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ABSTRACT OF THE DISSERTATION 

DEFENSE AGAINST NODE COMPROMISE IN SENSOR NETWORK SECURITY 

by 

Xiangqian Chen 

Florida International University, 2007 

Miami, Florida 

Professor Kia Makki, Co-Major Professor 

Professor Kang Yen, Co-Major Professor 

Recent advances in electronic and computer technologies lead to wide-spread 

deployment of wireless sensor networks (WSNs). WSNs have wide range applications, 

including military sensing and tracking, environment monitoring, smart environments, etc. 

Many WSNs have mission-critical tasks, such as military applications. Thus, the security 

issues in WSNs are kept in the foreground among research areas. Compared with other 

wireless networks, such as ad hoc, and cellular networks, security in WSNs is more 

complicated due to the constrained capabilities of sensor nodes and the properties of the 

deployment, such as large scale, hostile environment, etc. Security issues mainly come 

from attacks. In general, the attacks in WSNs can be classified as external attacks and 

internal attacks. In an external attack, the attacking node is not an authorized participant 

of the sensor network. Cryptography and other security methods can prevent some of 

external attacks. However, node compromise, the major and unique problem that leads to 

internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability 

of node compromise will help systems to detect and defend against it. Although there are  
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some approaches that can be used to detect and defend against node compromise, few of 

them have the ability to estimate the probability of node compromise. 

Hence, we develop basic uniform, basic gradient, intelligent uniform and 

intelligent gradient models for node compromise distribution in order to adapt to different 

application environments by using probability theory. These models allow systems to 

estimate the probability of node compromise. Applying these models in system security 

designs can improve system security and decrease the overheads nearly in every security 

area. Moreover, based on these models, we design a novel secure routing algorithm to 

defend against the routing security issue that comes from the nodes that have already 

been compromised but have not been detected by the node compromise detecting 

mechanism. The routing paths in our algorithm detour those nodes which have already 

been detected as compromised nodes or have larger probabilities of being compromised. 

Simulation results show that our algorithm is effective to protect routing paths from node 

compromise whether detected or not. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Following the recent advances in micro-electro-mechanical systems (MEMS) [1- 

5] technology, wireless communications and digital electronics, it is technically and 

economically practical to manufacture a large number of small and low cost sensors. 

These tiny sensor nodes consist of sensing, data processing, and wireless communicating 

components. It is possible to deploy these sensor nodes inside or close to the monitoring 

phenomenon and organize them as a wireless sensor network (WSN) or sensor network. 

Different WSNs may consist of different types of sensors such as seismic, low sampling 

rate magnetic, thermal, visual, infrared, acoustic and radar sensors, which can monitor 

temperature, humidity, vehicular movement, lightning condition, pressure, soil makeup, 

noise levels, etc [5]. These large numbers of different types of sensors lead to a widely 

range applications of WSNs. Akyildiz et al [6] classified the application of sensor 

networks as following: 

 Military applications: Monitoring friendly forces, equipment and ammunition; 

battlefield surveillance; reconnaissance of opposing forces and terrain; targeting; 

battle damage assessment; and nuclear, biological and chemical (NBC) attack 

detection and reconnaissance. 

 Environmental applications: Some environmental applications of WSNs include 

tracking the movements of birds, small animals, and insects; monitoring 

environmental conditions that affect crops and livestock; irrigation; macroinstruments 
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for large-scale Earth monitoring and planetary exploration; chemical/biological 

detection; precision agriculture; biological, Earth, and environmental monitoring in 

marine, soil, and atmospheric contexts; forest fire detection; meteorological or 

geophysical research; flood detection; bio-complexity mapping of the environment; 

and pollution study. 

 Health applications: Some of the health applications for sensor networks are providing 

interfaces for the disabled; integrated patient monitoring; diagnostics; drug 

administration in hospitals; monitoring the movements and internal processes of 

insects or other small animals; telemonitoring of human physiological data; and 

tracking and monitoring doctors and patients inside a hospital. 

 Home applications: Standard applications include Home automation and smart 

environment. 

