D1)*P1 / (A1*B1*C1*(1-D1)*P1 + (1-A2)*(1-B2)*(1-C2)*D2*P2); 
    elseif predict(i,1) == [1 1 2 1]  
           P_1(i) = A1*B1*(1-C1)*D1*P1 / (A1*B1*(1-C1)*D1*P1 + (1-A2)*(1-B2)*C2*(1-D2)*P2); 
    elseif predict(i,1) == [1 1 2 2]  
           P_1(i) = A1*B1*(1-C1)*(1-D1)*P1 / (A1*B1*(1-C1)*(1-D1)*P1 + (1-A2)*(1-B2)*C2*D2*P2); 
    elseif predict(i,:) == [1 2 1 1]  
           P_1(i) = A1*(1-B1)*C1*D1*P1 / (A1*(1-B1)*C1*D1*P1 + (1-A2)*B2*(1-C2)*(1-D2)*P2); 
    elseif predict(i,1) == [1 2 1 2]  
           P_1(i) = A1*(1-B1)*C1*(1-D1)*P1 / (A1*(1-B1)*C1*(1-D1)*P1 + (1-A2)*B2*(1-C2)*D2*P2); 
    elseif predict(i,:) == [1 2 2 1]  
           P_1(i) = A1*(1-B1)*(1-C1)*D1*P1 / (A1*(1-B1)*(1-C1)*D1*P1 + (1-A2)*B2*C2*(1-D2)*P2); 
    elseif predict(i,1) == [1 2 2 2]  
           P_1(i) = A1*(1-B1)*(1-C1)*(1-D1)*P1 / (A1*(1-B1)*(1-C1)*(1-D1)*P1 + (1-A2)*B2*C2*D2*P2); 
    elseif predict(i,:) == [2 1 1 1]  
           P_1(i) = (1-A1)*B1*C1*D1*P1 / ((1-A1)*B1*C1*D1*P1 + A2*(1-B2)*(1-C2)*(1-D2)*P2); 
    elseif predict(i,:) == [2 1 1 2]  
           P_1(i) = (1-A1)*B1*C1*(1-D1)*P1 / ((1-A1)*B1*C1*(1-D1)*P1 + A2*(1-B2)*(1-C2)*D2*P2);            
    elseif predict(i,:) == [2 1 2 1]  
           P_1(i) = (1-A1)*B1*(1-C1)*D1*P1 / ((1-A1)*B1*(1-C1)*D1*P1 + A2*(1-B2)*C2*(1-D2)*P2); 
    elseif predict(i,:) == [2 1 2 2]  
           P_1(i) = (1-A1)*B1*(1-C1)*(1-D1)*P1 / ((1-A1)*B1*(1-C1)*(1-D1)*P1 + A2*(1-B2)*C2*D2*P2); 
    elseif predict(i,:) == [2 2 1 1]  
           P_1(i) = (1-A1)*(1-B1)*C1*D1*P1 / ((1-A1)*(1-B1)*C1*D1*P1 + A2*B2*(1-C2)*(1-D2)*P2); 
    elseif predict(i,:) == [2 2 1 2]  
           P_1(i) = (1-A1)*(1-B1)*C1*(1-D1)*P1 / ((1-A1)*(1-B1)*C1*(1-D1)*P1 + A2*B2*(1-C2)*D2*P2); 
      elseif predict(i,:) == [2 2 2 1]  
           P_1(i) = (1-A1)*(1-B1)*(1-C1)*D1*P1 / ((1-A1)*(1-B1)*(1-C1)*D1*P1 + A2*B2*C2*(1-D2)*P2); 
    end 
    P_2(i) = 1-P_1(i); 
end 
for i = 1:size(A_p) 



 

123 

    if P_1(i) >= P_2(i) 
       result(i) = 1; 
    else 
       result(i) = 2; 
    end 
end 
 
 
attack_train_binary.m 
% The number of each attack in training set  
function [ train_3_no, train_4_no, train_5_no,  

  train_6_no,  train_7_no, train_8_no, train_9_no, train_10_no,   ... 
  train_11_no, train_12_no, train_13_no, train_14_no, train_15_no,   ... 
  train_16_no, train_17_no, train_18_no, train_19_no, train_20_no,   ...           
  train_21_no, train_22_no, train_23_no, train_24_no, train_25_no,   ... 
  train_26_no, train_27_no, train_28_no, train_29_no, train_30_no,   ...              
  train_31_no, train_32_no, train_33_no, train_34_no, train_35_no,   ... 
  train_36_no, train_37_no, train_38_no, train_39_no, train_40_no, train_41_no] =  ... 

                attack_train_binary(train_labels_num) 
% DOS  
train_3_record = find(train_labels_num(:,1)==3); 
train_3_no = length(train_3_record); 
train_9_record = find(train_labels_num(:,1)==9); 
train_9_no = length(train_9_record); 
train_12_record = find(train_labels_num(:,1)==12); 
train_12_no = length(train_12_record); 
train_16_record = find(train_labels_num(:,1)==16); 
train_16_no = length(train_16_record); 
train_20_record = find(train_labels_num(:,1)==20); 
train_20_no = length(train_20_record); 
train_22_record = find(train_labels_num(:,1)==22); 
train_22_no = length(train_22_record); 
train_27_record = find(train_labels_num(:,1)==27); 
train_27_no = length(train_27_record); 
train_25_record = find(train_labels_num(:,1)==25); 
train_25_no = length(train_25_record); 
train_30_record = find(train_labels_num(:,1)==30); 
train_30_no = length(train_30_record); 
train_37_record = find(train_labels_num(:,1)==37); 
train_37_no = length(train_37_record); 
% PROBE  
train_8_record = find(train_labels_num(:,1)==8); 
train_8_no = length(train_8_record); 
train_13_record = find(train_labels_num(:,1)==13); 
train_13_no = length(train_13_record); 
train_17_record = find(train_labels_num(:,1)==17); 
train_17_no = length(train_17_record); 
train_19_record = find(train_labels_num(:,1)==19); 
train_19_no = length(train_19_record); 
train_28_record = find(train_labels_num(:,1)==28); 
train_28_no = length(train_28_record); 
train_32_record = find(train_labels_num(:,1)==32); 
train_32_no = length(train_32_record); 
% R2L  



 

124 

train_5_record = find(train_labels_num(:,1)==5); 
train_5_no = length(train_5_record); 
train_6_record = find(train_labels_num(:,1)==6); 
train_6_no = length(train_6_record); 
train_7_record = find(train_labels_num(:,1)==7); 
train_7_no = length(train_7_record); 
train_11_record = find(train_labels_num(:,1)==11); 
train_11_no = length(train_11_record); 
train_15_record = find(train_labels_num(:,1)==15); 
train_15_no = length(train_15_record); 
train_21_record = find(train_labels_num(:,1)==21); 
train_21_no = length(train_21_record); 
train_23_record = find(train_labels_num(:,1)==23); 
train_23_no = length(train_23_record); 
train_24_record = find(train_labels_num(:,1)==24); 
train_24_no = length(train_24_record); 
train_29_record = find(train_labels_num(:,1)==29); 
train_29_no = length(train_29_record); 
train_33_record = find(train_labels_num(:,1)==33); 
train_33_no = length(train_33_record); 
train_34_record = find(train_labels_num(:,1)==34); 
train_34_no = length(train_34_record); 
train_35_record = find(train_labels_num(:,1)==35); 
train_35_no = length(train_35_record); 
train_38_record = find(train_labels_num(:,1)==38); 
train_38_no = length(train_38_record); 
train_39_record = find(train_labels_num(:,1)==39); 
train_39_no = length(train_39_record); 
train_40_record = find(train_labels_num(:,1)==40); 
train_40_no = length(train_40_record); 
% U2R  
train_4_record = find(train_labels_num(:,1)==4); 
train_4_no = length(train_4_record); 
train_10_record = find(train_labels_num(:,1)==10); 
train_10_no = length(train_10_record); 
train_14_record = find(train_labels_num(:,1)==14); 
train_14_no = length(train_14_record); 
train_18_record = find(train_labels_num(:,1)==18); 
train_18_no = length(train_18_record); 
train_26_record = find(train_labels_num(:,1)==26); 
train_26_no = length(train_26_record); 
train_31_record = find(train_labels_num(:,1)==31); 
train_31_no = length(train_31_record); 
train_36_record = find(train_labels_num(:,1)==36); 
train_36_no = length(train_36_record); 
train_41_record = find(train_labels_num(:,1)==41); 
train_41_no = length(train_41_record); 
  
attack_test_binary.m 
% The correct predict attack number in testing set  
function [ total_3_no,  correct_3_no, total_4_no,  correct_4_no, total_5_no,  correct_5_no,  ... 

  total_6_no,  correct_6_no, total_7_no,  correct_7_no, total_8_no,  correct_8_no,  ... 
  total_9_no,  correct_9_no, total_10_no, correct_10_no, total_11_no, correct_11_no,  ... 
  total_12_no, correct_12_no, total_13_no, correct_13_no, total_14_no, correct_14_no,  ... 



 

125 

  total_15_no, correct_15_no, total_16_no, correct_16_no, total_17_no, correct_17_no,  ... 
  total_18_no, correct_18_no, total_19_no, correct_19_no, total_20_no, correct_20_no,  ...           
  total_21_no, correct_21_no, total_22_no, correct_22_no, total_23_no, correct_23_no,  ...           
  total_24_no, correct_24_no, total_25_no, correct_25_no, total_26_no, correct_26_no,  ... 
  total_27_no, correct_27_no, total_28_no, correct_28_no, total_29_no, correct_29_no,  ... 
  total_30_no, correct_30_no, total_31_no, correct_31_no, total_32_no, correct_32_no,  ... 
  total_33_no, correct_33_no, total_34_no, correct_34_no, total_35_no, correct_35_no,  ... 
  total_36_no, correct_36_no, total_37_no, correct_37_no, total_38_no, correct_38_no,  ... 
  total_39_no, correct_39_no, total_40_no, correct_40_no, total_41_no, correct_41_no] = ... 

  attack_test_binary(labels_num, ... 
  predicted1,   predicted2,   predicted3,   predicted4, ... 
  predicted5,   predicted6,   predicted7,   predicted8, ... 
  predicted9,   predicted10, predicted11, predicted12, ... 
  predicted13, predicted14, predicted15, predicted16, ... 
  predicted17, predicted18, predicted19, predicted20, ... 
  predicted21, predicted22, predicted23, ... 
  predicted24, predicted25, predicted26, ... 
  predicted27, predicted28, predicted29) 
for i = 1:29 
    if i == 1 
       predicted = predicted1; 
    elseif i == 2 
       predicted = predicted2; 
    elseif i == 3 
       predicted = predicted3; 
    elseif i == 4  
       predicted = predicted4; 
    elseif i == 5  
       predicted = predicted5; 
    elseif i == 6  
       predicted = predicted6; 
    elseif i == 7  
       predicted = predicted7; 
    elseif i == 8  
       predicted = predicted8; 
    elseif i == 9  
       predicted = predicted9;        
    elseif i == 10  
       predicted = predicted10; 
    elseif i == 11  
       predicted = predicted11; 
    elseif i == 12 
       predicted = predicted12; 
    elseif i == 13 
       predicted = predicted13; 
    elseif i == 14  
       predicted = predicted14; 
    elseif i == 15  
       predicted = predicted15; 
    elseif i == 16  
       predicted = predicted16; 
    elseif i == 17  
       predicted = predicted17; 
    elseif i == 18  



 

126 

       predicted = predicted18; 
    elseif i == 19  
       predicted = predicted19;        
    elseif i == 20  
       predicted = predicted20; 
    elseif i == 21  
       predicted = predicted21; 
    elseif i == 22 
       predicted = predicted22; 
    elseif i == 23 
       predicted = predicted23; 
    elseif i == 24  
       predicted = predicted24; 
    elseif i == 25  
       predicted = predicted25; 
    elseif i == 26  
       predicted = predicted26;        
    elseif i == 27  
       predicted = predicted27;       
    elseif i == 28  
       predicted = predicted28;       
    elseif i == 29  
       predicted = predicted29;       
    end 
% DOS  
total_3_record = find(labels_num(:,1)==3); 
total_3_no(i) = length(total_3_record); 
correct_3_record = find(labels_num(:,1)==3 & predicted(:)~=1); 
correct_3_no(i) = length(correct_3_record); 
total_9_record = find(labels_num(:,1)==9); 
total_9_no(i) = length(total_9_record); 
correct_9_record = find(labels_num(:,1)==9 & predicted(:)~=1); 
correct_9_no(i) = length(correct_9_record); 
total_12_record = find(labels_num(:,1)==12); 
total_12_no(i) = length(total_12_record); 
correct_12_record = find(labels_num(:,1)==12 & predicted(:)~=1); 
correct_12_no(i) = length(correct_12_record); 
total_16_record = find(labels_num(:,1)==16); 
total_16_no(i) = length(total_16_record); 
correct_16_record = find(labels_num(:,1)==16 & predicted(:)~=1); 
correct_16_no(i) = length(correct_16_record); 
total_20_record = find(labels_num(:,1)==20); 
total_20_no(i) = length(total_20_record); 
correct_20_record = find(labels_num(:,1)==20 & predicted(:)~=1); 
correct_20_no(i) = length(correct_20_record); 
total_22_record = find(labels_num(:,1)==22); 
total_22_no(i) = length(total_22_record); 
correct_22_record = find(labels_num(:,1)==22 & predicted(:)~=1); 
correct_22_no(i) = length(correct_22_record); 
total_27_record = find(labels_num(:,1)==27); 
total_27_no(i) = length(total_27_record); 
correct_27_record = find(labels_num(:,1)==27 & predicted(:)~=1); 
correct_27_no(i) = length(correct_27_record); 
total_25_record = find(labels_num(:,1)==25); 



 

127 

total_25_no(i) = length(total_25_record); 
correct_25_record = find(labels_num(:,1)==25 & predicted(:)~=1); 
correct_25_no(i) = length(correct_25_record); 
total_30_record = find(labels_num(:,1)==30); 
total_30_no(i) = length(total_30_record); 
correct_30_record = find(labels_num(:,1)==30 & predicted(:)~=1); 
correct_30_no(i) = length(correct_30_record); 
total_37_record = find(labels_num(:,1)==37); 
total_37_no(i) = length(total_37_record); 
correct_37_record = find(labels_num(:,1)==37 & predicted(:)~=1); 
correct_37_no(i) = length(correct_37_record); 
% PROBE  
total_8_record = find(labels_num(:,1)==8); 
total_8_no(i) = length(total_8_record); 
correct_8_record = find(labels_num(:,1)==8 & predicted(:)~=1); 
correct_8_no(i) = length(correct_8_record); 
total_13_record = find(labels_num(:,1)==13); 
total_13_no(i) = length(total_13_record); 
correct_13_record = find(labels_num(:,1)==13 & predicted(:)~=1); 
correct_13_no(i) = length(correct_13_record); 
total_17_record = find(labels_num(:,1)==17); 
total_17_no(i) = length(total_17_record); 
correct_17_record = find(labels_num(:,1)==17 & predicted(:)~=1); 
correct_17_no(i) = length(correct_17_record); 
total_19_record = find(labels_num(:,1)==19); 
total_19_no(i) = length(total_19_record); 
correct_19_record = find(labels_num(:,1)==19 & predicted(:)~=1); 
correct_19_no(i) = length(correct_19_record); 
total_28_record = find(labels_num(:,1)==28); 
total_28_no(i) = length(total_28_record); 
correct_28_record = find(labels_num(:,1)==28 & predicted(:)~=1); 
correct_28_no(i) = length(correct_28_record); 
total_32_record = find(labels_num(:,1)==32); 
total_32_no(i) = length(total_32_record); 
correct_32_record = find(labels_num(:,1)==32 & predicted(:)~=1); 
correct_32_no(i) = length(correct_32_record); 
% R2L  
total_5_record = find(labels_num(:,1)==5); 
total_5_no(i) = length(total_5_record); 
correct_5_record = find(labels_num(:,1)==5 & predicted(:)~=1); 
correct_5_no(i) = length(correct_5_record); 
total_6_record = find(labels_num(:,1)==6); 
total_6_no(i) = length(total_6_record); 
correct_6_record = find(labels_num(:,1)==6 & predicted(:)~=1); 
correct_6_no(i) = length(correct_6_record); 
total_7_record = find(labels_num(:,1)==7); 
total_7_no(i) = length(total_7_record); 
correct_7_record = find(labels_num(:,1)==7 & predicted(:)~=1); 
correct_7_no(i) = length(correct_7_record); 
total_11_record = find(labels_num(:,1)==11); 
total_11_no(i) = length(total_11_record); 
correct_11_record = find(labels_num(:,1)==11 & predicted(:)~=1); 
correct_11_no(i) = length(correct_11_record); 
total_15_record = find(labels_num(:,1)==15); 



 

128 

total_15_no(i) = length(total_15_record); 
correct_15_record = find(labels_num(:,1)==15 & predicted(:)~=1); 
correct_15_no(i) = length(correct_15_record); 
total_21_record = find(labels_num(:,1)==21); 
total_21_no(i) = length(total_21_record); 
correct_21_record = find(labels_num(:,1)==21 & predicted(:)~=1); 
correct_21_no(i) = length(correct_21_record); 
total_23_record = find(labels_num(:,1)==23); 
total_23_no(i) = length(total_23_record); 
correct_23_record = find(labels_num(:,1)==23 & predicted(:)~=1); 
correct_23_no(i) = length(correct_23_record); 
total_24_record = find(labels_num(:,1)==24); 
total_24_no(i) = length(total_24_record); 
correct_24_record = find(labels_num(:,1)==24 & predicted(:)~=1); 
correct_24_no(i) = length(correct_24_record); 
total_29_record = find(labels_num(:,1)==29); 
total_29_no(i) = length(total_29_record); 
correct_29_record = find(labels_num(:,1)==29 & predicted(:)~=1); 
correct_29_no(i) = length(correct_29_record); 
total_33_record = find(labels_num(:,1)==33); 
total_33_no(i) = length(total_33_record); 
correct_33_record = find(labels_num(:,1)==33 & predicted(:)~=1); 
correct_33_no(i) = length(correct_33_record); 
total_34_record = find(labels_num(:,1)==34); 
total_34_no(i) = length(total_34_record); 
correct_34_record = find(labels_num(:,1)==34 & predicted(:)~=1); 
correct_34_no(i) = length(correct_34_record); 
total_35_record = find(labels_num(:,1)==35); 
total_35_no(i) = length(total_35_record); 
correct_35_record = find(labels_num(:,1)==35 & predicted(:)~=1); 
correct_35_no(i) = length(correct_35_record); 
total_38_record = find(labels_num(:,1)==38); 
total_38_no(i) = length(total_38_record); 
correct_38_record = find(labels_num(:,1)==38 & predicted(:)~=1); 
correct_38_no(i) = length(correct_38_record); 
total_39_record = find(labels_num(:,1)==39); 
total_39_no(i) = length(total_39_record); 
correct_39_record = find(labels_num(:,1)==39 & predicted(:)~=1); 
correct_39_no(i) = length(correct_39_record); 
total_40_record = find(labels_num(:,1)==40); 
total_40_no(i) = length(total_40_record); 
correct_40_record = find(labels_num(:,1)==40 & predicted(:)~=1); 
correct_40_no(i) = length(correct_40_record); 
% U2R  
total_4_record = find(labels_num(:,1)==4); 
total_4_no(i) = length(total_4_record); 
correct_4_record = find(labels_num(:,1)==4 & predicted(:)~=1); 
correct_4_no(i) = length(correct_4_record); 
total_10_record = find(labels_num(:,1)==10); 
total_10_no(i) = length(total_10_record); 
correct_10_record = find(labels_num(:,1)==10 & predicted(:)~=1); 
correct_10_no(i) = length(correct_10_record); 
total_14_record = find(labels_num(:,1)==14); 
total_14_no(i) = length(total_14_record); 



 