 Other commercial applications: Some of the commercial applications are monitoring 

material fatigue; building virtual keyboards; managing inventory; monitoring product 

quality; constructing smart office spaces; environmental control in office buildings; 

robot control and guidance in automatic manufacturing environments; interactive toys; 

interactive museums; factory process control and automation; monitoring disaster area; 

smart structures with sensor nodes embedded inside; machine diagnosis; 

transportation; factory instrumentation; local control of actuators; detecting and 

monitoring car thefts; vehicle tracking and detection; and instrumentation of 

semiconductor processing chambers, rotating machinery, wind tunnels, and anechoic 

chambers.  
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Many sensor networks have mission-critical tasks, such as above military 

applications. Thus, the security issues in WSNs are kept in the foreground among research 

areas. Compared with other wireless networks, such as ad hoc, wireless LAN, and cellular 

networks, security in WSNs is more complicated due to the constrained capabilities (such 

as very low power consumption, limited local memory and calculation capacity, large 

number of sensor nodes, easy node failure, low communication speed between sensor 

nodes) of sensor node hardware and the properties of the deployment [7]: 

 Cryptography algorithm selection and key management: On one hand, asymmetric 

cryptography (e.g., the RSA signature algorithm or the Diffie-Hellman key agreement 

protocol) requires more computation resources than symmetric cryptography (e.g., the 

AES block cipher or the HMAC-SHA-1 message authentication code) does. On the 

other hand, symmetric cryptography is difficult for key deployment and management. 

Since sensor nodes usually have severely constrained computation, memory, and 

energy resources, asymmetric cryptography looks like too expensive for many 

applications. However, symmetric cryptography is not as versatile as public key 

cryptographic techniques and is difficult for key management, which complicates the 

design of secure applications. 

 Sensor nodes are susceptible to physical capture and easy to be compromised. 

Compromised nodes may exhibit arbitrary behavior and may collude with other 

compromised nodes.  

 Because sensor nodes use wireless communication, it is easy to eavesdrop on, and an 

attacker can easily inject malicious messages into the wireless network. 
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 Compared with most current standard security protocols used in current networks, 

sensor networks may have thousands of sensor nodes or more. It needs to consider that 

large scale, multi-hop deployments. So scalability is a big problem in sensor networks.   

1.2 Security goals 

When dealing with security in WSNs, to secure ad hoc or sensor networks, we 

mainly focus on the problem of achieving some of all of the following security 

contributes or services： 

 Confidentiality: Confidentiality or Secrecy has to do with making information 

inaccessible to unauthorized users [8, 9]. A confidential message is resistant to 

revealing its meaning to an eavesdropper.  

 Availability: Availability ensures the survivability of network services to authorized 

parties when needed despite denial-of-service attacks. A denial-of-service attack could 

be launched at any OSI (Open System Interconnect) layer [8] of a sensor network.  

 Integrity: Integrity measures ensure that the received data is not altered in transit by an 

adversary [8, 9]. 

 Authentication: Authentication enables a node to ensure the identity of the peer node 

with which it is communicating [8, 9]. 

 Freshness: This could mean data freshness and key freshness. Since all sensor 

networks provide some forms of time varying measurements, we must ensure each 

message is fresh. Data freshness implies that each data is recent, and it ensures that no 

adversary replayed old messages. 
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 Scalability, self-organization and flexibility: In contrast to general ad hoc networks 

that do not put scalability in the first priority, designing sensor network must consider 

its scalability because of its large quantity of sensor nodes. Due to its deployment 

condition and changeable mission goals, self-organization and flexibility (such as 

sensor networks fusing, nodes leaving and joining, etc) are also important factors 

when designing secure sensor network. 

 

1.3 Threats and attacks classifications on sensor networks 

Security issues mainly come from attacks. If no attack occurred, there is no need 

for security. Generally, the attack probability within sensor networks is larger than that of 

any other types of networks, such as wireless LANs, due to their deployment 

environments and resource limitations. These attacks can be classified as external attacks 

and internal attacks [7].  

In an external attack, the attacker node is not an authorized participant of the 

sensor network [7]. External attacks can further be divided into two categories: passive 

and active. Passive attacks involve unauthorized ‘listening’ to the routing packets. This 

type of attack can be eased by adopting different security methods such as encryption. 

Active external attacks disrupt network functionality by introducing some 

denial-of-service (DoS) attacks, such as jamming, power exhaustion. Authentication and 

integrity will ease most active external attacks except jamming. The standard defense 

against jamming involves various forms of spread-spectrum or frequency hopping 

communication. Other defense methods against jamming include switching to low duty 
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cycle and conserving as much power as possible, locating the jamming area and rerouting 

traffic, adopting prioritized transmission scheme that minimize collisions, etc [10]. 

Node compromise is the major and unique problem in sensor networks that leads 

to internal attacks. With node compromise, an adversary can perform an internal attack. 