129 

correct_14_record = find(labels_num(:,1)==14 & predicted(:)~=1); 
correct_14_no(i) = length(correct_14_record); 
total_18_record = find(labels_num(:,1)==18); 
total_18_no(i) = length(total_18_record); 
correct_18_record = find(labels_num(:,1)==18 & predicted(:)~=1); 
correct_18_no(i) = length(correct_18_record); 
total_26_record = find(labels_num(:,1)==26); 
total_26_no(i) = length(total_26_record); 
correct_26_record = find(labels_num(:,1)==26 & predicted(:)~=1); 
correct_26_no(i) = length(correct_26_record); 
total_31_record = find(labels_num(:,1)==31); 
total_31_no(i) = length(total_31_record); 
correct_31_record = find(labels_num(:,1)==31 & predicted(:)~=1); 
correct_31_no(i) = length(correct_31_record); 
total_36_record = find(labels_num(:,1)==36); 
total_36_no(i) = length(total_36_record); 
correct_36_record = find(labels_num(:,1)==36 & predicted(:)~=1); 
correct_36_no(i) = length(correct_36_record); 
total_41_record = find(labels_num(:,1)==41); 
total_41_no(i) = length(total_41_record); 
correct_41_record = find(labels_num(:,1)==41 & predicted(:)~=1); 
correct_41_no(i) = length(correct_41_record); 
end 
 
main.m 
clc; 
clear all; 
close all; 
% READING DATA 
t0 = clock; 
kdd_train = som_read_data('kdd_org_Data_allnumber.txt'); 
kdd_test = som_read_data('kdd_test_Data_allnumber.txt'); 
t = etime(clock,t0); 
fprintf('\nreading data time =%6.2f sec\n', t); 
% SEPARATE DATA to normal, dos, probe, u2r and r2l categories 
[all_normal_train.data, all_normal_train.labels, ... 
 all_dos_train.data,    all_dos_train.labels, ... 
 all_probe_train.data,  all_probe_train.labels, ... 
 all_u2r_train.data,    all_u2r_train.labels, ... 
 all_r2l_train.data,    all_r2l_train.labels] = dataprocess(kdd_train.data, kdd_train.labels); 
 [all_normal_test.data, all_normal_test.labels, ... 
 all_dos_test.data,    all_dos_test.labels, ... 
 all_probe_test.data,  all_probe_test.labels, ... 
 all_u2r_test.data,    all_u2r_test.labels, ... 
 all_r2l_test.data,    all_r2l_test.labels] = dataprocess(kdd_test.data, kdd_test.labels); 
% TRAINING 
% original – 494,020 
% normal:97,277, dos:391,458, probe:4,107, u2r:52, r2l:1,126 
% no duplicate – 145,585 
% normal:87,831, dos:54,572, probe:2,131, u2r:52, r2l:999 
% selected no. of training records in each category 
normal_train_record_no = 878; 
dos_train_record_no = 0; 
probe_train_record_no = 0; 



 

130 

u2r_train_record_no = 0; 
r2l_train_record_no = 99; 
train_record_no = normal_train_record_no + dos_train_record_no + probe_train_record_no + 
u2r_train_record_no + r2l_train_record_no; 
% TESTING 
% original – 311,029 
% normal:60,593, dos:229,853, probe:4,166, u2r:228, r2l:16,189 
% no duplicate – 77,291 
% normal:47,913, dos:23,568, probe:2,682, u2r:215, r2l:2,913 
% selected no. of testing records in each category 
normal_test_record_no = 479; 
dos_test_record_no = 0; 
probe_test_record_no = 0; 
u2r_test_record_no = 0; 
r2l_test_record_no = 291; 
test_record_no = normal_test_record_no + dos_test_record_no + probe_test_record_no + 
u2r_test_record_no + r2l_test_record_no; 
% attack_index: normal = 1, dos = 2, probe = 3, r2l = 4, u2r = 5 
attack_index = 4; 
% attack_label: normal = 1, dos = 2, probe = 3, r2l = 4, u2r = 5 for knn, fknn, etknn 
attack_label = 4;  
% attack_label: 2 for myknn 
attack_mylabel = 2; % fix 
attack_train_record_no = r2l_train_record_no; 
attack_test_record_no = r2l_test_record_no; 
nn = 2; % number of nearest neighbors 
iter_no = 3; % number of iteration 
for k = 1:nn 
for iter = 1:iter_no 
% RANDOMLY SELECT records  
% randomly select records for normal, dos, probe, u2r and r2l category  
[normal_train.data,normal_train.labels,normal_left.data,normal_left.labels] = 
transfer(all_normal_train.data,all_normal_train.labels,normal_train_record_no); 
[dos_train.data,dos_train.labels,dos_left.data,dos_left.labels] = 
transfer(all_dos_train.data,all_dos_train.labels,dos_train_record_no); 
[probe_train.data,probe_train.labels,probe_left.data,probe_left.labels] = 
transfer(all_probe_train.data,all_probe_train.labels,probe_train_record_no); 
[u2r_train.data,u2r_train.labels,u2r_left.data,u2r_left.labels] = 
transfer(all_u2r_train.data,all_u2r_train.labels,u2r_train_record_no); 
[r2l_train.data,r2l_train.labels,r2l_left.data,r2l_left.labels] = 
transfer(all_r2l_train.data,all_r2l_train.labels,r2l_train_record_no); 
 [normal_test.data,normal_test.labels,normal_left.data,normal_left.labels] = 
transfer(all_normal_test.data,all_normal_test.labels,normal_test_record_no); 
[dos_test.data,dos_test.labels,dos_left.data,dos_left.labels] = 
transfer(all_dos_test.data,all_dos_test.labels,dos_test_record_no); 
[probe_test.data,probe_test.labels,probe_left.data,probe_left.labels] = 
transfer(all_probe_test.data,all_probe_test.labels,probe_test_record_no); 
[u2r_test.data,u2r_test.labels,u2r_left.data,u2r_left.labels] = 
transfer(all_u2r_test.data,all_u2r_test.labels,u2r_test_record_no); 
[r2l_test.data,r2l_test.labels,r2l_left.data,r2l_left.labels] = 
transfer(all_r2l_test.data,all_r2l_test.labels,r2l_test_record_no); 
% FINAL data set 
mytrain.data = [normal_train.data;dos_train.data;probe_train.data;u2r_train.data;r2l_train.data]; 
mytrain.labels = [normal_train.labels;dos_train.labels;probe_train.labels;u2r_train.labels;r2l_train.labels]; 



 

131 

mytest.data = [normal_test.data;dos_test.data;probe_test.data;u2r_test.data;r2l_test.data]; 
mytest.labels = [normal_test.labels;dos_test.labels;probe_test.labels;u2r_test.labels;r2l_test.labels]; 
% NORMALIZATION of features  
data_train.X = mytrain.data; 
data_train = clust_normalize(data_train,'range'); 
mytrain.data = data_train.X; 
data_test.X = mytest.data; 
data_test = clust_normalize(data_test,'range'); 
mytest.data = data_test.X; 
% FEATURE SELECTION 
fs = 1;  
% BASIC: 1-9 
          % 1  2  3  4  5  6  7  8  9  10  
w_e = [ 1; 1; 1; 1; 1; 1; 0; 0; 0; 1; ...    %   1-10 

0; 1; 0; 0; 0; 0; 1; 0; 0; 0; ...    % 11-20  
0; 0; 1; 1; 0; 0; 1; 1; 1; 0; ...    % 21-30  
1; 1; 1; 1; 0; 1; 0; 0; 1; 0; 0];   % 31-41 

% CONTENT: 10-22 
          % 1  2  3  4  5  6  7  8  9  10  
w_f = [ 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; ...    %   1-10 
  1; 1; 1; 1; 1; 1; 1; 1; 1; 1; ...    % 11-20  

1; 1; 0; 0; 0; 0; 0; 0; 0; 0; ...    % 21-30  
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];   % 31-41    

% TRAFFIC: 23-41 
          % 1  2  3  4  5  6  7  8  9  10  
w_g = [ 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; ...    %   1-10 

0; 0; 0; 0; 0; 0; 0; 0; 0; 0; ...    % 11-20  
0; 0; 1; 1; 1; 1; 1; 1; 1; 1; ...    % 21-30  
1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1];   % 31-41           

% All: 1-41 
          % 1  2  3  4  5  6  7  8  9  10  
w_a = [ 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; ...    %   1-10 

1; 1; 1; 1; 1; 1; 1; 1; 1; 1; ...    % 11-20  
1; 1; 1; 1; 1; 1; 1; 1; 1; 1; ...    % 21-30  
1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1];   % 31-41 

% Ours 
% dos : 1,2,3,4,5,6,12,23,24,31,32,37 
% probe : 1,2,3,4,12,16,25,27,28,29,30,40  
% u2r : 1,2,3,10,16 
% r2l : 1,2,3,4,5,10,22 
          % 1  2  3  4  5  6  7  8  9  10  
w_b = [ 1; 1; 1; 1; 1; 0; 0; 0; 0; 1; ...    %   1-10 

0; 0; 0; 0; 0; 0; 0; 0; 0; 0; ...    % 11-20  
0; 1; 0; 0; 0; 0; 0; 0; 0; 0; ...    % 21-30  
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];   % 31-41 

% CFS 
% dos : 3,6,12,37 
% probe : 3,4,25,29 
% u2r : 10 
% r2l : 10 
          % 1  2  3  4  5  6  7  8  9  10  
w_c = [ 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; ...    %   1-10 

0; 0; 0; 0; 0; 0; 0; 0; 0; 0; ...    % 11-20  
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; ...    % 21-30  



 

132 

 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];  % 31-41 
% FCBF 
% dos : 3,12,31,32 
% probe : 3,26,27,29 
% u2r : 10,16 
% r2l : 5,10,39 
          % 1  2  3  4  5  6  7  8  9  10  
w_d = [ 0; 0; 0; 0; 1; 0; 0; 0; 0; 1; ...    %   1-10 

0; 0; 0; 0; 0; 0; 0; 0; 1; 0; ...    % 11-20  
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; ...    % 21-30  
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];   % 31-41 

 [train_data_a, test_data_a] = fselection(mytrain.data, mytest.data, fs, w_a); 
[train_data_b, test_data_b] = fselection(mytrain.data, mytest.data, fs, w_b); 
[train_data_c, test_data_c] = fselection(mytrain.data, mytest.data, fs, w_c); 
[train_data_d, test_data_d] = fselection(mytrain.data, mytest.data, fs, w_d); 
[train_data_e, test_data_e] = fselection(mytrain.data, mytest.data, fs, w_e); 
[train_data_f, test_data_f] = fselection(mytrain.data, mytest.data, fs, w_f); 
[train_data_g, test_data_g] = fselection(mytrain.data, mytest.data, fs, w_g); 
% CONVERTION 
% convert cell (mytrain.labels,mytest.labels) to number (train_labels_num,test_labels_num) 
% reason: fknn can only take number 
[train_labels_num,test_labels_num] = celltonum(mytrain.labels,mytest.labels); 
% for myknn 
% CLUSTERING 
% fuzzy cmeans  
class_no = 2; 
[center_a,U_a,objFcn] = fcm(train_data_a,class_no); % NxM, N = no of class, M = no of training records 
[center_b,U_b,objFcn] = fcm(train_data_b,class_no); 
[center_c,U_c,objFcn] = fcm(train_data_c,class_no);  
[center_d,U_d,objFcn] = fcm(train_data_d,class_no);  
[center_e,U_e,objFcn] = fcm(train_data_e,class_no);  
[center_f,U_f,objFcn] = fcm(train_data_f,class_no);  
[center_g,U_g,objFcn] = fcm(train_data_g,class_no);  
% for myknn 
% for FCM to find clustering order (final_perms) 
[finalperms_a, fcm1_labels_a] = fcm_order_binary(U_a, mytrain.labels); 
[finalperms_b, fcm1_labels_b] = fcm_order_binary(U_b, mytrain.labels); 
[finalperms_c, fcm1_labels_c] = fcm_order_binary(U_c, mytrain.labels); 
[finalperms_d, fcm1_labels_d] = fcm_order_binary(U_d, mytrain.labels); 
[finalperms_e, fcm1_labels_e] = fcm_order_binary(U_e, mytrain.labels); 
[finalperms_f, fcm1_labels_f] = fcm_order_binary(U_f, mytrain.labels); 
[finalperms_g, fcm1_labels_g] = fcm_order_binary(U_g, mytrain.labels); 
% CLASSIFICATION of k-NN, fuzzy k-NN, evidence-theoretic k-NN and my-knn 
% k-NN  
tic; 
[knn_predicted_a,  knn_memberships_a,  knn_numhits_a] = fknn(train_data_a, train_labels_num(:,2), 
test_data_a, test_labels_num(:,2), k, 0, 0);  
t_knn_a = toc; tic; 
[knn_predicted_b,  knn_memberships_b,  knn_numhits_b] = fknn(train_data_b, train_labels_num(:,2), 
test_data_b, test_labels_num(:,2), k, 0, 0);  
t_knn_b = toc; tic; 
[knn_predicted_c,  knn_memberships_c,  knn_numhits_c] = fknn(train_data_c, train_labels_num(:,2), 
test_data_c, test_labels_num(:,2), k, 0, 0);  
t_knn_c = toc; tic; 



 

133 

[knn_predicted_d,  knn_memberships_d,  knn_numhits_d] = fknn(train_data_d, train_labels_num(:,2), 
test_data_d, test_labels_num(:,2), k, 0, 0);  
t_knn_d = toc; tic; 
[knn_predicted_e,  knn_memberships_e,  knn_numhits_e] = fknn(train_data_e, train_labels_num(:,2), 
test_data_e, test_labels_num(:,2), k, 0, 0);  
t_knn_e = toc; tic; 
[knn_predicted_f,  knn_memberships_f,  knn_numhits_f] = fknn(train_data_f, train_labels_num(:,2), 
test_data_f, test_labels_num(:,2), k, 0, 0);  
t_knn_f = toc; tic; 
[knn_predicted_g,  knn_memberships_g,  knn_numhits_g] = fknn(train_data_g, train_labels_num(:,2), 
test_data_g, test_labels_num(:,2), k, 0, 0);  
t_knn_g = toc; 
% fuzzy k-NN 
tic; 
 [fknn_predicted_a, fknn_memberships_a, fknn_numhits_a] = fknn(train_data_a, train_labels_num(:,2), 
test_data_a, test_labels_num(:,2), k, 0);  
t_fknn_a = toc; tic; 
[fknn_predicted_b, fknn_memberships_b, fknn_numhits_b] = fknn(train_data_b, train_labels_num(:,2), 
test_data_b, test_labels_num(:,2), k, 0);  
t_fknn_b = toc; tic; 
[fknn_predicted_c, fknn_memberships_c, fknn_numhits_c] = fknn(train_data_c, train_labels_num(:,2), 
test_data_c, test_labels_num(:,2), k, 0);  
t_fknn_c = toc; tic; 
[fknn_predicted_d, fknn_memberships_d, fknn_numhits_d] = fknn(train_data_d, train_labels_num(:,2), 
test_data_d, test_labels_num(:,2), k, 0);  
t_fknn_d = toc; tic; 
[fknn_predicted_e, fknn_memberships_e, fknn_numhits_e] = fknn(train_data_e, train_labels_num(:,2), 
test_data_e, test_labels_num(:,2), k, 0);  
t_fknn_e = toc; tic; 
[fknn_predicted_f, fknn_memberships_f, fknn_numhits_f] = fknn(train_data_f, train_labels_num(:,2), 
test_data_f, test_labels_num(:,2), k, 0);  
t_fknn_f = toc; tic; 
[fknn_predicted_g, fknn_memberships_g, fknn_numhits_g] = fknn(train_data_g, train_labels_num(:,2), 
test_data_g, test_labels_num(:,2), k, 0);  
t_fknn_g = toc; 
% evidence-theoretic k-NN  
[gamm_a, alpha_a] = knndsinit(train_data_a, train_labels_num(:,2));  
tic; 
[etknn_memberships_a, etknn_predicted_a] = knndsval(train_data_a, 
train_labels_num(:,2),k,gamm_a,alpha_a,0,test_data_a); 
t_etknn_a = toc; 
[gamm_b, alpha_b] = knndsinit(train_data_b, train_labels_num(:,2));  
tic; 
[etknn_memberships_b, etknn_predicted_b] = knndsval(train_data_b, 
train_labels_num(:,2),k,gamm_b,alpha_b,0,test_data_b); 
t_etknn_b = toc; 
[gamm_c, alpha_c] = knndsinit(train_data_c, train_labels_num(:,2));  
tic; 
[etknn_memberships_c, etknn_predicted_c] = knndsval(train_data_c, 
train_labels_num(:,2),k,gamm_c,alpha_c,0,test_data_c); 
t_etknn_c = toc; 
[gamm_d, alpha_d] = knndsinit(train_data_d, train_labels_num(:,2));  
tic; 



 

134 

[etknn_memberships_d, etknn_predicted_d] = knndsval(train_data_d, 
train_labels_num(:,2),k,gamm_d,alpha_d,0,test_data_d); 
t_etknn_d = toc; 
[gamm_e, alpha_e] = knndsinit(train_data_e, train_labels_num(:,2));  
tic; 
[etknn_memberships_e, etknn_predicted_e] = knndsval(train_data_e, 
train_labels_num(:,2),k,gamm_e,alpha_e,0,test_data_e); 
t_etknn_e = toc; 
[gamm_f, alpha_f] = knndsinit(train_data_f, train_labels_num(:,2));  
tic; 
[etknn_memberships_f, etknn_predicted_f] = knndsval(train_data_f, 
train_labels_num(:,2),k,gamm_f,alpha_f,0,test_data_f); 
t_etknn_f = toc; 
[gamm_g, alpha_g] = knndsinit(train_data_g, train_labels_num(:,2));  
tic; 
[etknn_memberships_g, etknn_predicted_g] = knndsval(train_data_g, 
train_labels_num(:,2),k,gamm_g,alpha_g,0,test_data_g); 
t_etknn_g = toc; 
tic; 
[myknn_memberships_a, myknn_predicted_a] = myknn_binary(train_data_a, 
train_labels_num(:,2),k,U_a,0,test_data_a,finalperms_a); 
t_myknn_a = toc; tic; 
[myknn_memberships_b, myknn_predicted_b] = myknn_binary(train_data_b, 
train_labels_num(:,2),k,U_b,0,test_data_b,finalperms_b); 
t_myknn_b = toc; tic; 
[myknn_memberships_c, myknn_predicted_c] = myknn_binary(train_data_c, 
train_labels_num(:,2),k,U_c,0,test_data_c,finalperms_c); 
t_myknn_c = toc; tic; 
[myknn_memberships_d, myknn_predicted_d] = myknn_binary(train_data_d, 
train_labels_num(:,2),k,U_d,0,test_data_d,finalperms_d); 
t_myknn_d = toc; tic; 
[myknn_memberships_e, myknn_predicted_e] = myknn_binary(train_data_e, 
train_labels_num(:,2),k,U_e,0,test_data_e,finalperms_e); 
t_myknn_e = toc; tic; 
[myknn_memberships_f, myknn_predicted_f] = myknn_binary(train_data_f, 
train_labels_num(:,2),k,U_f,0,test_data_f,finalperms_f); 
t_myknn_f = toc; tic; 
[myknn_memberships_g, myknn_predicted_g] = myknn_binary(train_data_g, 
train_labels_num(:,2),k,U_g,0,test_data_g,finalperms_g); 
t_myknn_g = toc; 
train_data_a_w = train_data_a; 
test_data_a_w = test_data_a; 
mytrain.labels_a_w = mytrain.labels; 
train_labels_num_a_w = train_labels_num; 
U_a_w = U_a; 
finalperms_a_w = finalperms_a; 
[m_a_w,L_a_w] = 
myknn_binary(train_data_a_w,train_labels_num_a_w(:,2),k,U_a_w,0,train_data_a_w,finalperms_a_w); 
a_w = weight(train_data_a_w,train_labels_num_a_w,m_a_w); 
tic; 
[myknn_memberships_a_w,myknn_predicted_a_w] = 
myknn_binary_w(train_data_a_w,train_labels_num_a_w(:,2),k,U_a_w,0,test_data_a_w,finalperms_a_w,a_
w); 
t_myknn_a_w = toc; 



 

135 

train_data_b_w = train_data_b; 
test_data_b_w = test_data_b; 
mytrain.labels_b_w = mytrain.labels; 
train_labels_num_b_w = train_labels_num; 
U_b_w = U_b; 
finalperms_b_w = finalperms_b; 
[m_b_w,L_b_w] = 
myknn_binary(train_data_b_w,train_labels_num_b_w(:,2),k,U_b_w,0,train_data_b_w,finalperms_b_w); 
b_w = weight(train_data_b_w,train_labels_num_b_w,m_b_w); 
tic; 
[myknn_memberships_b_w,myknn_predicted_b_w] = 
myknn_binary_w(train_data_b_w,train_labels_num_b_w(:,2),k,U_b_w,0,test_data_b_w,finalperms_b_w,b
_w); 
t_myknn_b_w = toc; 
train_data_c_w = train_data_c; 
test_data_c_w = test_data_c; 
mytrain.labels_c_w = mytrain.labels; 
train_labels_num_c_w = train_labels_num; 
U_c_w = U_c; 
finalperms_c_w = finalperms_c; 
[m_c_w,L_c_w] = 
myknn_binary(train_data_c_w,train_labels_num_c_w(:,2),k,U_c_w,0,train_data_c_w,finalperms_c_w); 
c_w = weight(train_data_c_w,train_labels_num_c_w,m_c_w); 
tic; 
[myknn_memberships_c_w,myknn_predicted_c_w] = 
myknn_binary_w(train_data_c_w,train_labels_num_c_w(:,2),k,U_c_w,0,test_data_c_w,finalperms_c_w,c_
w); 
t_myknn_c_w = toc; 
train_data_d_w = train_data_d; 
test_data_d_w = test_data_d; 
mytrain.labels_d_w = mytrain.labels; 
train_labels_num_d_w = train_labels_num; 
U_d_w = U_d; 
finalperms_d_w = finalperms_d; 
[m_d_w,L_d_w] = 
myknn_binary(train_data_d_w,train_labels_num_d_w(:,2),k,U_d_w,0,train_data_d_w,finalperms_d_w); 
d_w = weight(train_data_d_w,train_labels_num_d_w,m_d_w); 
tic; 
[myknn_memberships_d_w,myknn_predicted_d_w] = 
myknn_binary_w(train_data_d_w,train_labels_num_d_w(:,2),k,U_d_w,0,test_data_d_w,finalperms_d_w,d
_w); 
t_myknn_d_w = toc; 
fprintf('k = %d\n', k); 
fprintf('\n KNN'); 
[knn_correct_normal_rate_a, knn_correct_attack_rate_a] = ... 
    accuracy_binary(test_labels_num, knn_predicted_a, normal_test_record_no, attack_test_record_no,    
attack_index, attack_label); 
[knn_correct_normal_rate_b, knn_correct_attack_rate_b] = ... 
    accuracy_binary(test_labels_num, knn_predicted_b, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[knn_correct_normal_rate_c, knn_correct_attack_rate_c] = ... 
    accuracy_binary(test_labels_num, knn_predicted_c, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[knn_correct_normal_rate_d, knn_correct_attack_rate_d] = ... 



 

136 

    accuracy_binary(test_labels_num, knn_predicted_d, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[knn_correct_normal_rate_e, knn_correct_attack_rate_e] = ... 
    accuracy_binary(test_labels_num, knn_predicted_e, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[knn_correct_normal_rate_f, knn_correct_attack_rate_f] = ... 
    accuracy_binary(test_labels_num, knn_predicted_f, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[knn_correct_normal_rate_g, knn_correct_attack_rate_g] = ... 
    accuracy_binary(test_labels_num, knn_predicted_g, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
fprintf('\n FKNN'); 
[fknn_correct_normal_rate_a, fknn_correct_attack_rate_a] = ... 
    accuracy_binary(test_labels_num, fknn_predicted_a, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[fknn_correct_normal_rate_b, fknn_correct_attack_rate_b] = ... 
    accuracy_binary(test_labels_num, fknn_predicted_b, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[fknn_correct_normal_rate_c, fknn_correct_attack_rate_c] = ... 
    accuracy_binary(test_labels_num, fknn_predicted_c, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[fknn_correct_normal_rate_d, fknn_correct_attack_rate_d] = ... 
    accuracy_binary(test_labels_num, fknn_predicted_d, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[fknn_correct_normal_rate_e, fknn_correct_attack_rate_e] = ... 
    accuracy_binary(test_labels_num, fknn_predicted_e, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[fknn_correct_normal_rate_f, fknn_correct_attack_rate_f] = ... 
    accuracy_binary(test_labels_num, fknn_predicted_f, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[fknn_correct_normal_rate_g, fknn_correct_attack_rate_g] = ... 
    accuracy_binary(test_labels_num, fknn_predicted_g, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
fprintf('\n ETKNN'); 
[etknn_correct_normal_rate_a, etknn_correct_attack_rate_a] = ... 
    accuracy_binary(test_labels_num, etknn_predicted_a, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[etknn_correct_normal_rate_b, etknn_correct_attack_rate_b] = ... 
    accuracy_binary(test_labels_num, etknn_predicted_b, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[etknn_correct_normal_rate_c, etknn_correct_attack_rate_c] = ... 
    accuracy_binary(test_labels_num, etknn_predicted_c, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[etknn_correct_normal_rate_d, etknn_correct_attack_rate_d] = ... 
    accuracy_binary(test_labels_num, etknn_predicted_d, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[etknn_correct_normal_rate_e, etknn_correct_attack_rate_e] = ... 
    accuracy_binary(test_labels_num, etknn_predicted_e, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[etknn_correct_normal_rate_f, etknn_correct_attack_rate_f] = ... 
    accuracy_binary(test_labels_num, etknn_predicted_f, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
[etknn_correct_normal_rate_g, etknn_correct_attack_rate_g] = ... 



 

137 

    accuracy_binary(test_labels_num, etknn_predicted_g, normal_test_record_no, attack_test_record_no, 
attack_index, attack_label); 
fprintf('\n MYKNN'); 
[myknn_correct_normal_rate_a, myknn_correct_attack_rate_a] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_a, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_b, myknn_correct_attack_rate_b] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_b, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_c, myknn_correct_attack_rate_c] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_c, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_d, myknn_correct_attack_rate_d] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_d, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_e, myknn_correct_attack_rate_e] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_e, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_f, myknn_correct_attack_rate_f] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_f, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_g, myknn_correct_attack_rate_g] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_g, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
fprintf('\n MYKNN-W'); 
[myknn_correct_normal_rate_a_w, myknn_correct_attack_rate_a_w] = ... 
accuracy_binary(test_labels_num, myknn_predicted_a_w, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_b_w, myknn_correct_attack_rate_b_w] = ... 
accuracy_binary(test_labels_num, myknn_predicted_b_w, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_c_w, myknn_correct_attack_rate_c_w] = ... 
accuracy_binary(test_labels_num, myknn_predicted_c_w, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
[myknn_correct_normal_rate_d_w, myknn_correct_attack_rate_d_w] = ... 
accuracy_binary(test_labels_num, myknn_predicted_d_w, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
A_memberships = myknn_memberships_b; 
A_predicted = myknn_predicted_b; 
B_memberships = myknn_memberships_e; 
B_predicted = myknn_predicted_e; 
C_memberships = myknn_memberships_f; 
C_predicted = myknn_predicted_f; 
D_memberships = myknn_memberships_g; 
D_predicted = myknn_predicted_g; 
E_memberships = myknn_memberships_e; 
E_predicted = myknn_predicted_e; 
F_memberships = myknn_memberships_a; 
F_predicted = myknn_predicted_a; 
G_memberships = etknn_memberships_b; 
G_predicted = etknn_predicted_b; 
G_membership(:,1) = G_memberships(:,1); 
G_membership(:,2) = G_memberships(:,attack_label); 
G_membership(:,3) = G_memberships(:,attack_label+1); 



 

138 

H_memberships = etknn_memberships_d; 
H_predicted = etknn_predicted_d; 
H_membership(:,1) = H_memberships(:,1); 
H_membership(:,2) = H_memberships(:,attack_label); 
H_membership(:,3) = H_memberships(:,attack_label+1); 
I_memberships = etknn_memberships_c; 
I_predicted = etknn_predicted_c; 
I_membership(:,1) = I_memberships(:,1); 
I_membership(:,2) = I_memberships(:,attack_label); 
I_membership(:,3) = I_memberships(:,attack_label+1); 
    if finalperms_b == [2 1] 
       A_membership(:,1) = A_memberships(:,2); 
       A_membership(:,2) = A_memberships(:,1); 
       A_membership(:,3) = A_memberships(:,3); 
    else  
       A_membership = A_memberships;  
    end 
    if finalperms_e == [2 1] 
       B_membership(:,1) = B_memberships(:,2); 
       B_membership(:,2) = B_memberships(:,1); 
       B_membership(:,3) = B_memberships(:,3); 
     else  
       B_membership = B_memberships; 
    end       
    if finalperms_f == [2 1]        
       C_membership(:,1) = C_memberships(:,2); 
       C_membership(:,2) = C_memberships(:,1); 
       C_membership(:,3) = C_memberships(:,3); 
    else  
       C_membership = C_memberships; 
    end 
    if finalperms_g == [2 1]        
       D_membership(:,1) = D_memberships(:,2); 
       D_membership(:,2) = D_memberships(:,1); 
       D_membership(:,3) = D_memberships(:,3); 
    else  
       D_membership = D_memberships; 
    end 
    if finalperms_e == [2 1]        
       E_membership(:,1) = E_memberships(:,2); 
       E_membership(:,2) = E_memberships(:,1); 
       E_membership(:,3) = E_memberships(:,3); 
    else  
       E_membership = E_memberships; 
    end 
    if finalperms_a == [2 1] 
       F_membership(:,1) = F_memberships(:,2); 
       F_membership(:,2) = F_memberships(:,1); 
       F_membership(:,3) = F_memberships(:,3); 
    else  
       F_membership = F_memberships;  
    end 
index = attack_mylabel; 
fprintf('\n ENSEMBLE'); 



 

139 

% ensemble: majority voting 
[ensemble_predicted_mv, predict_mv] = ensemble_mv(A_predicted, ... 

  C_predicted, ... 
  D_predicted, ... 
  test_labels_num);   

[ensemble_correct_normal_rate_mv, ensemble_correct_attack_rate_mv] = ... 
   accuracy_binary(test_labels_num, ensemble_predicted_mv, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
A1 = myknn_correct_normal_rate_b; 
A2 = myknn_correct_attack_rate_b; 
A_p = myknn_predicted_b; 
B1 = myknn_correct_normal_rate_e; 
B2 = myknn_correct_attack_rate_e; 
B_p = myknn_predicted_e; 
C1 = myknn_correct_normal_rate_f; 
C2 = myknn_correct_attack_rate_f; 
C_p = myknn_predicted_f; 
D1 = myknn_correct_normal_rate_g; 
D2 = myknn_correct_attack_rate_g; 
D_p = myknn_predicted_g; 
% ensemble: average 
[ensemble_memberships_avg, ensemble_predicted_avg, predict_avg] = ensemble_avg(A_membership, … 

A1, A2, index, ... 
B_membership, B1, B2, ... 
C_membership, C1, C2, ... 
D_membership, D1, D2, ... 
test_labels_num); 

% ensemble: dempster-shafer 
[ensemble_memberships_m, ensemble_predicted_m, predict_m] = ensemble_m(A_membership, … 

A_predicted, index, ... 
B_membership, B_predicted, ... 
C_membership, C_predicted, ... 
D_membership, D_predicted, ... 
test_labels_num); 

[ensemble_correct_normal_rate_m, ensemble_correct_attack_rate_m] = ... 
   accuracy_binary(test_labels_num, ensemble_predicted_m, normal_test_record_no, attack_test_record_no, 
attack_index, attack_mylabel); 
% ensemble: naive bayes 
% prior probability 
if attack_index == 4 
   P1 = normal_test_record_no / (normal_test_record_no + r2l_test_record_no); % normal distribution 
   P2 = r2l_test_record_no / (normal_test_record_no + r2l_test_record_no); % attack distribution 
elseif attack_index == 5 
   P1 = normal_test_record_no / (normal_test_record_no + u2r_test_record_no); 
   P2 = u2r_test_record_no / (normal_test_record_no + u2r_test_record_no); 
end 
tic; 
[ensemble_predicted_bayes] = ensemble4(A1, A2, A_p, B1, B2, B_p, C1, C2, C_p, D1, D2, D_p, P1, P2); 
t_ensemble_bayes = toc; 
[ensemble_correct_normal_rate_bayes, ensemble_correct_attack_rate_bayes] = ... 
   accuracy_binary(test_labels_num, ensemble_predicted_bayes, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
% normal 
myknn_predicted_a_tree = myknn_predicted_a; 



 

140 

myknn_predicted_b_tree = myknn_predicted_b; 
myknn_predicted_c_tree = myknn_predicted_c; 
myknn_predicted_d_tree = myknn_predicted_d; 
myknn_predicted_e_tree = myknn_predicted_e; 
myknn_predicted_f_tree = myknn_predicted_f; 
myknn_predicted_g_tree = myknn_predicted_g; 
ensemble_predicted_tree_m = ensemble_predicted_m; 
ensemble_predicted_tree_mv = ensemble_predicted_mv; 
ensemble_predicted_tree_bayes = ensemble_predicted_bayes; 
% use reduced training set 145585 (41 features, normal-attacks) to generate rules 
tic; 
for i=1:size(myknn_predicted_a,1) 
if attack_index == 4 || attack_index == 5  
% 55229     
if data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 2 & ... 
    data_test.Xold(i,3) == 20  
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1; 
% 9541 
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 2 & ... 
    data_test.Xold(i,3) == 49  
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1; 
% 4611 
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  



 

141 

    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) >= 1 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,3) == 20 & ... 
    data_test.Xold(i,30) < 0.01 & ... 
    data_test.Xold(i,4) == 2 
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1; 
% 9167      
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 3 & ... 
    data_test.Xold(i,40) < 0.01 & ... 
    data_test.Xold(i,30) < 0.01 & ... 
    data_test.Xold(i,5) >= 30 & ... 
    data_test.Xold(i,5) < 158  
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1; 
% 1212 
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 3 & ... 
    data_test.Xold(i,40) < 0.01 & ... 
    data_test.Xold(i,30) >= 0.5  
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 



 

142 

        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1;  
% 107 
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 2 & ... 
    data_test.Xold(i,3) == 17 & ... 
    data_test.Xold(i,6) < 29 & ... 
    data_test.Xold(i,1) < 1 & ... 
    data_test.Xold(i,5) >= 5 & ... 
    data_test.Xold(i,5) < 30  
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1; 
% 611 
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 2 & ... 
    data_test.Xold(i,3) == 17 & ... 
    data_test.Xold(i,6) < 29 & ... 
    data_test.Xold(i,1) < 1 & ... 
    data_test.Xold(i,5) >= 32 & ... 
    data_test.Xold(i,5) < 246  
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1;         
% 88  
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 



 

143 

    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 2 & ... 
    data_test.Xold(i,3) == 17 & ... 
    data_test.Xold(i,6) < 29 & ... 
    data_test.Xold(i,1) < 1 & ... 
    data_test.Xold(i,5) >= 248 & ... 
    data_test.Xold(i,5) < 334  
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1;        
% 628  
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 2 & ... 
    data_test.Xold(i,3) == 17 & ... 
    data_test.Xold(i,6) < 29 & ... 
    data_test.Xold(i,1) < 1 & ... 
    data_test.Xold(i,5) >= 335 & ... 
    data_test.Xold(i,5) < 644  
        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1;  
% 2310         
elseif data_test.Xold(i,8) < 3 & ... 
    data_test.Xold(i,13) < 1 & ...  
    data_test.Xold(i,26) < 0.06 & ... 
    data_test.Xold(i,27) < 0.06 & ... 
    data_test.Xold(i,4) == 10 & ... 
    data_test.Xold(i,10) < 1 & ... 
    data_test.Xold(i,2) == 2 & ... 
    data_test.Xold(i,3) == 17 & ... 
    data_test.Xold(i,6) < 29 & ... 
    data_test.Xold(i,1) < 1 & ... 
    data_test.Xold(i,5) >= 726  



 

144 

        myknn_predicted_a_tree(i) = 1; 
        myknn_predicted_b_tree(i) = 1; 
        myknn_predicted_c_tree(i) = 1; 
        myknn_predicted_d_tree(i) = 1; 
        myknn_predicted_e_tree(i) = 1; 
        myknn_predicted_f_tree(i) = 1; 
        myknn_predicted_g_tree(i) = 1; 
        ensemble_predicted_tree_m(i) = 1; 
        ensemble_predicted_tree_mv(i) = 1; 
        ensemble_predicted_tree_bayes(i) = 1;  
end 
end 
end 
t_tree = toc; 
 [myknn_correct_normal_rate_a_tree, myknn_correct_attack_rate_a_tree] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_a_tree, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[myknn_correct_normal_rate_b_tree, myknn_correct_attack_rate_b_tree] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_b_tree, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[myknn_correct_normal_rate_c_tree, myknn_correct_attack_rate_c_tree] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_c_tree, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[myknn_correct_normal_rate_d_tree, myknn_correct_attack_rate_d_tree] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_d_tree, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[myknn_correct_normal_rate_e_tree, myknn_correct_attack_rate_e_tree] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_e_tree, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[myknn_correct_normal_rate_f_tree, myknn_correct_attack_rate_f_tree] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_f_tree, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[myknn_correct_normal_rate_g_tree, myknn_correct_attack_rate_g_tree] = ... 
    accuracy_binary(test_labels_num, myknn_predicted_g_tree, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[ensemble_correct_normal_rate_tree_m, ensemble_correct_attack_rate_tree_m] = ... 
    accuracy_binary(test_labels_num, ensemble_predicted_tree_m, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[ensemble_correct_normal_rate_tree_mv, ensemble_correct_attack_rate_tree_mv] = ... 
    accuracy_binary(test_labels_num, ensemble_predicted_tree_mv, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
[ensemble_correct_normal_rate_tree_bayes, ensemble_correct_attack_rate_tree_bayes] = ... 
    accuracy_binary(test_labels_num, ensemble_predicted_tree_bayes, normal_test_record_no, 
attack_test_record_no, attack_index, attack_mylabel); 
fprintf('\n KNN'); 
knn_normal_rate_a(iter)   = knn_correct_normal_rate_a; 
knn_attack_rate_a(iter)   = knn_correct_attack_rate_a; 
knn_normal_rate_b(iter)   = knn_correct_normal_rate_b; 
knn_attack_rate_b(iter)   = knn_correct_attack_rate_b; 
knn_normal_rate_c(iter)   = knn_correct_normal_rate_c; 
knn_attack_rate_c(iter)   = knn_correct_attack_rate_c; 
knn_normal_rate_d(iter)   = knn_correct_normal_rate_d; 
knn_attack_rate_d(iter)   = knn_correct_attack_rate_d; 
knn_normal_rate_e(iter)   = knn_correct_normal_rate_e; 



 