In contrast to disabled nodes, compromised nodes actively seek to disrupt or paralyze the 

network [7]. Normally, compromised nodes can be obtained by the following methods: 

 Attackers capture sensor nodes and reprogram them. The advantage of this method is 

quick and easy. But this method has some limitations. Firstly, it is not easy to capture 

and reprogram sensor nodes automatically. Most time, attackers must manually 

capture nodes and reprogram them. Secondly, in some applications, the deployment 

environment makes it difficult or even impossible for attackers to capture sensor 

nodes, e.g. some military applications. Thirdly, WSNs can easily locate the 

compromised nodes by monitor node activity, location, etc [11].   

 Attackers can deploy nodes with larger computing resources such as laptops to attack 

sensor nodes. For example, laptop attackers’ nodes can communicate sensor nodes, 

breach their security mechanisms, insert malicious codes and make them as 

compromised nodes without physically touching them or moving their positions. 

These laptop nodes compromising activities can execute at all time, and these 

compromise activities are hard to be detected, and can be implemented automatically. 

The disadvantage is that attackers need some time to breach security mechanisms of 

sensor nodes.  

 Attackers can deploy big nodes as compromised nodes. Attackers can deploy big 

nodes such as laptop nodes as compromised nodes to replace current sensor nodes 
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when they get the secret information by attacking normal nodes. Similar to the above 

case, it is hard for detecting mechanisms to detect such compromised nodes. The 

disadvantages of this method are: attacking time is a little longer compared with the 

first introduced method; the cost is expensive when using one laptop as one node. 

Someone may say that attacker can use one laptop to replace several nodes. This type 

of attack is Sybil attack [12]. System can easily locate them by using Location 

Verification, Identity Verification [12].  

 Compared with external attacks, internal attacks are hard to be detected and 

prevented, thus introducing more hazardous security issues. Compromised nodes can do 

the following attacks: 

1. Compromised node can steal secrets from the encrypted data which passed it; 

2. Compromised node can report wrong information to the network; 

3. Compromised node can report other normal nodes as compromised nodes; 

4. Compromised node can breach routing by introducing many routing attacks, such as 

selected forwarding, black hole, modified the routing data, etc., while systems are 

hard to notice these activities, and normal encryption methods have no effect to 

prevent them because they own the secret information such as keys.   

5. Compromised nodes may exhibit arbitrary behavior and may collude with other 

compromised nodes. 

1.4 Attacks and preventions in OSI model 

Here we give a short summation of security issues and defense suggestions from 

the point of view of Open System Interconnect (OSI) model. Using layered network 
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architecture can help in analyzing security issues, and improving robustness by 

circumscribing layer interactions and interfaces. Figure 1 is the typical layered 

networking model of a sensor network. Each layer is susceptible to different attacks. 

Even some attacks can crosscut multiple layers or exploit interactions between them. In 

this section, we mainly discuss attacks and defenses on the transport layer and the below 

layers. Table 1 gives a summary of attacks and suggested defenses in each layer. 

 

Figure 1 Layered Networking Model of Sensor Network 

1.4.1 Physical layer 

The physical layer is responsible for frequency selection, carrier frequency 

generation, signal detection and modulation.  Jamming and tampering are the major 

types of physical attacks. The standard defense against jamming involves various forms 

of spread-spectrum or frequency hopping communication. Given that these abilities 

require greater design complexity and more power, low-cost and low-power sensor 

devices will likely be limited to single-frequency use [10]. Other defense methods against 
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jamming include switching to low duty cycle and conserving as much power as possible, 

locating the jamming area and rerouting traffic, adopting prioritized transmission 

schemes that minimize collisions, etc. Capturing and tampering is one of methods that 

produce compromised nodes. An attacker can also tamper with nodes physically, 

interrogate and compromise them. Tamper protection falls into two categories: passive 

and active [13]. Passive mechanisms include those that do not require energy and include 

technologies that protect a circuit from being detected (e.g., protective coatings, tamper 

seals). Active tamper protection involve the special hardware circuits within the sensor 

node to prevent sensitive data from being exposed. Active mechanisms will not be 

typically found in sensor nodes since these mechanisms add more cost for extra circuitry 

and consume more energy. Instead, passive techniques are more indicative of sensor node 

technology. 