145 

knn_attack_rate_e(iter)   = knn_correct_attack_rate_e; 
knn_normal_rate_f(iter)   = knn_correct_normal_rate_f; 
knn_attack_rate_f(iter)   = knn_correct_attack_rate_f; 
knn_normal_rate_g(iter)   = knn_correct_normal_rate_g; 
knn_attack_rate_g(iter)   = knn_correct_attack_rate_g; 
knn_rate_a(iter) = (knn_correct_normal_rate_a*normal_test_record_no + 
knn_correct_attack_rate_a*attack_test_record_no)/test_record_no; 
knn_rate_b(iter) = (knn_correct_normal_rate_b*normal_test_record_no + 
knn_correct_attack_rate_b*attack_test_record_no)/test_record_no; 
knn_rate_c(iter) = (knn_correct_normal_rate_c*normal_test_record_no + 
knn_correct_attack_rate_c*attack_test_record_no)/test_record_no; 
knn_rate_d(iter) = (knn_correct_normal_rate_d*normal_test_record_no + 
knn_correct_attack_rate_d*attack_test_record_no)/test_record_no; 
knn_rate_e(iter) = (knn_correct_normal_rate_e*normal_test_record_no + 
knn_correct_attack_rate_e*attack_test_record_no)/test_record_no; 
knn_rate_f(iter) = (knn_correct_normal_rate_f*normal_test_record_no + 
knn_correct_attack_rate_f*attack_test_record_no)/test_record_no; 
knn_rate_g(iter) = (knn_correct_normal_rate_g*normal_test_record_no + 
knn_correct_attack_rate_g*attack_test_record_no)/test_record_no; 
time_knn_a(iter) = t_knn_a; 
time_knn_b(iter) = t_knn_b; 
time_knn_c(iter) = t_knn_c; 
time_knn_d(iter) = t_knn_d; 
time_knn_e(iter) = t_knn_e; 
time_knn_f(iter) = t_knn_f; 
time_knn_g(iter) = t_knn_g; 
fprintf('\n FKNN'); 
fknn_normal_rate_a(iter)  = fknn_correct_normal_rate_a; 
fknn_attack_rate_a(iter)  = fknn_correct_attack_rate_a; 
fknn_normal_rate_b(iter)  = fknn_correct_normal_rate_b; 
fknn_attack_rate_b(iter)  = fknn_correct_attack_rate_b; 
fknn_normal_rate_c(iter)  = fknn_correct_normal_rate_c; 
fknn_attack_rate_c(iter)  = fknn_correct_attack_rate_c; 
fknn_normal_rate_d(iter)  = fknn_correct_normal_rate_d; 
fknn_attack_rate_d(iter)  = fknn_correct_attack_rate_d; 
fknn_normal_rate_e(iter)  = fknn_correct_normal_rate_e; 
fknn_attack_rate_e(iter)  = fknn_correct_attack_rate_e; 
fknn_normal_rate_f(iter)  = fknn_correct_normal_rate_f; 
fknn_attack_rate_f(iter)  = fknn_correct_attack_rate_f; 
fknn_normal_rate_g(iter)  = fknn_correct_normal_rate_g; 
fknn_attack_rate_g(iter)  = fknn_correct_attack_rate_g; 
fknn_rate_a(iter) = (fknn_correct_normal_rate_a*normal_test_record_no + 
fknn_correct_attack_rate_a*attack_test_record_no)/test_record_no; 
fknn_rate_b(iter) = (fknn_correct_normal_rate_b*normal_test_record_no + 
fknn_correct_attack_rate_b*attack_test_record_no)/test_record_no; 
fknn_rate_c(iter) = (fknn_correct_normal_rate_c*normal_test_record_no + 
fknn_correct_attack_rate_c*attack_test_record_no)/test_record_no; 
fknn_rate_d(iter) = (fknn_correct_normal_rate_d*normal_test_record_no + 
fknn_correct_attack_rate_d*attack_test_record_no)/test_record_no; 
fknn_rate_e(iter) = (fknn_correct_normal_rate_e*normal_test_record_no + 
fknn_correct_attack_rate_e*attack_test_record_no)/test_record_no; 
fknn_rate_f(iter) = (fknn_correct_normal_rate_f*normal_test_record_no + 
fknn_correct_attack_rate_f*attack_test_record_no)/test_record_no; 



 

146 

fknn_rate_g(iter) = (fknn_correct_normal_rate_g*normal_test_record_no + 
fknn_correct_attack_rate_g*attack_test_record_no)/test_record_no; 
time_fknn_a(iter) = t_fknn_a; 
time_fknn_b(iter) = t_fknn_b; 
time_fknn_c(iter) = t_fknn_c; 
time_fknn_d(iter) = t_fknn_d; 
time_fknn_e(iter) = t_fknn_e; 
time_fknn_f(iter) = t_fknn_f; 
time_fknn_g(iter) = t_fknn_g; 
fprintf('\n ETKNN'); 
etknn_normal_rate_a(iter) = etknn_correct_normal_rate_a; 
etknn_attack_rate_a(iter) = etknn_correct_attack_rate_a; 
etknn_normal_rate_b(iter) = etknn_correct_normal_rate_b; 
etknn_attack_rate_b(iter) = etknn_correct_attack_rate_b; 
etknn_normal_rate_c(iter) = etknn_correct_normal_rate_c; 
etknn_attack_rate_c(iter) = etknn_correct_attack_rate_c; 
etknn_normal_rate_d(iter) = etknn_correct_normal_rate_d; 
etknn_attack_rate_d(iter) = etknn_correct_attack_rate_d; 
etknn_normal_rate_e(iter) = etknn_correct_normal_rate_e; 
etknn_attack_rate_e(iter) = etknn_correct_attack_rate_e; 
etknn_normal_rate_f(iter) = etknn_correct_normal_rate_f; 
etknn_attack_rate_f(iter) = etknn_correct_attack_rate_f; 
etknn_normal_rate_g(iter) = etknn_correct_normal_rate_g; 
etknn_attack_rate_g(iter) = etknn_correct_attack_rate_g; 
etknn_rate_a(iter) = (etknn_correct_normal_rate_a*normal_test_record_no + 
etknn_correct_attack_rate_a*attack_test_record_no)/test_record_no; 
etknn_rate_b(iter) = (etknn_correct_normal_rate_b*normal_test_record_no + 
etknn_correct_attack_rate_b*attack_test_record_no)/test_record_no; 
etknn_rate_c(iter) = (etknn_correct_normal_rate_c*normal_test_record_no + 
etknn_correct_attack_rate_c*attack_test_record_no)/test_record_no; 
etknn_rate_d(iter) = (etknn_correct_normal_rate_d*normal_test_record_no + 
etknn_correct_attack_rate_d*attack_test_record_no)/test_record_no; 
etknn_rate_e(iter) = (etknn_correct_normal_rate_e*normal_test_record_no + 
etknn_correct_attack_rate_e*attack_test_record_no)/test_record_no; 
etknn_rate_f(iter) = (etknn_correct_normal_rate_f*normal_test_record_no + 
etknn_correct_attack_rate_f*attack_test_record_no)/test_record_no; 
etknn_rate_g(iter) = (etknn_correct_normal_rate_g*normal_test_record_no + 
etknn_correct_attack_rate_g*attack_test_record_no)/test_record_no; 
time_etknn_a(iter) = t_etknn_a; 
time_etknn_b(iter) = t_etknn_b; 
time_etknn_c(iter) = t_etknn_c; 
time_etknn_d(iter) = t_etknn_d; 
time_etknn_e(iter) = t_etknn_e; 
time_etknn_f(iter) = t_etknn_f; 
time_etknn_g(iter) = t_etknn_g; 
fprintf('\n MYKNN'); 
myknn_normal_rate_a(iter) = myknn_correct_normal_rate_a; 
myknn_attack_rate_a(iter) = myknn_correct_attack_rate_a; 
myknn_normal_rate_b(iter) = myknn_correct_normal_rate_b; 
myknn_attack_rate_b(iter) = myknn_correct_attack_rate_b; 
myknn_normal_rate_c(iter) = myknn_correct_normal_rate_c; 
myknn_attack_rate_c(iter) = myknn_correct_attack_rate_c; 
myknn_normal_rate_d(iter) = myknn_correct_normal_rate_d; 
myknn_attack_rate_d(iter) = myknn_correct_attack_rate_d; 



 

147 

myknn_normal_rate_e(iter) = myknn_correct_normal_rate_e; 
myknn_attack_rate_e(iter) = myknn_correct_attack_rate_e; 
myknn_normal_rate_f(iter) = myknn_correct_normal_rate_f; 
myknn_attack_rate_f(iter) = myknn_correct_attack_rate_f; 
myknn_normal_rate_g(iter) = myknn_correct_normal_rate_g; 
myknn_attack_rate_g(iter) = myknn_correct_attack_rate_g; 
myknn_rate_a(iter) = (myknn_correct_normal_rate_a*normal_test_record_no + 
myknn_correct_attack_rate_a*attack_test_record_no)/test_record_no; 
myknn_rate_b(iter) = (myknn_correct_normal_rate_b*normal_test_record_no + 
myknn_correct_attack_rate_b*attack_test_record_no)/test_record_no; 
myknn_rate_c(iter) = (myknn_correct_normal_rate_c*normal_test_record_no + 
myknn_correct_attack_rate_c*attack_test_record_no)/test_record_no; 
myknn_rate_d(iter) = (myknn_correct_normal_rate_d*normal_test_record_no + 
myknn_correct_attack_rate_d*attack_test_record_no)/test_record_no; 
myknn_rate_e(iter) = (myknn_correct_normal_rate_e*normal_test_record_no + 
myknn_correct_attack_rate_e*attack_test_record_no)/test_record_no; 
myknn_rate_f(iter) = (myknn_correct_normal_rate_f*normal_test_record_no + 
myknn_correct_attack_rate_f*attack_test_record_no)/test_record_no; 
myknn_rate_g(iter) = (myknn_correct_normal_rate_g*normal_test_record_no + 
myknn_correct_attack_rate_g*attack_test_record_no)/test_record_no; 
time_myknn_a(iter) = t_myknn_a; 
time_myknn_b(iter) = t_myknn_b; 
time_myknn_c(iter) = t_myknn_c; 
time_myknn_d(iter) = t_myknn_d; 
time_myknn_e(iter) = t_myknn_e; 
time_myknn_f(iter) = t_myknn_f; 
time_myknn_g(iter) = t_myknn_g; 
fprintf('\n MYKNN-W'); 
myknn_normal_rate_a_w(iter) = myknn_correct_normal_rate_a_w; 
myknn_attack_rate_a_w(iter) = myknn_correct_attack_rate_a_w; 
myknn_normal_rate_b_w(iter) = myknn_correct_normal_rate_b_w; 
myknn_attack_rate_b_w(iter) = myknn_correct_attack_rate_b_w; 
myknn_normal_rate_c_w(iter) = myknn_correct_normal_rate_c_w; 
myknn_attack_rate_c_w(iter) = myknn_correct_attack_rate_c_w; 
myknn_normal_rate_d_w(iter) = myknn_correct_normal_rate_d_w; 
myknn_attack_rate_d_w(iter) = myknn_correct_attack_rate_d_w; 
myknn_rate_a_w(iter) = (myknn_correct_normal_rate_a_w*normal_test_record_no + 
myknn_correct_attack_rate_a_w*attack_test_record_no)/test_record_no; 
myknn_rate_b_w(iter) = (myknn_correct_normal_rate_b_w*normal_test_record_no + 
myknn_correct_attack_rate_b_w*attack_test_record_no)/test_record_no; 
myknn_rate_c_w(iter) = (myknn_correct_normal_rate_c_w*normal_test_record_no + 
myknn_correct_attack_rate_c_w*attack_test_record_no)/test_record_no; 
myknn_rate_d_w(iter) = (myknn_correct_normal_rate_d_w*normal_test_record_no + 
myknn_correct_attack_rate_d_w*attack_test_record_no)/test_record_no; 
time_myknn_a_w(iter) = t_myknn_a_w; 
time_myknn_b_w(iter) = t_myknn_b_w; 
time_myknn_c_w(iter) = t_myknn_c_w; 
time_myknn_d_w(iter) = t_myknn_d_w; 
fprintf('\n ENSEMBLE'); 
ensemble_normal_rate_m(iter) = ensemble_correct_normal_rate_m; 
ensemble_attack_rate_m(iter) = ensemble_correct_attack_rate_m; 
ensemble_normal_rate_mv(iter) = ensemble_correct_normal_rate_mv; 
ensemble_attack_rate_mv(iter) = ensemble_correct_attack_rate_mv; 
ensemble_normal_rate_bayes(iter) = ensemble_correct_normal_rate_bayes; 



 

148 

ensemble_attack_rate_bayes(iter) = ensemble_correct_attack_rate_bayes; 
ensemble_rate_m(iter) = (ensemble_correct_normal_rate_m*normal_test_record_no + 
ensemble_correct_attack_rate_m*attack_test_record_no)/test_record_no; 
ensemble_rate_mv(iter) = (ensemble_correct_normal_rate_mv*normal_test_record_no + 
ensemble_correct_attack_rate_mv*attack_test_record_no)/test_record_no; 
ensemble_rate_bayes(iter) = (ensemble_correct_normal_rate_bayes*normal_test_record_no + 
ensemble_correct_attack_rate_bayes*attack_test_record_no)/test_record_no; 
time_ensemble_bayes(iter) = t_ensemble_bayes; 
fprintf('\n TREE'); 
myknn_normal_rate_a_tree(iter) = myknn_correct_normal_rate_a_tree; 
myknn_attack_rate_a_tree(iter) = myknn_correct_attack_rate_a_tree; 
myknn_normal_rate_b_tree(iter) = myknn_correct_normal_rate_b_tree; 
myknn_attack_rate_b_tree(iter) = myknn_correct_attack_rate_b_tree; 
myknn_normal_rate_c_tree(iter) = myknn_correct_normal_rate_c_tree; 
myknn_attack_rate_c_tree(iter) = myknn_correct_attack_rate_c_tree; 
myknn_normal_rate_d_tree(iter) = myknn_correct_normal_rate_d_tree; 
myknn_attack_rate_d_tree(iter) = myknn_correct_attack_rate_d_tree; 
myknn_normal_rate_e_tree(iter) = myknn_correct_normal_rate_e_tree; 
myknn_attack_rate_e_tree(iter) = myknn_correct_attack_rate_e_tree; 
myknn_normal_rate_f_tree(iter) = myknn_correct_normal_rate_f_tree; 
myknn_attack_rate_f_tree(iter) = myknn_correct_attack_rate_f_tree; 
myknn_normal_rate_g_tree(iter) = myknn_correct_normal_rate_g_tree; 
myknn_attack_rate_g_tree(iter) = myknn_correct_attack_rate_g_tree; 
myknn_rate_a_tree(iter) = (myknn_correct_normal_rate_a_tree*normal_test_record_no + 
myknn_correct_attack_rate_a_tree*attack_test_record_no)/test_record_no; 
myknn_rate_b_tree(iter) = (myknn_correct_normal_rate_b_tree*normal_test_record_no + 
myknn_correct_attack_rate_b_tree*attack_test_record_no)/test_record_no; 
myknn_rate_c_tree(iter) = (myknn_correct_normal_rate_c_tree*normal_test_record_no + 
myknn_correct_attack_rate_c_tree*attack_test_record_no)/test_record_no; 
myknn_rate_d_tree(iter) = (myknn_correct_normal_rate_d_tree*normal_test_record_no + 
myknn_correct_attack_rate_d_tree*attack_test_record_no)/test_record_no; 
myknn_rate_e_tree(iter) = (myknn_correct_normal_rate_e_tree*normal_test_record_no + 
myknn_correct_attack_rate_e_tree*attack_test_record_no)/test_record_no; 
myknn_rate_f_tree(iter) = (myknn_correct_normal_rate_f_tree*normal_test_record_no + 
myknn_correct_attack_rate_f_tree*attack_test_record_no)/test_record_no; 
myknn_rate_g_tree(iter) = (myknn_correct_normal_rate_g_tree*normal_test_record_no + 
myknn_correct_attack_rate_g_tree*attack_test_record_no)/test_record_no; 
fprintf('\n ENSENBLE + TREE'); 
ensemble_normal_rate_tree_m(iter) = ensemble_correct_normal_rate_tree_m; 
ensemble_attack_rate_tree_m(iter) = ensemble_correct_attack_rate_tree_m; 
ensemble_normal_rate_tree_mv(iter) = ensemble_correct_normal_rate_tree_mv; 
ensemble_attack_rate_tree_mv(iter) = ensemble_correct_attack_rate_tree_mv; 
ensemble_normal_rate_tree_bayes(iter) = ensemble_correct_normal_rate_tree_bayes; 
ensemble_attack_rate_tree_bayes(iter) = ensemble_correct_attack_rate_tree_bayes; 
ensemble_rate_tree_m(iter) = (ensemble_correct_normal_rate_tree_m*normal_test_record_no + 
ensemble_correct_attack_rate_tree_m*attack_test_record_no)/test_record_no; 
ensemble_rate_tree_mv(iter) = (ensemble_correct_normal_rate_tree_mv*normal_test_record_no + 
ensemble_correct_attack_rate_tree_mv*attack_test_record_no)/test_record_no; 
ensemble_rate_tree_bayes(iter) = (ensemble_correct_normal_rate_tree_bayes*normal_test_record_no + 
ensemble_correct_attack_rate_tree_bayes*attack_test_record_no)/test_record_no; 
time_tree(iter) = t_tree; 
%attacks in training set 
[train_3_no,  train_4_no,  train_5_no,  train_6_no,  train_7_no,  train_8_no,  train_9_no,  train_10_no, ... 
 train_11_no, train_12_no, train_13_no, train_14_no, train_15_no, train_16_no, train_17_no, … 



 

149 

train_18_no, train_19_no, train_20_no, train_21_no, train_22_no, train_23_no, train_24_no, … 
train_25_no, train_26_no, train_27_no, train_28_no, train_29_no, train_30_no, train_31_no, … 
train_32_no, train_33_no, train_34_no, train_35_no, train_36_no, train_37_no, train_38_no, … 
train_39_no, train_40_no, train_41_no ] = attack_train_binary(train_labels_num); 
train_3_number(iter,:)  = train_3_no;   train_4_number(iter,:) = train_4_no; 
train_5_number(iter,:)  = train_5_no;   train_6_number(iter,:) = train_6_no; 
train_7_number(iter,:)  = train_7_no;   train_8_number(iter,:) = train_8_no; 
train_9_number(iter,:)  = train_9_no;  train_10_number(iter,:) = train_10_no; 
train_11_number(iter,:) = train_11_no; train_12_number(iter,:) = train_12_no; 
train_13_number(iter,:) = train_13_no; train_14_number(iter,:) = train_14_no; 
train_15_number(iter,:) = train_15_no; train_16_number(iter,:) = train_16_no; 
train_17_number(iter,:) = train_17_no; train_18_number(iter,:) = train_18_no; 
train_19_number(iter,:) = train_19_no; train_20_number(iter,:) = train_20_no; 
train_21_number(iter,:) = train_21_no; train_22_number(iter,:) = train_22_no; 
train_23_number(iter,:) = train_23_no; train_24_number(iter,:) = train_24_no; 
train_25_number(iter,:) = train_25_no; train_26_number(iter,:) = train_26_no; 
train_27_number(iter,:) = train_27_no; train_28_number(iter,:) = train_28_no; 
train_29_number(iter,:) = train_29_no; train_30_number(iter,:) = train_30_no; 
train_31_number(iter,:) = train_31_no; train_32_number(iter,:) = train_32_no; 
train_33_number(iter,:) = train_33_no; train_34_number(iter,:) = train_34_no; 
train_35_number(iter,:) = train_35_no; train_36_number(iter,:) = train_36_no; 
train_37_number(iter,:) = train_37_no; train_38_number(iter,:) = train_38_no; 
train_39_number(iter,:) = train_39_no; train_40_number(iter,:) = train_40_no; 
train_41_number(iter,:) = train_41_no; 
% attacks in testing set 
         [ total_3_no,  correct_3_no, total_4_no,  correct_4_no, total_5_no,  correct_5_no,  ... 
           total_6_no,  correct_6_no, total_7_no,  correct_7_no, total_8_no,  correct_8_no,  ... 
           total_9_no,  correct_9_no, total_10_no, correct_10_no, total_11_no, correct_11_no,  ... 
          total_12_no, correct_12_no, total_13_no, correct_13_no, total_14_no, correct_14_no,  ... 
          total_15_no, correct_15_no, total_16_no, correct_16_no, otal_17_no, correct_17_no,  ... 
          total_18_no, correct_18_no, total_19_no, correct_19_no, total_20_no, correct_20_no,  ...           
          total_21_no, correct_21_no, total_22_no, correct_22_no, total_23_no, correct_23_no,  ...           
          total_24_no, correct_24_no, total_25_no, correct_25_no, total_26_no, correct_26_no,  ... 
          total_27_no, correct_27_no, total_28_no, correct_28_no, total_29_no, correct_29_no,  ... 
          total_30_no, correct_30_no, total_31_no, correct_31_no, total_32_no, correct_32_no,  ... 
          total_33_no, correct_33_no, total_34_no, correct_34_no, total_35_no, correct_35_no,  ... 
          total_36_no, correct_36_no, total_37_no, correct_37_no, total_38_no, correct_38_no,  ... 
          total_39_no, correct_39_no, total_40_no, correct_40_no, total_41_no, correct_41_no]= ... 
          attack_test_binary(test_labels_num, ... 
                             knn_predicted_a,     knn_predicted_b,     knn_predicted_c,     knn_predicted_d, ... 
                             fknn_predicted_a,    fknn_predicted_b,    fknn_predicted_c,    fknn_predicted_d, ... 
                             etknn_predicted_a,   etknn_predicted_b,   etknn_predicted_c,   etknn_predicted_d, ... 
                             myknn_predicted_a,   myknn_predicted_b,   myknn_predicted_c,   myknn_predicted_d, ... 
                             myknn_predicted_e,   myknn_predicted_f,   myknn_predicted_g, ... 
                             myknn_predicted_a_w, myknn_predicted_b_w, myknn_predicted_c_w, … 

myknn_predicted_d_w, ... 
                             ensemble_predicted_m, ensemble_predicted_mv, ensemble_predicted_bayes, ... 
                             ensemble_predicted_tree_m, ensemble_predicted_tree_mv, … 

ensemble_predicted_tree_bayes); 
total_3_number(iter,:) = total_3_no;   correct_3_number(iter,:)  = correct_3_no; 
total_4_number(iter,:) = total_4_no;   correct_4_number(iter,:)  = correct_4_no; 
total_5_number(iter,:) = total_5_no;   correct_5_number(iter,:)  = correct_5_no; 
total_6_number(iter,:) = total_6_no;   correct_6_number(iter,:)  = correct_6_no; 
total_7_number(iter,:) = total_7_no;   correct_7_number(iter,:)  = correct_7_no; 