1.4.2 Data Link layer 

The data link layer or media access control (MAC) is responsible for the 

multiplexing of data streams, data frame detection, medium access and error control. It 

provides reliable point-to-point and point-to-multipoint connections in a communication 

network, and channel assignment for neighbor-to-neighbor communication is a main task 

for this layer. Collision, exhaustion, and unfairness are major attacks in this layer.  

Error-correcting code can ease collision attack, however, the result is limited because 

malicious nodes can still corrupt more data than the network can correct. Also, the 

collision-detection mechanism cannot completely defend against that attack because 

proper transmission still need cooperation among nodes and subverted nodes could 

intentionally and repeatedly deny access to the channel, expending much less energy than 
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in fulltime jamming [10].  TDMA is another method in preventing collisions. But it 

requires more control resources and is still susceptible to collisions.  Adversaries can let 

sensor nodes execute a large number of tasks to deplete the battery of these nodes. This 

exhaustion attack will compromise the system availability even if the adversary expends 

few efforts. Random back–offs only decrease the probability of an inadvertent collision, 

thus they would be ineffective at preventing this attack. Time-division multiplexing gives 

each node a slot for transmission without requiring arbitration for each frame. This 

approach could solve the indefinite postponement problem in a back–off algorithm, but it 

is still susceptible to collisions. A promising solution is rate limiting in MAC admission 

control, but it still needs additional work [10]. In a non-priority MAC mechanism, 

adversaries can adopt maximizing their own transmission time in order to let the other 

good nodes not have any time to transmit packets. This will cause unfairness, a weaker 

form of DoS. Though this threat may not entirely prevent legitimate access to the channel, 

it could degrade normal service. Though using small frames can ease some extents of 

such attacks, it increases framing overhead when the network typically transmits long 

messages. Further, an adversary can easily defeat this defense by cheating when vying for 

access, such as by responding quickly while others delay randomly [10].  

1.4.3 Network layer 

Sensor nodes are scattered in a field either close to or inside the phenomenon. 

Special multihop wireless routing protocols between the sensor nodes and the sink node 

are needed to deliver data throughout the network.  Karlof and Wagne [14] summarize 

the attacks of the network layer as follows: Spoofed, altered, or replayed routing 

information; Selective forwarding; Sinkhole attacks; Sybil attacks; Wormholes;  
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HELLO flood attacks; and acknowledgement spoofing.  Besides the above attacks, we 

introduce two novel classes of previously undocumented attacks against sensor networks 

(These attacks apply to ad-hoc wireless networks as well) – white hole attacks and 

insulation and corruption attacks. 

Table 1:  Attacks and Suggested Protections in OSI Model 

Layer Name Attacks Suggested Defense 

Jamming 
spread-spectrum, frequency hopping, low 

duty cycle, rerouting traffic, adopting 
prioritized transmission scheme [10] Physical Layer 

Tampering active and passive [13] 

Collision Error-correcting codes, collision-detection 
mechanism [10] 

Exhaustion 
 

Time-division multiplexing,  
rate limiting in MAC admission control [10]

Data link layer 

Unfairness small frames [10] 
Spoofed, altered, or 

replayed routing 
information 

Authenticated routing information [14] 

Selective forwarding Nearby nodes corporation, multipath [14] 

Sinkhole attacks 
Routing distance verification, Tight time 
synchronization, Bidirectional distance 

verification [14] 

White hole attacks Routing distance verification, 
Bidirectional distance verification [14] 

Sybil attacks Location Verification, Identity Verification 
[14]  

Wormholes 
Location Verification, Packet leashes 

(restricting the packet's maximum allowed 
transmission distance) [14] 

HELLO flood 
attacks Authentication Neighbors [14] 

Insulation and 
corruption attacks 

Integrating system monitor and adding more 
nodes to participate the decision 

Multiple investigation 

Network layer 

Acknowledgement 
spoofing Bidirectional link verification [14] 

Flooding Limiting the number of connections, Solving 
client puzzles [10] Transport layer 

Desynchronization Authentication [10] 
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 White hole attacks 

Similar to black holes, white hole nodes (normally, laptop-class attackers) 

advertise zero-cost routes to every other node.  Black holes attract more traffic to be 

passed through the compromised nodes. Compared with black holes, white holes replay 

or send large quantity packets to the nodes surrounded in their radio coverage area and 

make them unable to work or drain the battery. Normally, a node can act as both a black 

hole or a white hole. It attracts packets passed by its radio coverage area and disseminates 

packets to this area. In this type of attack, the adversary’s goal is to send a large quantity 

of messages to the nodes in its communication coverage area and make them busy. Under 

such a condition, the nodes within its coverage waste resources by processing the 

incoming packets from the white hole successively, and have few resources to process the 

normal incoming packets from benign nodes. Worst of all, when adversaries use a laptop 

as the attack source, the sensor network within the attacking coverage will be invalid to 

execute normal functions. 