 

150 

total_8_number(iter,:) = total_8_no;   correct_8_number(iter,:)  = correct_8_no; 
total_9_number(iter,:) = total_9_no;   correct_9_number(iter,:)  = correct_9_no; 
total_10_number(iter,:) = total_10_no; correct_10_number(iter,:) = correct_10_no; 
total_11_number(iter,:) = total_11_no; correct_11_number(iter,:) = correct_11_no; 
total_12_number(iter,:) = total_12_no; correct_12_number(iter,:) = correct_12_no; 
total_13_number(iter,:) = total_13_no; correct_13_number(iter,:) = correct_13_no; 
total_14_number(iter,:) = total_14_no; correct_14_number(iter,:) = correct_14_no; 
total_15_number(iter,:) = total_15_no; correct_15_number(iter,:) = correct_15_no; 
total_16_number(iter,:) = total_16_no; correct_16_number(iter,:) = correct_16_no; 
total_17_number(iter,:) = total_17_no; correct_17_number(iter,:) = correct_17_no; 
total_18_number(iter,:) = total_18_no; correct_18_number(iter,:) = correct_18_no; 
total_19_number(iter,:) = total_19_no; correct_19_number(iter,:) = correct_19_no; 
total_20_number(iter,:) = total_20_no; correct_20_number(iter,:) = correct_20_no; 
total_21_number(iter,:) = total_21_no; correct_21_number(iter,:) = correct_21_no; 
total_22_number(iter,:) = total_22_no; correct_22_number(iter,:) = correct_22_no; 
total_23_number(iter,:) = total_23_no; correct_23_number(iter,:) = correct_23_no; 
total_24_number(iter,:) = total_24_no; correct_24_number(iter,:) = correct_24_no; 
total_25_number(iter,:) = total_25_no; correct_25_number(iter,:) = correct_25_no; 
total_26_number(iter,:) = total_26_no; correct_26_number(iter,:) = correct_26_no; 
total_27_number(iter,:) = total_27_no; correct_27_number(iter,:) = correct_27_no; 
total_28_number(iter,:) = total_28_no; correct_28_number(iter,:) = correct_28_no; 
total_29_number(iter,:) = total_29_no; correct_29_number(iter,:) = correct_29_no; 
total_30_number(iter,:) = total_30_no; correct_30_number(iter,:) = correct_30_no; 
total_31_number(iter,:) = total_31_no; correct_31_number(iter,:) = correct_31_no; 
total_32_number(iter,:) = total_32_no; correct_32_number(iter,:) = correct_32_no; 
total_33_number(iter,:) = total_33_no; correct_33_number(iter,:) = correct_33_no; 
total_34_number(iter,:) = total_34_no; correct_34_number(iter,:) = correct_34_no; 
total_35_number(iter,:) = total_35_no; correct_35_number(iter,:) = correct_35_no; 
total_36_number(iter,:) = total_36_no; correct_36_number(iter,:) = correct_36_no; 
total_37_number(iter,:) = total_37_no; correct_37_number(iter,:) = correct_37_no; 
total_38_number(iter,:) = total_38_no; correct_38_number(iter,:) = correct_38_no; 
total_39_number(iter,:) = total_39_no; correct_39_number(iter,:) = correct_39_no; 
total_40_number(iter,:) = total_40_no; correct_40_number(iter,:) = correct_40_no; 
total_41_number(iter,:) = total_41_no; correct_41_number(iter,:) = correct_41_no;                               
end % iter 
fprintf('\n KNN'); 
knn_average_normal_rate_a(k)   = 1- sum(knn_normal_rate_a) / iter_no; 
knn_average_attack_rate_a(k)   = sum(knn_attack_rate_a) / iter_no; 
knn_average_normal_rate_b(k)   = 1- sum(knn_normal_rate_b) / iter_no; 
knn_average_attack_rate_b(k)   = sum(knn_attack_rate_b) / iter_no; 
knn_average_normal_rate_c(k)   = 1- sum(knn_normal_rate_c) / iter_no; 
knn_average_attack_rate_c(k)   = sum(knn_attack_rate_c) / iter_no; 
knn_average_normal_rate_d(k)   = 1- sum(knn_normal_rate_d) / iter_no; 
knn_average_attack_rate_d(k)   = sum(knn_attack_rate_d) / iter_no; 
knn_average_normal_rate_e(k)   = 1- sum(knn_normal_rate_e) / iter_no; 
knn_average_attack_rate_e(k)   = sum(knn_attack_rate_e) / iter_no; 
knn_average_normal_rate_f(k)   = 1- sum(knn_normal_rate_f) / iter_no; 
knn_average_attack_rate_f(k)   = sum(knn_attack_rate_f) / iter_no; 
knn_average_normal_rate_g(k)   = 1- sum(knn_normal_rate_g) / iter_no; 
knn_average_attack_rate_g(k)   = sum(knn_attack_rate_g) / iter_no; 
knn_average_rate_a(k) = sum(knn_rate_a) / iter_no; 
knn_average_rate_b(k) = sum(knn_rate_b) / iter_no; 
knn_average_rate_c(k) = sum(knn_rate_c) / iter_no; 
knn_average_rate_d(k) = sum(knn_rate_d) / iter_no; 



 

151 

knn_average_rate_e(k) = sum(knn_rate_e) / iter_no; 
knn_average_rate_f(k) = sum(knn_rate_f) / iter_no; 
knn_average_rate_g(k) = sum(knn_rate_g) / iter_no; 
time_average_knn_a(k) = sum(time_knn_a) / iter_no; 
time_average_knn_b(k) = sum(time_knn_b) / iter_no; 
time_average_knn_c(k) = sum(time_knn_c) / iter_no; 
time_average_knn_d(k) = sum(time_knn_d) / iter_no; 
time_average_knn_e(k) = sum(time_knn_e) / iter_no; 
time_average_knn_f(k) = sum(time_knn_f) / iter_no; 
time_average_knn_g(k) = sum(time_knn_g) / iter_no; 
fprintf('\n FKNN'); 
fknn_average_normal_rate_a(k)  = 1- sum(fknn_normal_rate_a) / iter_no; 
fknn_average_attack_rate_a(k)  = sum(fknn_attack_rate_a) / iter_no; 
fknn_average_normal_rate_b(k)  = 1- sum(fknn_normal_rate_b) / iter_no; 
fknn_average_attack_rate_b(k)  = sum(fknn_attack_rate_b) / iter_no; 
fknn_average_normal_rate_c(k)  = 1- sum(fknn_normal_rate_c) / iter_no; 
fknn_average_attack_rate_c(k)  = sum(fknn_attack_rate_c) / iter_no; 
fknn_average_normal_rate_d(k)  = 1- sum(fknn_normal_rate_d) / iter_no; 
fknn_average_attack_rate_d(k)  = sum(fknn_attack_rate_d) / iter_no; 
fknn_average_normal_rate_e(k)  = 1- sum(fknn_normal_rate_e) / iter_no; 
fknn_average_attack_rate_e(k)  = sum(fknn_attack_rate_e) / iter_no; 
fknn_average_normal_rate_f(k)  = 1- sum(fknn_normal_rate_f) / iter_no; 
fknn_average_attack_rate_f(k)  = sum(fknn_attack_rate_f) / iter_no; 
fknn_average_normal_rate_g(k)  = 1- sum(fknn_normal_rate_g) / iter_no; 
fknn_average_attack_rate_g(k)  = sum(fknn_attack_rate_g) / iter_no; 
fknn_average_rate_a(k) = sum(fknn_rate_a) / iter_no; 
fknn_average_rate_b(k) = sum(fknn_rate_b) / iter_no; 
fknn_average_rate_c(k) = sum(fknn_rate_c) / iter_no; 
fknn_average_rate_d(k) = sum(fknn_rate_d) / iter_no; 
fknn_average_rate_e(k) = sum(fknn_rate_e) / iter_no; 
fknn_average_rate_f(k) = sum(fknn_rate_f) / iter_no; 
fknn_average_rate_g(k) = sum(fknn_rate_g) / iter_no; 
time_average_fknn_a(k) = sum(time_fknn_a) / iter_no; 
time_average_fknn_b(k) = sum(time_fknn_b) / iter_no; 
time_average_fknn_c(k) = sum(time_fknn_c) / iter_no; 
time_average_fknn_d(k) = sum(time_fknn_d) / iter_no; 
time_average_fknn_e(k) = sum(time_fknn_e) / iter_no; 
time_average_fknn_f(k) = sum(time_fknn_f) / iter_no; 
time_average_fknn_g(k) = sum(time_fknn_g) / iter_no; 
fprintf('\n ETKNN'); 
etknn_average_normal_rate_a(k) = 1- sum(etknn_normal_rate_a) / iter_no; 
etknn_average_attack_rate_a(k) = sum(etknn_attack_rate_a) / iter_no; 
etknn_average_normal_rate_b(k) = 1- sum(etknn_normal_rate_b) / iter_no; 
etknn_average_attack_rate_b(k) = sum(etknn_attack_rate_b) / iter_no; 
etknn_average_normal_rate_c(k) = 1- sum(etknn_normal_rate_c) / iter_no; 
etknn_average_attack_rate_c(k) = sum(etknn_attack_rate_c) / iter_no; 
etknn_average_normal_rate_d(k) = 1- sum(etknn_normal_rate_d) / iter_no; 
etknn_average_attack_rate_d(k) = sum(etknn_attack_rate_d) / iter_no; 
etknn_average_normal_rate_e(k) = 1- sum(etknn_normal_rate_e) / iter_no; 
etknn_average_attack_rate_e(k) = sum(etknn_attack_rate_e) / iter_no; 
etknn_average_normal_rate_f(k) = 1- sum(etknn_normal_rate_f) / iter_no; 
etknn_average_attack_rate_f(k) = sum(etknn_attack_rate_f) / iter_no; 
etknn_average_normal_rate_g(k) = 1- sum(etknn_normal_rate_g) / iter_no; 
etknn_average_attack_rate_g(k) = sum(etknn_attack_rate_g) / iter_no; 



 

152 

etknn_average_rate_a(k) = sum(etknn_rate_a) / iter_no; 
etknn_average_rate_b(k) = sum(etknn_rate_b) / iter_no; 
etknn_average_rate_c(k) = sum(etknn_rate_c) / iter_no; 
etknn_average_rate_d(k) = sum(etknn_rate_d) / iter_no; 
etknn_average_rate_e(k) = sum(etknn_rate_e) / iter_no; 
etknn_average_rate_f(k) = sum(etknn_rate_f) / iter_no; 
etknn_average_rate_g(k) = sum(etknn_rate_g) / iter_no; 
time_average_etknn_a(k) = sum(time_etknn_a) / iter_no; 
time_average_etknn_b(k) = sum(time_etknn_b) / iter_no; 
time_average_etknn_c(k) = sum(time_etknn_c) / iter_no; 
time_average_etknn_d(k) = sum(time_etknn_d) / iter_no; 
time_average_etknn_e(k) = sum(time_etknn_e) / iter_no; 
time_average_etknn_f(k) = sum(time_etknn_f) / iter_no; 
time_average_etknn_g(k) = sum(time_etknn_g) / iter_no; 
fprintf('\n MYKNN'); 
myknn_average_normal_rate_a(k) = 1- sum(myknn_normal_rate_a) / iter_no; 
myknn_average_attack_rate_a(k) = sum(myknn_attack_rate_a) / iter_no; 
myknn_average_normal_rate_b(k) = 1- sum(myknn_normal_rate_b) / iter_no; 
myknn_average_attack_rate_b(k) = sum(myknn_attack_rate_b) / iter_no; 
myknn_average_normal_rate_c(k) = 1- sum(myknn_normal_rate_c) / iter_no; 
myknn_average_attack_rate_c(k) = sum(myknn_attack_rate_c) / iter_no; 
myknn_average_normal_rate_d(k) = 1- sum(myknn_normal_rate_d) / iter_no; 
myknn_average_attack_rate_d(k) = sum(myknn_attack_rate_d) / iter_no; 
myknn_average_normal_rate_e(k) = 1- sum(myknn_normal_rate_e) / iter_no; 
myknn_average_attack_rate_e(k) = sum(myknn_attack_rate_e) / iter_no; 
myknn_average_normal_rate_f(k) = 1- sum(myknn_normal_rate_f) / iter_no; 
myknn_average_attack_rate_f(k) = sum(myknn_attack_rate_f) / iter_no; 
myknn_average_normal_rate_g(k) = 1- sum(myknn_normal_rate_g) / iter_no; 
myknn_average_attack_rate_g(k) = sum(myknn_attack_rate_g) / iter_no; 
myknn_average_rate_a(k) = sum(myknn_rate_a) / iter_no; 
myknn_average_rate_b(k) = sum(myknn_rate_b) / iter_no; 
myknn_average_rate_c(k) = sum(myknn_rate_c) / iter_no; 
myknn_average_rate_d(k) = sum(myknn_rate_d) / iter_no; 
myknn_average_rate_e(k) = sum(myknn_rate_e) / iter_no; 
myknn_average_rate_f(k) = sum(myknn_rate_f) / iter_no; 
myknn_average_rate_g(k) = sum(myknn_rate_g) / iter_no; 
time_average_myknn_a(k) = sum(time_myknn_a) / iter_no; 
time_average_myknn_b(k) = sum(time_myknn_b) / iter_no; 
time_average_myknn_c(k) = sum(time_myknn_c) / iter_no; 
time_average_myknn_d(k) = sum(time_myknn_d) / iter_no; 
time_average_myknn_e(k) = sum(time_myknn_e) / iter_no; 
time_average_myknn_f(k) = sum(time_myknn_f) / iter_no; 
time_average_myknn_g(k) = sum(time_myknn_g) / iter_no; 
fprintf('\n MYKNN-W'); 
myknn_average_normal_rate_a_w(k) = 1- sum(myknn_normal_rate_a_w) / iter_no; 
myknn_average_attack_rate_a_w(k) = sum(myknn_attack_rate_a_w) / iter_no; 
myknn_average_normal_rate_b_w(k) = 1- sum(myknn_normal_rate_b_w) / iter_no; 
myknn_average_attack_rate_b_w(k) = sum(myknn_attack_rate_b_w) / iter_no; 
myknn_average_normal_rate_c_w(k) = 1- sum(myknn_normal_rate_c_w) / iter_no; 
myknn_average_attack_rate_c_w(k) = sum(myknn_attack_rate_c_w) / iter_no; 
myknn_average_normal_rate_d_w(k) = 1- sum(myknn_normal_rate_d_w) / iter_no; 
myknn_average_attack_rate_d_w(k) = sum(myknn_attack_rate_d_w) / iter_no; 
myknn_average_rate_a_w(k) = sum(myknn_rate_a_w) / iter_no; 
myknn_average_rate_b_w(k) = sum(myknn_rate_b_w) / iter_no; 



 

153 

myknn_average_rate_c_w(k) = sum(myknn_rate_c_w) / iter_no; 
myknn_average_rate_d_w(k) = sum(myknn_rate_d_w) / iter_no; 
time_average_myknn_a_w(k) = sum(time_myknn_a_w) / iter_no; 
time_average_myknn_b_w(k) = sum(time_myknn_b_w) / iter_no; 
time_average_myknn_c_w(k) = sum(time_myknn_c_w) / iter_no; 
time_average_myknn_d_w(k) = sum(time_myknn_d_w) / iter_no; 
fprintf('\n ENSEMBLE'); 
ensemble_average_normal_rate_m(k) = 1- sum(ensemble_normal_rate_m) / iter_no; 
ensemble_average_attack_rate_m(k) = sum(ensemble_attack_rate_m) / iter_no; 
ensemble_average_normal_rate_mv(k) = 1- sum(ensemble_normal_rate_mv) / iter_no; 
ensemble_average_attack_rate_mv(k) = sum(ensemble_attack_rate_mv) / iter_no; 
ensemble_average_normal_rate_bayes(k) = 1- sum(ensemble_normal_rate_bayes) / iter_no; 
ensemble_average_attack_rate_bayes(k) = sum(ensemble_attack_rate_bayes) / iter_no; 
ensemble_average_rate_m(k) = sum(ensemble_rate_m) / iter_no; 
ensemble_average_rate_mv(k) = sum(ensemble_rate_mv) / iter_no; 
ensemble_average_rate_bayes(k) = sum(ensemble_rate_bayes) / iter_no; 
time_average_ensemble_bayes(k) = sum(time_ensemble_bayes) / iter_no; 
fprintf('\n TREE'); 
myknn_average_normal_rate_a_tree(k) = 1- sum(myknn_normal_rate_a_tree) / iter_no; 
myknn_average_attack_rate_a_tree(k) = sum(myknn_attack_rate_a_tree) / iter_no; 
myknn_average_normal_rate_b_tree(k) = 1- sum(myknn_normal_rate_b_tree) / iter_no; 
myknn_average_attack_rate_b_tree(k) = sum(myknn_attack_rate_b_tree) / iter_no; 
myknn_average_normal_rate_c_tree(k) = 1- sum(myknn_normal_rate_c_tree) / iter_no; 
myknn_average_attack_rate_c_tree(k) = sum(myknn_attack_rate_c_tree) / iter_no; 
myknn_average_normal_rate_d_tree(k) = 1- sum(myknn_normal_rate_d_tree) / iter_no; 
myknn_average_attack_rate_d_tree(k) = sum(myknn_attack_rate_d_tree) / iter_no; 
myknn_average_normal_rate_e_tree(k) = 1- sum(myknn_normal_rate_e_tree) / iter_no; 
myknn_average_attack_rate_e_tree(k) = sum(myknn_attack_rate_e_tree) / iter_no; 
myknn_average_normal_rate_f_tree(k) = 1- sum(myknn_normal_rate_f_tree) / iter_no; 
myknn_average_attack_rate_f_tree(k) = sum(myknn_attack_rate_f_tree) / iter_no; 
myknn_average_normal_rate_g_tree(k) = 1- sum(myknn_normal_rate_g_tree) / iter_no; 
myknn_average_attack_rate_g_tree(k) = sum(myknn_attack_rate_g_tree) / iter_no; 
myknn_average_rate_a_tree(k) = sum(myknn_rate_a_tree) / iter_no; 
myknn_average_rate_b_tree(k) = sum(myknn_rate_b_tree) / iter_no; 
myknn_average_rate_c_tree(k) = sum(myknn_rate_c_tree) / iter_no; 
myknn_average_rate_d_tree(k) = sum(myknn_rate_d_tree) / iter_no; 
myknn_average_rate_e_tree(k) = sum(myknn_rate_e_tree) / iter_no; 
myknn_average_rate_f_tree(k) = sum(myknn_rate_f_tree) / iter_no; 
myknn_average_rate_g_tree(k) = sum(myknn_rate_g_tree) / iter_no; 
fprintf('\n TREE + ENSEMBLE'); 
ensemble_average_normal_rate_tree_m(k) = 1- sum(ensemble_normal_rate_tree_m) / iter_no; 
ensemble_average_attack_rate_tree_m(k) = sum(ensemble_attack_rate_tree_m) / iter_no; 
ensemble_average_normal_rate_tree_mv(k) = 1- sum(ensemble_normal_rate_tree_mv) / iter_no; 
ensemble_average_attack_rate_tree_mv(k) = sum(ensemble_attack_rate_tree_mv) / iter_no; 
ensemble_average_normal_rate_tree_bayes(k) = 1- sum(ensemble_normal_rate_tree_bayes) / iter_no; 
ensemble_average_attack_rate_tree_bayes(k) = sum(ensemble_attack_rate_tree_bayes) / iter_no; 
ensemble_average_rate_tree_m(k) = sum(ensemble_rate_tree_m) / iter_no; 
ensemble_average_rate_tree_mv(k) = sum(ensemble_rate_tree_mv) / iter_no; 
ensemble_average_rate_tree_bayes(k) = sum(ensemble_rate_tree_bayes) / iter_no; 
time_average_tree(k) = sum(time_tree) / iter_no; 
sum_train_3_number(k,:) = sum(train_3_number(:,:)); 
sum_train_4_number(k,:) = sum(train_4_number(:,:)); 
sum_train_5_number(k,:) = sum(train_5_number(:,:)); 
sum_train_6_number(k,:) = sum(train_6_number(:,:)); 