 Insulation and corruption attacks:  

A group of malicious nodes circumvent benign nodes and insulate benign nodes to 

communicate with outside by refusing to route their packets, dropping their packets 

silently, or by injecting bogus packets. The malicious group can even report the benign 

nodes as malicious nodes. Little by little, they corrupt more and more benign nodes by 

moving their position and conquering other benign nodes using the same method if these 

malicious nodes are mobile nodes and can adopt united action. This type of attack will be 

worse, if the group of malicious nodes insulates benign nodes near the base station. 

Figure 2 shows an example of this type of attack. 
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One promising defense against this threat is combining a system monitor and 

adding more nodes to participate in the decision. If some nodes report that other nodes 

have been compromised, the system would move/add other benign nodes (in the last 

interval) to this area and revaluate (in the near future) to prevent malicious nodes wrong 

report happening. Another potential defense against this threat is that the system will 

revaluate the compromised node in the future. After the malicious nodes move, the 

system may find the previously compromised node is now a benign node through a new 

corporate conclusion. From history records and multiple investigations, the system can 

correct error node recognition. 

 

Figure 2 Insulation and Corruption attacks 

 Countermeasure summary in Network layer 

Encryption and authentication, multipath routing, identity verification, 

bidirectional link verification, and authentication broadcast can protect sensor network 

routing protocols against external attacks, bogus routing information, Sybil attacks, 

HELLO floods, and acknowledgement spoofing. Sinkhole attacks, white hole attacks and 

wormholes pose significant challenges to secure routing protocol design, especially 

integrating node compromise. It is unlikely to find effective countermeasures against 
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these attacks that can be applied after deployment. It is crucial to design routing protocols 

in which these attacks are meaningless or ineffective. Geographic routing protocols are 

one class of protocols that holds promise [14]; however, preventing insulation and 

corruption attacks is not easy. Aiming to prevent this type of attacks, systems should have 

monitoring and maintenance functions such as records of node compromise decisions. 

Periodic or multiple evaluations replacing one time judgment of node compromise events 

may help ease malicious nodes reporting good nodes as “bad nodes,” and adding more 

nodes in this area may also correct malicious nodes’ wrong decision. In all, preventing 

this type of attack needs more works. 

1.4.4 Transport layer 

The transport layer protocols provide reliability and session control for sensor 

node applications. This layer is especially needed when the system plans to be accessed 

through Internet or other external networks. Though it is considered to have few security 

issues in this layer, there are still some types of attacks, such as flooding and 

desynchronization that can threaten the security. Though limiting the number of 

connections can prevents flooding, it also prevents legitimate clients from connecting to 

the victim as queues and tables filled with abandoned connections. Protocols that are 

connectionless, and therefore stateless, can naturally resist this type of attack somewhat, 

but they may not provide adequate transport-level services for the network. Solving client 

puzzles can partly ease this type of attack [10].  Desynchronization can disrupt an 

existing connection between two endpoints. In this attack, the adversary repeatedly forges 

messages carrying sequence numbers or control flags, which cause the endpoints to 

request retransmission of missed frames to one or both endpoints. One counter to this 

14 



 

attack is to authenticate all packets exchanged, including all control fields in the transport 

protocol header. The endpoints could detect and ignore the malicious packets, supposing 

that the adversary cannot forge the authentication message [10]. 

1.5 General statement of problem area 

WSNs are susceptible to various types of attacks as described previously. And due 

to the difficulties that are introduced by constrained capacities and deployment 

environment of sensor nodes, many mechanisms, schemes and protocols have been 

proposed for the security issues in sensor networks. Using cryptography and other methods 

can prevent many forms of attacks, but node compromise will eliminate all the efforts to 

prevent attacks. Thus, defending against node compromise is the key factor to secure 

sensor networks.  