 

154 

sum_train_7_number(k,:) = sum(train_7_number(:,:)); 
sum_train_8_number(k,:) = sum(train_8_number(:,:)); 
sum_train_9_number(k,:) = sum(train_9_number(:,:)); 
sum_train_10_number(k,:) = sum(train_10_number(:,:)); 
sum_train_11_number(k,:) = sum(train_11_number(:,:)); 
sum_train_12_number(k,:) = sum(train_12_number(:,:)); 
sum_train_13_number(k,:) = sum(train_13_number(:,:)); 
sum_train_14_number(k,:) = sum(train_14_number(:,:)); 
sum_train_15_number(k,:) = sum(train_15_number(:,:)); 
sum_train_16_number(k,:) = sum(train_16_number(:,:)); 
sum_train_17_number(k,:) = sum(train_17_number(:,:)); 
sum_train_18_number(k,:) = sum(train_18_number(:,:)); 
sum_train_19_number(k,:) = sum(train_19_number(:,:)); 
sum_train_20_number(k,:) = sum(train_20_number(:,:)); 
sum_train_21_number(k,:) = sum(train_21_number(:,:)); 
sum_train_22_number(k,:) = sum(train_22_number(:,:)); 
sum_train_23_number(k,:) = sum(train_23_number(:,:)); 
sum_train_24_number(k,:) = sum(train_24_number(:,:)); 
sum_train_25_number(k,:) = sum(train_25_number(:,:)); 
sum_train_26_number(k,:) = sum(train_26_number(:,:)); 
sum_train_27_number(k,:) = sum(train_27_number(:,:)); 
sum_train_28_number(k,:) = sum(train_28_number(:,:)); 
sum_train_29_number(k,:) = sum(train_29_number(:,:)); 
sum_train_30_number(k,:) = sum(train_30_number(:,:)); 
sum_train_31_number(k,:) = sum(train_31_number(:,:)); 
sum_train_32_number(k,:) = sum(train_32_number(:,:)); 
sum_train_33_number(k,:) = sum(train_33_number(:,:)); 
sum_train_34_number(k,:) = sum(train_34_number(:,:)); 
sum_train_35_number(k,:) = sum(train_35_number(:,:)); 
sum_train_36_number(k,:) = sum(train_36_number(:,:)); 
sum_train_37_number(k,:) = sum(train_37_number(:,:)); 
sum_train_38_number(k,:) = sum(train_38_number(:,:)); 
sum_train_39_number(k,:) = sum(train_39_number(:,:)); 
sum_train_40_number(k,:) = sum(train_40_number(:,:)); 
sum_train_41_number(k,:) = sum(train_41_number(:,:)); 
sum_total_3_number(k,:) = sum(total_3_number(:,:)); 
sum_correct_3_number(k,:) = sum(correct_3_number(:,:)); 
k_correct_3_rate(k,:) = sum_correct_3_number(k,:)/sum_total_3_number(k,:); 
sum_total_4_number(k,:) = sum(total_4_number(:,:)); 
sum_correct_4_number(k,:) = sum(correct_4_number(:,:)); 
k_correct_4_rate(k,:) = sum_correct_4_number(k,:)/sum_total_4_number(k,:); 
sum_total_5_number(k,:) = sum(total_5_number(:,:)); 
sum_correct_5_number(k,:) = sum(correct_5_number(:,:)); 
k_correct_5_rate(k,:) = sum_correct_5_number(k,:)/sum_total_5_number(k,:); 
sum_total_6_number(k,:) = sum(total_6_number(:,:)); 
sum_correct_6_number(k,:) = sum(correct_6_number(:,:)); 
k_correct_6_rate(k,:) = sum_correct_6_number(k,:)/sum_total_6_number(k,:); 
sum_total_7_number(k,:) = sum(total_7_number(:,:)); 
sum_correct_7_number(k,:) = sum(correct_7_number); 
k_correct_7_rate(k,:) = sum_correct_7_number(k,:)/sum_total_7_number(k,:); 
sum_total_8_number(k,:) = sum(total_8_number(:,:)); 
sum_correct_8_number(k,:) = sum(correct_8_number(:,:)); 
k_correct_8_rate(k,:) = sum_correct_8_number(k,:)/sum_total_8_number(k,:); 
sum_total_9_number(k,:) = sum(total_9_number(:,:)); 



 

155 

sum_correct_9_number(k,:) = sum(correct_9_number(:,:)); 
k_correct_9_rate(k,:) = sum_correct_9_number(k,:)/sum_total_9_number(k,:); 
sum_total_10_number(k,:) = sum(total_10_number(:,:)); 
sum_correct_10_number(k,:) = sum(correct_10_number(:,:)); 
k_correct_10_rate(k,:) = sum_correct_10_number(k,:)/sum_total_10_number(k,:); 
sum_total_11_number(k,:) = sum(total_11_number(:,:)); 
sum_correct_11_number(k,:) = sum(correct_11_number(:,:)); 
k_correct_11_rate(k,:) = sum_correct_11_number(k,:)/sum_total_11_number(k,:); 
sum_total_12_number(k,:) = sum(total_12_number(:,:)); 
sum_correct_12_number(k,:) = sum(correct_12_number(:,:)); 
k_correct_12_rate(k,:) = sum_correct_12_number(k,:)/sum_total_12_number(k,:); 
sum_total_13_number(k,:) = sum(total_13_number(:,:)); 
sum_correct_13_number(k,:) = sum(correct_13_number(:,:)); 
k_correct_13_rate(k,:) = sum_correct_13_number(k,:)/sum_total_13_number(k,:); 
sum_total_14_number(k,:) = sum(total_14_number(:,:)); 
sum_correct_14_number(k,:) = sum(correct_14_number(:,:)); 
k_correct_14_rate(k,:) = sum_correct_14_number(k,:)/sum_total_14_number(k,:); 
sum_total_15_number(k,:) = sum(total_15_number(:,:)); 
sum_correct_15_number(k,:) = sum(correct_15_number(:,:)); 
k_correct_15_rate(k,:) = sum_correct_15_number(k,:)/sum_total_15_number(k,:); 
sum_total_16_number(k,:) = sum(total_16_number(:,:)); 
sum_correct_16_number(k,:) = sum(correct_16_number(:,:)); 
k_correct_16_rate(k,:) = sum_correct_16_number(k,:)/sum_total_16_number(k,:); 
sum_total_17_number(k,:) = sum(total_17_number(:,:)); 
sum_correct_17_number(k,:) = sum(correct_17_number(:,:)); 
k_correct_17_rate(k,:) = sum_correct_17_number(k,:)/sum_total_17_number(k,:); 
sum_total_18_number(k,:) = sum(total_18_number(:,:)); 
sum_correct_18_number(k,:) = sum(correct_18_number(:,:)); 
k_correct_18_rate(k,:) = sum_correct_18_number(k,:)/sum_total_18_number(k,:); 
sum_total_19_number(k,:) = sum(total_19_number(:,:)); 
sum_correct_19_number(k,:) = sum(correct_19_number(:,:)); 
k_correct_19_rate(k,:) = sum_correct_19_number(k,:)/sum_total_19_number(k,:); 
sum_total_20_number(k,:) = sum(total_20_number(:,:)); 
sum_correct_20_number(k,:) = sum(correct_20_number(:,:)); 
k_correct_20_rate(k,:) = sum_correct_20_number(k,:)/sum_total_20_number(k,:); 
sum_total_21_number(k,:) = sum(total_21_number(:,:)); 
sum_correct_21_number(k,:) = sum(correct_21_number(:,:)); 
k_correct_21_rate(k,:) = sum_correct_21_number(k,:)/sum_total_21_number(k,:); 
sum_total_22_number(k,:) = sum(total_22_number(:,:)); 
sum_correct_22_number(k,:) = sum(correct_22_number(:,:)); 
k_correct_22_rate(k,:) = sum_correct_22_number(k,:)/sum_total_22_number(k,:); 
sum_total_23_number(k,:) = sum(total_23_number(:,:)); 
sum_correct_23_number(k,:) = sum(correct_23_number(:,:)); 
k_correct_23_rate(k,:) = sum_correct_23_number(k,:)/sum_total_23_number(k,:); 
sum_total_24_number(k,:) = sum(total_24_number(:,:)); 
sum_correct_24_number(k,:) = sum(correct_24_number(:,:)); 
k_correct_24_rate(k,:) = sum_correct_24_number(k,:)/sum_total_24_number(k,:); 
sum_total_25_number(k,:) = sum(total_25_number(:,:)); 
sum_correct_25_number(k,:) = sum(correct_25_number(:,:)); 
k_correct_25_rate(k,:) = sum_correct_25_number(k,:)/sum_total_25_number(k,:); 
sum_total_26_number(k,:) = sum(total_26_number(:,:)); 
sum_correct_26_number(k,:) = sum(correct_26_number(:,:)); 
k_correct_26_rate(k,:) = sum_correct_26_number(k,:)/sum_total_26_number(k,:); 
sum_total_27_number(k,:) = sum(total_27_number(:,:)); 



 

156 

sum_correct_27_number(k,:) = sum(correct_27_number(:,:)); 
k_correct_27_rate(k,:) = sum_correct_27_number(k,:)/sum_total_27_number(k,:); 
sum_total_28_number(k,:) = sum(total_28_number(:,:)); 
sum_correct_28_number(k,:) = sum(correct_28_number(:,:)); 
k_correct_28_rate(k,:) = sum_correct_28_number(k,:)/sum_total_28_number(k,:); 
sum_total_29_number(k,:) = sum(total_29_number(:,:)); 
sum_correct_29_number(k,:) = sum(correct_29_number(:,:)); 
k_correct_29_rate(k,:) = sum_correct_29_number(k,:)/sum_total_29_number(k,:); 
sum_total_30_number(k,:) = sum(total_30_number(:,:)); 
sum_correct_30_number(k,:) = sum(correct_30_number(:,:)); 
k_correct_30_rate(k,:) = sum_correct_30_number(k,:)/sum_total_30_number(k,:); 
sum_total_31_number(k,:) = sum(total_31_number(:,:)); 
sum_correct_31_number(k,:) = sum(correct_31_number(:,:)); 
k_correct_31_rate(k,:) = sum_correct_31_number(k,:)/sum_total_31_number(k,:); 
sum_total_32_number(k,:) = sum(total_32_number(:,:)); 
sum_correct_32_number(k,:) = sum(correct_32_number(:,:)); 
k_correct_32_rate(k,:) = sum_correct_32_number(k,:)/sum_total_32_number(k,:); 
sum_total_33_number(k,:) = sum(total_33_number(:,:)); 
sum_correct_33_number(k,:) = sum(correct_33_number(:,:)); 
k_correct_33_rate(k,:) = sum_correct_33_number(k,:)/sum_total_33_number(k,:); 
sum_total_34_number(k,:) = sum(total_34_number(:,:)); 
sum_correct_34_number(k,:) = sum(correct_34_number(:,:)); 
k_correct_34_rate(k,:) = sum_correct_34_number(k,:)/sum_total_34_number(k,:); 
sum_total_35_number(k,:) = sum(total_35_number(:,:)); 
sum_correct_35_number(k,:) = sum(correct_35_number(:,:)); 
k_correct_35_rate(k,:) = sum_correct_35_number(k,:)/sum_total_35_number(k,:); 
sum_total_36_number(k,:) = sum(total_36_number(:,:)); 
sum_correct_36_number(k,:) = sum(correct_36_number(:,:)); 
k_correct_36_rate(k,:) = sum_correct_36_number(k,:)/sum_total_36_number(k,:); 
sum_total_37_number(k,:) = sum(total_37_number(:,:)); 
sum_correct_37_number(k,:) = sum(correct_37_number(:,:)); 
k_correct_37_rate(k,:) = sum_correct_37_number(k,:)/sum_total_37_number(k,:); 
sum_total_38_number(k,:) = sum(total_38_number(:,:)); 
sum_correct_38_number(k,:) = sum(correct_38_number(:,:)); 
k_correct_38_rate(k,:) = sum_correct_38_number(k,:)/sum_total_38_number(k,:); 
sum_total_39_number(k,:) = sum(total_39_number(:,:)); 
sum_correct_39_number(k,:) = sum(correct_39_number(:,:)); 
k_correct_39_rate(k,:) = sum_correct_39_number(k,:)/sum_total_39_number(k,:); 
sum_total_40_number(k,:) = sum(total_40_number(:,:)); 
sum_correct_40_number(k,:) = sum(correct_40_number(:,:)); 
k_correct_40_rate(k,:) = sum_correct_40_number(k,:)/sum_total_40_number(k,:); 
sum_total_41_number(k,:) = sum(total_41_number(:,:)); 
sum_correct_41_number(k,:) = sum(correct_41_number(:,:)); 
k_correct_41_rate(k,:) = sum_correct_41_number(k,:)/sum_total_41_number(k,:); 
end % nn 
final_train_3_number = sum(sum_train_3_number(:,:)); 
final_train_4_number = sum(sum_train_4_number(:,:)); 
final_train_5_number = sum(sum_train_5_number(:,:)); 
final_train_6_number = sum(sum_train_6_number(:,:)); 
final_train_7_number = sum(sum_train_7_number(:,:)); 
final_train_8_number = sum(sum_train_8_number(:,:)); 
final_train_9_number = sum(sum_train_9_number(:,:)); 
final_train_10_number = sum(sum_train_10_number(:,:)); 
final_train_11_number = sum(sum_train_11_number(:,:)); 



 

157 

final_train_12_number = sum(sum_train_12_number(:,:)); 
final_train_13_number = sum(sum_train_13_number(:,:)); 
final_train_14_number = sum(sum_train_14_number(:,:)); 
final_train_15_number = sum(sum_train_15_number(:,:)); 
final_train_16_number = sum(sum_train_16_number(:,:)); 
final_train_17_number = sum(sum_train_17_number(:,:)); 
final_train_18_number = sum(sum_train_18_number(:,:)); 
final_train_19_number = sum(sum_train_19_number(:,:)); 
final_train_20_number = sum(sum_train_20_number(:,:)); 
final_train_21_number = sum(sum_train_21_number(:,:)); 
final_train_22_number = sum(sum_train_22_number(:,:)); 
final_train_23_number = sum(sum_train_23_number(:,:)); 
final_train_24_number = sum(sum_train_24_number(:,:)); 
final_train_25_number = sum(sum_train_25_number(:,:)); 
final_train_26_number = sum(sum_train_26_number(:,:)); 
final_train_27_number = sum(sum_train_27_number(:,:)); 
final_train_28_number = sum(sum_train_28_number(:,:)); 
final_train_29_number = sum(sum_train_29_number(:,:)); 
final_train_30_number = sum(sum_train_30_number(:,:)); 
final_train_31_number = sum(sum_train_31_number(:,:)); 
final_train_32_number = sum(sum_train_32_number(:,:)); 
final_train_33_number = sum(sum_train_33_number(:,:)); 
final_train_34_number = sum(sum_train_34_number(:,:)); 
final_train_35_number = sum(sum_train_35_number(:,:)); 
final_train_36_number = sum(sum_train_36_number(:,:)); 
final_train_37_number = sum(sum_train_37_number(:,:)); 
final_train_38_number = sum(sum_train_38_number(:,:)); 
final_train_39_number = sum(sum_train_39_number(:,:)); 
final_train_40_number = sum(sum_train_40_number(:,:)); 
final_train_41_number = sum(sum_train_41_number(:,:)); 
final_total_3_number = sum(sum_total_3_number(:,:)); 
final_correct_3_number = sum(sum_correct_3_number(:,:)); 
final_correct_3_rate = final_correct_3_number./final_total_3_number; 
final_total_4_number = sum(sum_total_4_number(:,:)); 
final_correct_4_number = sum(sum_correct_4_number(:,:)); 
final_correct_4_rate = final_correct_4_number./final_total_4_number; 
final_total_5_number = sum(sum_total_5_number(:,:)); 
final_correct_5_number = sum(sum_correct_5_number(:,:)); 
final_correct_5_rate = final_correct_5_number./final_total_5_number; 
final_total_6_number = sum(sum_total_6_number(:,:)); 
final_correct_6_number = sum(sum_correct_6_number(:,:)); 
final_correct_6_rate = final_correct_6_number./final_total_6_number; 
final_total_7_number = sum(sum_total_7_number(:,:)); 
final_correct_7_number = sum(sum_correct_7_number(:,:)); 
final_correct_7_rate = final_correct_7_number./final_total_7_number; 
final_total_8_number = sum(sum_total_8_number(:,:)); 
final_correct_8_number = sum(sum_correct_8_number(:,:)); 
final_correct_8_rate = final_correct_8_number./final_total_8_number; 
final_total_9_number = sum(sum_total_9_number(:,:)); 
final_correct_9_number = sum(sum_correct_9_number(:,:)); 
final_correct_9_rate = final_correct_9_number./final_total_9_number; 
final_total_10_number = sum(sum_total_10_number(:,:)); 
final_correct_10_number = sum(sum_correct_10_number(:,:)); 
final_correct_10_rate = final_correct_10_number./final_total_10_number; 



 

158 

final_total_11_number = sum(sum_total_11_number(:,:)); 
final_correct_11_number = sum(sum_correct_11_number(:,:)); 
final_correct_11_rate = final_correct_11_number./final_total_11_number; 
final_total_12_number = sum(sum_total_12_number(:,:)); 
final_correct_12_number = sum(sum_correct_12_number(:,:)); 
final_correct_12_rate = final_correct_12_number./final_total_12_number; 
final_total_13_number = sum(sum_total_13_number(:,:)); 
final_correct_13_number = sum(sum_correct_13_number(:,:)); 
final_correct_13_rate = final_correct_13_number./final_total_13_number; 
final_total_14_number = sum(sum_total_14_number(:,:)); 
final_correct_14_number = sum(sum_correct_14_number(:,:)); 
final_correct_14_rate = final_correct_14_number./final_total_14_number; 
final_total_15_number = sum(sum_total_15_number(:,:)); 
final_correct_15_number = sum(sum_correct_15_number(:,:)); 
final_correct_15_rate = final_correct_15_number./final_total_15_number; 
final_total_16_number = sum(sum_total_16_number(:,:)); 
final_correct_16_number = sum(sum_correct_16_number(:,:)); 
final_correct_16_rate = final_correct_16_number./final_total_16_number; 
final_total_17_number = sum(sum_total_17_number(:,:)); 
final_correct_17_number = sum(sum_correct_17_number(:,:)); 
final_correct_17_rate = final_correct_17_number./final_total_17_number; 
final_total_18_number = sum(sum_total_18_number(:,:)); 
final_correct_18_number = sum(sum_correct_18_number(:,:)); 
final_correct_18_rate = final_correct_18_number./final_total_18_number; 
final_total_19_number = sum(sum_total_19_number(:,:)); 
final_correct_19_number = sum(sum_correct_19_number(:,:)); 
final_correct_19_rate = final_correct_19_number./final_total_19_number; 
final_total_20_number = sum(sum_total_20_number(:,:)); 
final_correct_20_number = sum(sum_correct_20_number(:,:)); 
final_correct_20_rate = final_correct_20_number./final_total_20_number; 
final_total_21_number = sum(sum_total_21_number(:,:)); 
final_correct_21_number = sum(sum_correct_21_number(:,:)); 
final_correct_21_rate = final_correct_21_number./final_total_21_number; 
final_total_22_number = sum(sum_total_22_number(:,:)); 
final_correct_22_number = sum(sum_correct_22_number(:,:)); 
final_correct_22_rate = final_correct_22_number./final_total_22_number; 
final_total_23_number = sum(sum_total_23_number(:,:)); 
final_correct_23_number = sum(sum_correct_23_number(:,:)); 
final_correct_23_rate = final_correct_23_number./final_total_23_number; 
final_total_24_number = sum(sum_total_24_number(:,:)); 
final_correct_24_number = sum(sum_correct_24_number(:,:)); 
final_correct_24_rate = final_correct_24_number./final_total_24_number; 
final_total_25_number = sum(sum_total_25_number(:,:)); 
final_correct_25_number = sum(sum_correct_25_number(:,:)); 
final_correct_25_rate = final_correct_25_number./final_total_25_number; 
final_total_26_number = sum(sum_total_26_number(:,:)); 
final_correct_26_number = sum(sum_correct_26_number(:,:)); 
final_correct_26_rate = final_correct_26_number./final_total_26_number; 
final_total_27_number = sum(sum_total_27_number(:,:)); 
final_correct_27_number = sum(sum_correct_27_number(:,:)); 
final_correct_27_rate = final_correct_27_number./final_total_27_number; 
final_total_28_number = sum(sum_total_28_number(:,:)); 
final_correct_28_number = sum(sum_correct_28_number(:,:)); 
final_correct_28_rate = final_correct_28_number./final_total_28_number; 



 

159 

final_total_29_number = sum(sum_total_29_number(:,:)); 
final_correct_29_number = sum(sum_correct_29_number(:,:)); 
final_correct_29_rate = final_correct_29_number./final_total_29_number; 
final_total_30_number = sum(sum_total_30_number(:,:)); 
final_correct_30_number = sum(sum_correct_30_number(:,:)); 
final_correct_30_rate = final_correct_30_number./final_total_30_number; 
final_total_31_number = sum(sum_total_31_number(:,:)); 
final_correct_31_number = sum(sum_correct_31_number(:,:)); 
final_correct_31_rate = final_correct_31_number./final_total_31_number; 
final_total_32_number = sum(sum_total_32_number(:,:)); 
final_correct_32_number = sum(sum_correct_32_number(:,:)); 
final_correct_32_rate = final_correct_32_number./final_total_32_number; 
final_total_33_number = sum(sum_total_33_number(:,:)); 
final_correct_33_number = sum(sum_correct_33_number(:,:)); 
final_correct_33_rate = final_correct_33_number./final_total_33_number; 
final_total_34_number = sum(sum_total_34_number(:,:)); 
final_correct_34_number = sum(sum_correct_34_number(:,:)); 
final_correct_34_rate = final_correct_34_number./final_total_34_number; 
final_total_35_number = sum(sum_total_35_number(:,:)); 
final_correct_35_number = sum(sum_correct_35_number(:,:)); 
final_correct_35_rate = final_correct_35_number./final_total_35_number; 
final_total_36_number = sum(sum_total_36_number(:,:)); 
final_correct_36_number = sum(sum_correct_36_number(:,:)); 
final_correct_36_rate = final_correct_36_number./final_total_36_number; 
final_total_37_number = sum(sum_total_37_number(:,:)); 
final_correct_37_number = sum(sum_correct_37_number(:,:)); 
final_correct_37_rate = final_correct_37_number./final_total_37_number; 
final_total_38_number = sum(sum_total_38_number(:,:)); 
final_correct_38_number = sum(sum_correct_38_number(:,:)); 
final_correct_38_rate = final_correct_38_number./final_total_38_number; 
final_total_39_number = sum(sum_total_39_number(:,:)); 
final_correct_39_number = sum(sum_correct_39_number(:,:)); 
final_correct_39_rate = final_correct_39_number./final_total_39_number; 
final_total_40_number = sum(sum_total_40_number(:,:)); 
final_correct_40_number = sum(sum_correct_40_number(:,:)); 
final_correct_40_rate = final_correct_40_number./final_total_40_number; 
final_total_41_number = sum(sum_total_41_number(:,:)); 
final_correct_41_number = sum(sum_correct_41_number(:,:)); 
final_correct_41_rate = final_correct_41_number./final_total_41_number; 
% write statistics of ATTACK to a file 
fid = fopen('d:\attack.txt','w'); 
fprintf(fid,'Number of attacks in training set\n');  
fprintf(fid,'Number of attacks in testing set\n');  
fprintf(fid,'Number of attacks be correctly detected\n');  
fprintf(fid,'Detection rates\n');  
fprintf(fid,'\nDOS\n\n'); 
fprintf(fid,'3\n'); 
fprintf(fid,'%d\t',final_total_3_number);      fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_3_number);    fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_3_rate);    fprintf(fid,'\n'); 
fprintf(fid,'9\n'); 
fprintf(fid,'%d\t',final_total_9_number);      fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_9_number);    fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_9_rate);    fprintf(fid,'\n'); 



 

160 

fprintf(fid,'12\n'); 
fprintf(fid,'%d\t',final_total_12_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_12_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_12_rate);   fprintf(fid,'\n'); 
fprintf(fid,'16\n'); 
fprintf(fid,'%d\t',final_total_16_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_16_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_16_rate);   fprintf(fid,'\n'); 
fprintf(fid,'20\n'); 
fprintf(fid,'%d\t',final_total_20_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_20_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_20_rate);   fprintf(fid,'\n'); 
fprintf(fid,'25\n'); 
fprintf(fid,'%d\t',final_total_25_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_25_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_25_rate);   fprintf(fid,'\n'); 
fprintf(fid,'27\n'); 
fprintf(fid,'%d\t',final_total_27_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_27_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_27_rate);   fprintf(fid,'\n'); 
fprintf(fid,'30\n'); 
fprintf(fid,'%d\t',final_total_30_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_30_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_30_rate);   fprintf(fid,'\n'); 
fprintf(fid,'37\n'); 
fprintf(fid,'%d\t',final_total_37_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_37_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_37_rate);   fprintf(fid,'\n'); 
fprintf(fid,'\nPROBE\n\n'); 
fprintf(fid,'8\n'); 
fprintf(fid,'%d\t',final_total_8_number);      fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_8_number);    fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_8_rate);    fprintf(fid,'\n'); 
fprintf(fid,'13\n'); 
fprintf(fid,'%d\t',final_total_13_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_13_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_13_rate);   fprintf(fid,'\n'); 
fprintf(fid,'17\n'); 
fprintf(fid,'%d\t',final_total_17_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_17_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_17_rate);   fprintf(fid,'\n'); 
fprintf(fid,'19\n'); 
fprintf(fid,'%d\t',final_total_19_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_19_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_19_rate);   fprintf(fid,'\n'); 
fprintf(fid,'28\n'); 
fprintf(fid,'%d\t',final_total_28_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_28_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_28_rate);   fprintf(fid,'\n'); 
fprintf(fid,'32\n'); 
fprintf(fid,'%d\t',final_total_32_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_32_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_32_rate);   fprintf(fid,'\n'); 
fprintf(fid,'\nR2L\n\n'); 



 

161 

fprintf(fid,'5\n'); 
fprintf(fid,'%d\t',final_total_5_number);      fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_5_number);    fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_5_rate);    fprintf(fid,'\n'); 
fprintf(fid,'6\n'); 
fprintf(fid,'%d\t',final_total_6_number);      fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_6_number);    fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_6_rate);    fprintf(fid,'\n'); 
fprintf(fid,'7\n'); 
fprintf(fid,'%d\t',final_total_7_number);      fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_7_number);    fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_7_rate);    fprintf(fid,'\n'); 
fprintf(fid,'11\n'); 
fprintf(fid,'%d\t',final_total_11_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_11_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_11_rate);   fprintf(fid,'\n'); 
fprintf(fid,'15\n'); 
fprintf(fid,'%d\t',final_total_15_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_15_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_15_rate);   fprintf(fid,'\n'); 
fprintf(fid,'21\n'); 
fprintf(fid,'%d\t',final_total_21_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_21_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_21_rate);   fprintf(fid,'\n'); 
fprintf(fid,'23\n'); 
fprintf(fid,'%d\t',final_total_23_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_23_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_23_rate);   fprintf(fid,'\n'); 
fprintf(fid,'24\n'); 
fprintf(fid,'%d\t',final_total_24_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_24_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_24_rate);   fprintf(fid,'\n'); 
fprintf(fid,'29\n'); 
fprintf(fid,'%d\t',final_total_29_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_29_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_29_rate);   fprintf(fid,'\n'); 
fprintf(fid,'33\n'); 
fprintf(fid,'%d\t',final_total_33_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_33_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_33_rate);   fprintf(fid,'\n'); 
fprintf(fid,'34\n'); 
fprintf(fid,'%d\t',final_total_34_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_34_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_34_rate);   fprintf(fid,'\n'); 
fprintf(fid,'35\n'); 
fprintf(fid,'%d\t',final_total_35_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_35_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_35_rate);   fprintf(fid,'\n'); 
fprintf(fid,'38\n'); 
fprintf(fid,'%d\t',final_total_38_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_38_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_38_rate);   fprintf(fid,'\n'); 
fprintf(fid,'39\n'); 
fprintf(fid,'%d\t',final_total_39_number);     fprintf(fid,'\n'); 



 

162 

fprintf(fid,'%d\t',final_correct_39_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_39_rate);   fprintf(fid,'\n'); 
fprintf(fid,'40\n'); 
fprintf(fid,'%d\t',final_total_40_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_40_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_40_rate);   fprintf(fid,'\n'); 
fprintf(fid,'\nU2R\n\n'); 
fprintf(fid,'4\n'); 
fprintf(fid,'%d\t',final_total_4_number);      fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_4_number);    fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_4_rate);    fprintf(fid,'\n'); 
fprintf(fid,'10\n'); 
fprintf(fid,'%d\t',final_total_10_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_10_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_10_rate);   fprintf(fid,'\n'); 
fprintf(fid,'14\n'); 
fprintf(fid,'%d\t',final_total_14_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_14_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_14_rate);   fprintf(fid,'\n'); 
fprintf(fid,'18\n'); 
fprintf(fid,'%d\t',final_total_18_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_18_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_18_rate);   fprintf(fid,'\n'); 
fprintf(fid,'22\n'); 
fprintf(fid,'%d\t',final_total_22_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_22_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_22_rate);   fprintf(fid,'\n'); 
fprintf(fid,'26\n'); 
fprintf(fid,'%d\t',final_total_26_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_26_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_26_rate);   fprintf(fid,'\n'); 
fprintf(fid,'31\n'); 
fprintf(fid,'%d\t',final_total_31_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_31_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_31_rate);   fprintf(fid,'\n'); 
fprintf(fid,'36\n'); 
fprintf(fid,'%d\t',final_total_36_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_36_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_36_rate);   fprintf(fid,'\n'); 
fprintf(fid,'41\n'); 
fprintf(fid,'%d\t',final_total_41_number);     fprintf(fid,'\n'); 
fprintf(fid,'%d\t',final_correct_41_number);   fprintf(fid,'\n'); 
fprintf(fid,'%.2f\t',final_correct_41_rate);   fprintf(fid,'\n'); 
fclose(fid); 
% write COMPUTATION TIME to a file 
% TIME 
fid = fopen('d:\time.txt','w'); 
fprintf(fid,'KNN'); 
fprintf(fid,'\nknn_a\t'); 
fprintf(fid,'%f\t',time_average_knn_a); 
fprintf(fid,'\nknn_b\t'); 
fprintf(fid,'%f\t',time_average_knn_b); 
fprintf(fid,'\nknn_c\t'); 
fprintf(fid,'%f\t',time_average_knn_c); 



 

163 

fprintf(fid,'\nknn_d\t'); 
fprintf(fid,'%f\t',time_average_knn_d); 
fprintf(fid,'\nknn_e\t'); 
fprintf(fid,'%f\t',time_average_knn_e); 
fprintf(fid,'\nknn_f\t'); 
fprintf(fid,'%f\t',time_average_knn_f); 
fprintf(fid,'\nknn_g\t'); 
fprintf(fid,'%f\t',time_average_knn_g); 
fprintf(fid,'\n\nFKNN'); 
fprintf(fid,'\nfknn_a\t'); 
fprintf(fid,'%f\t',time_average_fknn_a); 
fprintf(fid,'\nfknn_b\t'); 
fprintf(fid,'%f\t',time_average_fknn_b); 
fprintf(fid,'\nfknn_c\t'); 
fprintf(fid,'%f\t',time_average_fknn_c); 
fprintf(fid,'\nfknn_d\t'); 
fprintf(fid,'%f\t',time_average_fknn_d); 
fprintf(fid,'\nfknn_e\t'); 
fprintf(fid,'%f\t',time_average_fknn_e); 
fprintf(fid,'\nfknn_f\t'); 
fprintf(fid,'%f\t',time_average_fknn_f); 
fprintf(fid,'\nfknn_g\t'); 
fprintf(fid,'%f\t',time_average_fknn_g); 
fprintf(fid,'\n\nETKNN'); 
fprintf(fid,'\netknn_a\t'); 
fprintf(fid,'%f\t',time_average_etknn_a); 
fprintf(fid,'\netknn_b\t'); 
fprintf(fid,'%f\t',time_average_etknn_b); 
fprintf(fid,'\netknn_c\t'); 
fprintf(fid,'%f\t',time_average_etknn_c); 
fprintf(fid,'\netknn_d\t'); 
fprintf(fid,'%f\t',time_average_etknn_d); 
fprintf(fid,'\netknn_e\t'); 
fprintf(fid,'%f\t',time_average_etknn_e); 
fprintf(fid,'\netknn_f\t'); 
fprintf(fid,'%f\t',time_average_etknn_f); 
fprintf(fid,'\netknn_g\t'); 
fprintf(fid,'%f\t',time_average_etknn_g); 
fprintf(fid,'\n\nMYKNN'); 
fprintf(fid,'\nmyknn_a\t'); 
fprintf(fid,'%f\t',time_average_myknn_a); 
fprintf(fid,'\nmyknn_b\t'); 
fprintf(fid,'%f\t',time_average_myknn_b); 
fprintf(fid,'\nmyknn_c\t'); 
fprintf(fid,'%f\t',time_average_myknn_c); 
fprintf(fid,'\nmyknn_d\t'); 
fprintf(fid,'%f\t',time_average_myknn_d); 
fprintf(fid,'\nmyknn_e\t'); 
fprintf(fid,'%f\t',time_average_myknn_e); 
fprintf(fid,'\nmyknn_f\t'); 
fprintf(fid,'%f\t',time_average_myknn_f); 
fprintf(fid,'\nmyknn_g\t'); 
fprintf(fid,'%f\t',time_average_myknn_g); 
fprintf(fid,'\n\nMYKNN-W'); 



 

164 

fprintf(fid,'\nmyknn_a_w\t'); 
fprintf(fid,'%f\t',time_average_myknn_a_w); 
fprintf(fid,'\nmyknn_b_w\t'); 
fprintf(fid,'%f\t',time_average_myknn_b_w); 
fprintf(fid,'\nmyknn_c_w\t'); 
fprintf(fid,'%f\t',time_average_myknn_c_w); 
fprintf(fid,'\nmyknn_d_w\t'); 
fprintf(fid,'%f\t',time_average_myknn_d_w); 
fprintf(fid,'\n\nENSEMBLE'); 
fprintf(fid,'\nt_ensemble_bayes\t'); 
fprintf(fid,'%f\t',time_average_ensemble_bayes); 
fprintf(fid,'\n\nTREE'); 
fprintf(fid,'\nt_tree\t'); 
fprintf(fid,'%f\t',time_average_tree); 
fclose(fid); 
% write CLASSIFICATION RATE to a file 
fid = fopen('d:\result.txt','w'); 
fprintf(fid,'KNN'); 
fprintf(fid,'\nknn_average_normal_rate_a\t'); 
fprintf(fid,'%f\t',knn_average_normal_rate_a); 
fprintf(fid,'\nknn_average_normal_rate_b\t'); 
fprintf(fid,'%f\t',knn_average_normal_rate_b); 
fprintf(fid,'\nknn_average_normal_rate_c\t'); 
fprintf(fid,'%f\t',knn_average_normal_rate_c); 
fprintf(fid,'\nknn_average_normal_rate_d\t'); 
fprintf(fid,'%f\t',knn_average_normal_rate_d); 
fprintf(fid,'\nknn_average_normal_rate_e\t'); 
fprintf(fid,'%f\t',knn_average_normal_rate_e); 
fprintf(fid,'\nknn_average_normal_rate_f\t'); 
fprintf(fid,'%f\t',knn_average_normal_rate_f); 
fprintf(fid,'\nknn_average_normal_rate_g\t'); 
fprintf(fid,'%f\t',knn_average_normal_rate_g); 
fprintf(fid,'\n'); 
fprintf(fid,'\nknn_average_attack_rate_a\t'); 
fprintf(fid,'%f\t',knn_average_attack_rate_a); 
fprintf(fid,'\nknn_average_attack_rate_b\t'); 
fprintf(fid,'%f\t',knn_average_attack_rate_b); 
fprintf(fid,'\nknn_average_attack_rate_c\t'); 
fprintf(fid,'%f\t',knn_average_attack_rate_c); 
fprintf(fid,'\nknn_average_attack_rate_d\t'); 
fprintf(fid,'%f\t',knn_average_attack_rate_d); 
fprintf(fid,'\nknn_average_attack_rate_e\t'); 
fprintf(fid,'%f\t',knn_average_attack_rate_e); 
fprintf(fid,'\nknn_average_attack_rate_f\t'); 
fprintf(fid,'%f\t',knn_average_attack_rate_f); 
fprintf(fid,'\nknn_average_attack_rate_g\t'); 
fprintf(fid,'%f\t',knn_average_attack_rate_g); 
fprintf(fid,'\n'); 
fprintf(fid,'\nknn_average_rate_a\t'); 
fprintf(fid,'%f\t',knn_average_rate_a); 
fprintf(fid,'\nknn_average_rate_b\t'); 
fprintf(fid,'%f\t',knn_average_rate_b); 
fprintf(fid,'\nknn_average_rate_c\t'); 
fprintf(fid,'%f\t',knn_average_rate_c); 



 

165 

fprintf(fid,'\nknn_average_rate_d\t'); 
fprintf(fid,'%f\t',knn_average_rate_d); 
fprintf(fid,'\nknn_average_rate_e\t'); 
fprintf(fid,'%f\t',knn_average_rate_e); 
fprintf(fid,'\nknn_average_rate_f\t'); 
fprintf(fid,'%f\t',knn_average_rate_f); 
fprintf(fid,'\nknn_average_rate_g\t'); 
fprintf(fid,'%f\t',knn_average_rate_g); 
fprintf(fid,'\n\nFKNN'); 
fprintf(fid,'\nfknn_average_normal_rate_a\t'); 
fprintf(fid,'%f\t',fknn_average_normal_rate_a); 
fprintf(fid,'\nfknn_average_normal_rate_b\t'); 
fprintf(fid,'%f\t',fknn_average_normal_rate_b); 
fprintf(fid,'\nfknn_average_normal_rate_c\t'); 
fprintf(fid,'%f\t',fknn_average_normal_rate_c); 
fprintf(fid,'\nfknn_average_normal_rate_d\t'); 
fprintf(fid,'%f\t',fknn_average_normal_rate_d); 
fprintf(fid,'\nfknn_average_normal_rate_e\t'); 
fprintf(fid,'%f\t',fknn_average_normal_rate_e); 
fprintf(fid,'\nfknn_average_normal_rate_f\t'); 
fprintf(fid,'%f\t',fknn_average_normal_rate_f); 
fprintf(fid,'\nfknn_average_normal_rate_g\t'); 
fprintf(fid,'%f\t',fknn_average_normal_rate_g); 
fprintf(fid,'\n'); 
fprintf(fid,'\nfknn_average_attack_rate_a\t'); 
fprintf(fid,'%f\t',fknn_average_attack_rate_a); 
fprintf(fid,'\nfknn_average_attack_rate_b\t'); 
fprintf(fid,'%f\t',fknn_average_attack_rate_b); 
fprintf(fid,'\nfknn_average_attack_rate_c\t'); 
fprintf(fid,'%f\t',fknn_average_attack_rate_c); 
fprintf(fid,'\nfknn_average_attack_rate_d\t'); 
fprintf(fid,'%f\t',fknn_average_attack_rate_d); 
fprintf(fid,'\nfknn_average_attack_rate_e\t'); 
fprintf(fid,'%f\t',fknn_average_attack_rate_e); 
fprintf(fid,'\nfknn_average_attack_rate_f\t'); 
fprintf(fid,'%f\t',fknn_average_attack_rate_e); 
fprintf(fid,'\nfknn_average_attack_rate_g\t'); 
fprintf(fid,'%f\t',fknn_average_attack_rate_g); 
fprintf(fid,'\n'); 
fprintf(fid,'\nfknn_average_rate_a\t'); 
fprintf(fid,'%f\t',fknn_average_rate_a); 
fprintf(fid,'\nfknn_average_rate_b\t'); 
fprintf(fid,'%f\t',fknn_average_rate_b); 
fprintf(fid,'\nfknn_average_rate_c\t'); 
fprintf(fid,'%f\t',fknn_average_rate_c); 
fprintf(fid,'\nfknn_average_rate_d\t'); 
fprintf(fid,'%f\t',fknn_average_rate_d); 
fprintf(fid,'\nfknn_average_rate_e\t'); 
fprintf(fid,'%f\t',fknn_average_rate_e); 
fprintf(fid,'\nfknn_average_rate_f\t'); 
fprintf(fid,'%f\t',fknn_average_rate_f); 
fprintf(fid,'\nfknn_average_rate_g\t'); 
fprintf(fid,'%f\t',fknn_average_rate_g); 
fprintf(fid,'\n\nETKNN'); 



 

166 

fprintf(fid,'\netknn_average_normal_rate_a\t'); 
fprintf(fid,'%f\t',etknn_average_normal_rate_a); 
fprintf(fid,'\netknn_average_normal_rate_b\t'); 
fprintf(fid,'%f\t',etknn_average_normal_rate_b); 
fprintf(fid,'\netknn_average_normal_rate_c\t'); 
fprintf(fid,'%f\t',etknn_average_normal_rate_c); 
fprintf(fid,'\netknn_average_normal_rate_d\t'); 
fprintf(fid,'%f\t',etknn_average_normal_rate_d); 
fprintf(fid,'\netknn_average_normal_rate_e\t'); 
fprintf(fid,'%f\t',etknn_average_normal_rate_e); 
fprintf(fid,'\netknn_average_normal_rate_f\t'); 
fprintf(fid,'%f\t',etknn_average_normal_rate_f); 
fprintf(fid,'\netknn_average_normal_rate_g\t'); 
fprintf(fid,'%f\t',etknn_average_normal_rate_g); 
fprintf(fid,'\n'); 
fprintf(fid,'\netknn_average_attack_rate_a\t'); 
fprintf(fid,'%f\t',etknn_average_attack_rate_a); 
fprintf(fid,'\netknn_average_attack_rate_b\t'); 
fprintf(fid,'%f\t',etknn_average_attack_rate_b); 
fprintf(fid,'\netknn_average_attack_rate_c\t'); 
fprintf(fid,'%f\t',etknn_average_attack_rate_c); 
fprintf(fid,'\netknn_average_attack_rate_d\t'); 
fprintf(fid,'%f\t',etknn_average_attack_rate_d); 
fprintf(fid,'\netknn_average_attack_rate_e\t'); 
fprintf(fid,'%f\t',etknn_average_attack_rate_e); 
fprintf(fid,'\netknn_average_attack_rate_f\t'); 
fprintf(fid,'%f\t',etknn_average_attack_rate_f); 
fprintf(fid,'\netknn_average_attack_rate_g\t'); 
fprintf(fid,'%f\t',etknn_average_attack_rate_g); 
fprintf(fid,'\n'); 
fprintf(fid,'\netknn_average_rate_a\t'); 
fprintf(fid,'%f\t',etknn_average_rate_a); 
fprintf(fid,'\netknn_average_rate_b\t'); 
fprintf(fid,'%f\t',etknn_average_rate_b); 
fprintf(fid,'\netknn_average_rate_c\t'); 
fprintf(fid,'%f\t',etknn_average_rate_c); 
fprintf(fid,'\netknn_average_rate_d\t'); 
fprintf(fid,'%f\t',etknn_average_rate_d); 
fprintf(fid,'\netknn_average_rate_e\t'); 
fprintf(fid,'%f\t',etknn_average_rate_e); 
fprintf(fid,'\netknn_average_rate_f\t'); 
fprintf(fid,'%f\t',etknn_average_rate_f); 
fprintf(fid,'\netknn_average_rate_g\t'); 
fprintf(fid,'%f\t',etknn_average_rate_g); 
fprintf(fid,'\n\nMYKNN'); 
fprintf(fid,'\nmyknn_average_normal_rate_a\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_a); 
fprintf(fid,'\nmyknn_average_normal_rate_b\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_b); 
fprintf(fid,'\nmyknn_average_normal_rate_c\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_c); 
fprintf(fid,'\nmyknn_average_normal_rate_d\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_d); 
fprintf(fid,'\nmyknn_average_normal_rate_e\t'); 



 

167 

fprintf(fid,'%f\t',myknn_average_normal_rate_e); 
fprintf(fid,'\nmyknn_average_normal_rate_f\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_f); 
fprintf(fid,'\nmyknn_average_normal_rate_g\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_g); 
fprintf(fid,'\n'); 
fprintf(fid,'\nmyknn_average_attack_rate_a\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_a); 
fprintf(fid,'\nmyknn_average_attack_rate_b\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_b); 
fprintf(fid,'\nmyknn_average_attack_rate_c\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_c); 
fprintf(fid,'\nmyknn_average_attack_rate_d\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_d); 
fprintf(fid,'\nmyknn_average_attack_rate_e\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_e); 
fprintf(fid,'\nmyknn_average_attack_rate_f\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_f); 
fprintf(fid,'\nmyknn_average_attack_rate_g\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_g); 
fprintf(fid,'\n'); 
fprintf(fid,'\nmyknn_average_rate_a\t'); 
fprintf(fid,'%f\t',myknn_average_rate_a); 
fprintf(fid,'\nmyknn_average_rate_b\t'); 
fprintf(fid,'%f\t',myknn_average_rate_b); 
fprintf(fid,'\nmyknn_average_rate_c\t'); 
fprintf(fid,'%f\t',myknn_average_rate_c); 
fprintf(fid,'\nmyknn_average_rate_d\t'); 
fprintf(fid,'%f\t',myknn_average_rate_d); 
fprintf(fid,'\nmyknn_average_rate_e\t'); 
fprintf(fid,'%f\t',myknn_average_rate_e); 
fprintf(fid,'\nmyknn_average_rate_f\t'); 
fprintf(fid,'%f\t',myknn_average_rate_f); 
fprintf(fid,'\nmyknn_average_rate_g\t'); 
fprintf(fid,'%f\t',myknn_average_rate_g); 
fprintf(fid,'\n\nMYKNN-W'); 
fprintf(fid,'\nmyknn_average_normal_rate_a_w\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_a_w); 
fprintf(fid,'\nmyknn_average_normal_rate_b_w\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_b_w); 
fprintf(fid,'\nmyknn_average_normal_rate_c_w\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_c_w); 
fprintf(fid,'\nmyknn_average_normal_rate_d_w\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_d_w); 
fprintf(fid,'\n'); 
fprintf(fid,'\nmyknn_average_attack_rate_a_w\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_a_w); 
fprintf(fid,'\nmyknn_average_attack_rate_b_w\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_b_w); 
fprintf(fid,'\nmyknn_average_attack_rate_c_w\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_c_w); 
fprintf(fid,'\nmyknn_average_attack_rate_d_w\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_d_w); 
fprintf(fid,'\n'); 



 

168 

fprintf(fid,'\nmyknn_average_rate_a_w\t'); 
fprintf(fid,'%f\t',myknn_average_rate_a_w); 
fprintf(fid,'\nmyknn_average_rate_b_w\t'); 
fprintf(fid,'%f\t',myknn_average_rate_b_w); 
fprintf(fid,'\nmyknn_average_rate_c_w\t'); 
fprintf(fid,'%f\t',myknn_average_rate_c_w); 
fprintf(fid,'\nmyknn_average_rate_d_w\t'); 
fprintf(fid,'%f\t',myknn_average_rate_d_w); 
fprintf(fid,'\n\nENSEMBLE'); 
fprintf(fid,'\nensemble_average_normal_rate_m\t'); 
fprintf(fid,'%f\t',ensemble_average_normal_rate_m); 
fprintf(fid,'\nensemble_average_normal_rate_mv\t'); 
fprintf(fid,'%f\t',ensemble_average_normal_rate_mv); 
fprintf(fid,'\nensemble_average_normal_rate_bayes\t'); 
fprintf(fid,'%f\t',ensemble_average_normal_rate_bayes); 
fprintf(fid,'\n'); 
fprintf(fid,'\nensemble_average_attack_rate_m\t'); 
fprintf(fid,'%f\t',ensemble_average_attack_rate_m); 
fprintf(fid,'\nensemble_average_attack_rate_mv\t'); 
fprintf(fid,'%f\t',ensemble_average_attack_rate_mv); 
fprintf(fid,'\nensemble_average_attack_rate_bayes\t'); 
fprintf(fid,'%f\t',ensemble_average_attack_rate_bayes); 
fprintf(fid,'\n'); 
fprintf(fid,'\nensemble_average_rate_m\t'); 
fprintf(fid,'%f\t',ensemble_average_rate_m); 
fprintf(fid,'\nensemble_average_rate_mv\t'); 
fprintf(fid,'%f\t',ensemble_average_rate_mv); 
fprintf(fid,'\nensemble_average_rate_bayes\t'); 
fprintf(fid,'%f\t',ensemble_average_rate_bayes); 
fprintf(fid,'\n\nTREE'); 
fprintf(fid,'\nmyknn_average_normal_rate_a_tree\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_a_tree); 
fprintf(fid,'\nmyknn_average_normal_rate_b_tree\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_b_tree); 
fprintf(fid,'\nmyknn_average_normal_rate_c_tree\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_c_tree); 
fprintf(fid,'\nmyknn_average_normal_rate_d_tree\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_d_tree); 
fprintf(fid,'\nmyknn_average_normal_rate_e_tree\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_e_tree); 
fprintf(fid,'\nmyknn_average_normal_rate_f_tree\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_f_tree); 
fprintf(fid,'\nmyknn_average_normal_rate_g_tree\t'); 
fprintf(fid,'%f\t',myknn_average_normal_rate_g_tree); 
fprintf(fid,'\n'); 
fprintf(fid,'\nmyknn_average_attack_rate_a_tree\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_a_tree); 
fprintf(fid,'\nmyknn_average_attack_rate_b_tree\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_b_tree); 
fprintf(fid,'\nmyknn_average_attack_rate_c_tree\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_c_tree); 
fprintf(fid,'\nmyknn_average_attack_rate_d_tree\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_d_tree); 
fprintf(fid,'\nmyknn_average_attack_rate_e_tree\t'); 



 

169 

fprintf(fid,'%f\t',myknn_average_attack_rate_e_tree); 
fprintf(fid,'\nmyknn_average_attack_rate_f_tree\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_f_tree); 
fprintf(fid,'\nmyknn_average_attack_rate_g_tree\t'); 
fprintf(fid,'%f\t',myknn_average_attack_rate_g_tree); 
fprintf(fid,'\n'); 
fprintf(fid,'\nmyknn_average_rate_a_tree\t'); 
fprintf(fid,'%f\t',myknn_average_rate_a_tree); 
fprintf(fid,'\nmyknn_average_rate_b_tree\t'); 
fprintf(fid,'%f\t',myknn_average_rate_b_tree); 
fprintf(fid,'\nmyknn_average_rate_c_tree\t'); 
fprintf(fid,'%f\t',myknn_average_rate_c_tree); 
fprintf(fid,'\nmyknn_average_rate_d_tree\t'); 
fprintf(fid,'%f\t',myknn_average_rate_d_tree); 
fprintf(fid,'\nmyknn_average_rate_e_tree\t'); 
fprintf(fid,'%f\t',myknn_average_rate_e_tree); 
fprintf(fid,'\nmyknn_average_rate_f_tree\t'); 
fprintf(fid,'%f\t',myknn_average_rate_f_tree); 
fprintf(fid,'\nmyknn_average_rate_g_tree\t'); 
fprintf(fid,'%f\t',myknn_average_rate_g_tree); 
fprintf(fid,'\n\nTREE + ENSEMBLE'); 
fprintf(fid,'\nensemble_average_normal_rate_tree_m\t'); 
fprintf(fid,'%f\t',ensemble_average_normal_rate_tree_m); 
fprintf(fid,'\nensemble_average_normal_rate_tree_mv\t'); 
fprintf(fid,'%f\t',ensemble_average_normal_rate_tree_mv); 
fprintf(fid,'\nensemble_average_normal_rate_tree_bayes\t'); 
fprintf(fid,'%f\t',ensemble_average_normal_rate_tree_bayes); 
fprintf(fid,'\n'); 
fprintf(fid,'\nensemble_average_attack_rate_tree_m\t'); 
fprintf(fid,'%f\t',ensemble_average_attack_rate_tree_m); 
fprintf(fid,'\nensemble_average_attack_rate_tree_mv\t'); 
fprintf(fid,'%f\t',ensemble_average_attack_rate_tree_mv); 
fprintf(fid,'\nensemble_average_attack_rate_tree_bayes\t'); 
fprintf(fid,'%f\t',ensemble_average_attack_rate_tree_bayes); 
fprintf(fid,'\n'); 
fprintf(fid,'\nensemble_average_rate_tree_m\t'); 
fprintf(fid,'%f\t',ensemble_average_rate_tree_m); 
fprintf(fid,'\nensemble_average_rate_tree_mv\t'); 
fprintf(fid,'%f\t',ensemble_average_rate_tree_mv); 
fprintf(fid,'\nensemble_average_rate_tree_bayes\t'); 
fprintf(fid,'%f\t',ensemble_average_rate_tree_bayes); 
fclose(fid); 
fprintf('\nDONE\n\n'); 
beep; 
 



 

170 

VITA 
 

TE-SHUN CHOU 
 
 

1984-1989  B.S., Electronic Engineering 
   Feng Chia University 
   Taichung, Taiwan, R.O.C. 
 
1990-1992  M.S., Electrical Engineering 

Florida International University 
Miami, FL 

1992-1994  Elan Microelectronics Corporation, Taiwan, R.O.C.  

1994-1999  The Overseas Chinese Institute of Technology, Taiwan, R.O.C. 

1999-2002  University of British Columbia, Vancouver, BC, Canada 

2003-2005  Porter Electronics Ltd., Richmond, BC, Canada 

2005-2007  Doctoral Candidate, Electrical Engineering 
Florida International University 
Miami, FL 

 
PUBLICATIONS AND PRESENTATIONS 
 
Te-Shun Chou, Kang K. Yen, Niki Pissinou, and Kia Makki. (2007). Ensemble of 
Multiple Classifiers in Network Intrusion Detection Design. Computers & Security. (in 
review) 
 
Te-Shun Chou, Kang K. Yen, Jun Luo. (2007). Network Intrusion Detection Design 
Using Feature Selection of Soft Computing Paradigms. International Journal of 
Computational Intelligence, Volume 4, Number 3, pp. 205-217. 
 
Te-Shun Chou, Kang K. Yen, Niki Pissinou, and Kia Makki. (November, 2007). Fuzzy 
Belief Reasoning for Intrusion Detection Design. IEEE The third International 
Conference on Intelligent Information Hiding and Multimedia Signal Processing, 
Kaohsiung, Taiwan.  
 
Te-Shun Chou, Kang K. Yen, Jun Luo, Niki Pissinou, and Kia Makki. (October, 2007). 
Correlation-Based Feature Selection for Intrusion Detection Design. IEEE Military 
Communications Conference, Orlando, FL. 
 
Te-Shun Chou, Kang K. Yen, Liwei An, Niki Pissinou, and Kia Makki. (October, 2007). 
Fuzzy Belief Pattern Classification of Incomplete Data. IEEE International Conference 
on Systems, Man and Cybernetics, pp. 535-540, Montreal, Quebec, Canada.  
 



 

171 

Te-Shun Chou, Kang K. Yen, and Jun Luo. (July, 2007). Feature Reduction and Fuzzy 
Belief Intrusion Detection Design. The 11th World Multi-Conference on Systemics, 
Cybernetics and Informatics jointly with The 13th International Conference on 
Information Systems Analysis and Synthesis, pp. 262-267, Orlando, FL. 
 
Te-Shun Chou and Kang K. Yen. (June, 2007). Fuzzy Belief k-Nearest Neighbors 
Anomaly Detection of User to Root and Remote to Local Attacks. 8th Annual IEEE SMC 
Information Assurance Workshop, pp. 207-213, West Point, NY. 
 
Edward T. Lee and Te-Shun Chou. (2001). Fuzzy Monotone Functions and Applications. 
Kybernetes, Volume 30, Number 1&2, pp. 84-97. 
 
Te-Shun Chou and Sidney S. Fels. (March, 2001). Hand Modeling for Adaptive 
Interfaces, Techniques for Geometry and Prediction of Hand Models. BC Advanced 
Systems Institute Exchange, Poster, Vancouver, BC. 
 
Te-Shun Chou and Edward T. Lee. (May, 1998). Fuzzy Monotone Functions and 
Applications. IEEE World Congress on Computational Intelligence, pp. 829-834, 
Anchorage, AK. 
 
Edward T. Lee and Te-Shun Chou. (1995). Fuzzy Threshold Functions and Applications. 
Kybernetes, Volume 24, Number 7, pp. 99-122. 
 
Te-Shun Chou, Jyn-Guo Hwang, and Rong-Da Chung. (September, 1994). Two New 
Strategies of Membership Function Circuit and Defuzzifier for a Fuzzy Logic Controller. 
Second National Conference on Fuzzy Theory and Applications, pp. 172-175, Taipei, 
Taiwan. 
 
Te-Shun Chou and Jyn-Guo Hwang. (September, 1994). An architecture of a Cascadable 
Digital Fuzzy Processor by Using Rule Break Up Method. Second National Conference 
on Fuzzy Theory and Applications, pp. 176-180, Taipei, Taiwan. 
 
Te-Shun Chou, Jyn-Guo Hwang, and Lih-Chiou Lin. (August, 1993). Design of a Fuzzy 
Logic Processor With Active Rules Methods. Forth VLSI Design/CAD Workshop, pp. 
156-160, Taipei, Taiwan. 
 


	Florida International University
	FIU Digital Commons
	11-13-2007

	Ensemble Fuzzy Belief Intrusion Detection Design
	Te-Shun Chou
	Recommended Citation