There are some security approaches that can be adapted to detect and defend 

against node compromise, yet few researches have been focused on modeling node 

compromise distribution. Most of current approaches assume the same probability of node 

compromise happening everywhere as a matter of course, and use this embedded 

assumption without a clear declaration in their system. In fact, their hypothesis is different 

from some special applications in which node compromise may occur with different 

probabilities. For example, how can one think that the node compromise close to an enemy 

controlled area transpires with the same probability as in a controlled area? In these 

applications, deploying these security mechanisms may have low security and efficiency 

because they defend against node compromise with the same intensity in each area, while 

node compromise occurs with deferent probability.  
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WSNs use multi-hop routing and wireless communication to transfer data, thus 

incur more security issues. Whenever a node in the routing path is compromised, the 

routing path will be compromised. The current cryptography mechanisms, such as 

authentication, identification, etc may detect and defend against node compromise in 

some extent. However most compromise activities can not be immediately detected 

because any detecting mechanism needs time and the fraudulent action of adversaries 

(adversaries don’t want system to notice their attacking activities, thus they will adopt 

any action that you can image to make the detecting time longer.) even makes the 

detecting time longer. In such condition, the ideal secure scheme that makes routing paths 

detour detected compromised nodes still has secure issues; because some routing paths 

are still compromised when they pass those “good” nodes which system considers them 

as benign nodes while they are actually compromised nodes that just have not been 

detected yet. Thus, this type of approach has immanent limitations. There are some 

approaches that can be used or adapted to protect routing paths from passing those 

detected compromised nodes in WSNs, yet few research works noticed the probability 

that routing paths pass those nodes that have been compromised but have not been 

detected yet by the detecting mechanism.   

1.6 Research purpose 

It is obvious that knowing the probability of node compromise with a given time 

and position can help a system monitor, identify and defend against node compromise 

efficiently and effectively. Our aim is to develop node compromise distribution models to 

estimate the probability of node compromise.  
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Due to the important function of routing in WSNs and the current secure routing 

algorithms immanent limitations that have no effect to defend against undetected node 

compromise, we develop a novel secure routing scheme to defend against undetected 

compromise based on node compromise distribution models.   

1.7 Research hypothesis 

 Knowing the probability of node compromise can help systems to defend against 

them; 

 Systems have node compromise identification mechanisms to detect compromised 

nodes; 

 Detouring those nodes which have already been detected as compromised nodes or 

the nodes that have larger probabilities of being compromised can enhance routing 

security. 

1.8 Scope of the dissertation 

1.8.1 Modeling node compromise distribution  

In this dissertation, we develop basic uniform model, basic gradient model, 

intelligent uniform model and intelligent gradient models of node compromise 

distribution in order to adapt to different application environments by using probability 

theory. These models allow systems to estimate the probability of node compromise 

under the given position and time. Applying these models in system security designs can 

improve system security and decrease the overheads in nearly every security area. In this 

dissertation, we will briefly introduce some applications of these models, such as secure 
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routing that both save system available energy and resources while still providing enough 

security, node compromise detecting, and key management.   

1.8.2 Proactive secure routing protocol 

we develop a novel secure routing scheme to defend against undetected node 

compromise based on node compromise distribution models. Our routing protocol 

estimates the node compromise probability and makes the routing paths detour those 

nodes that have already been detected as compromised nodes or the nodes that have 

larger probabilities of being compromised. We call our protocol as Proactive Secure 

Routing algorithm (PSR) because it prevents routing path from passing those nodes that 

have not been detected as compromised nodes but have larger probabilities of being 

compromised. Compared with current secure routing protocols that have few 

considerations about undetected node compromise, our scheme can defend against them 

effectively. Based on our survey, this is the first time that routing paths detour both the 

detected compromised nodes and the probability compromised nodes.   

1.9 Contributions 

By employing the proposed node compromise distribution models and 

corresponding Proactive Secure Routing protocol presented in this dissertation, we can 

achieve the following outcomes which cannot be acquired in existing node compromise 

detecting mechanisms and secure routing algorithms:  

1. Successfully developing the models to estimate the probability of node compromise. 

These models can utilize current node compromise detecting mechanisms to 

estimate node compromise probability by using probability theory. 
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2. Achieving more security effects to defend against undetected compromise attacks. 

By detouring those nodes that have already been detected as compromised nodes or 

have larger probabilities of being compromised, PSR is effective to protect routing 

path from compromise attacks that come from those compromised nodes whether 

they are detected or not.   

1.10 Significance of study 

WSNs have the promising potential to impact human beings in almost every facet 

of their lives. It is necessary to secure WSNs to implement this potential. And defending 

against node compromise is the key factor to secure sensor networks. The study’s 

research questions and solutions could contribute to defend against node compromise 

with more efficiency and effective. Applying our research works in system security 

designs can improve system security and decrease the overheads in nearly every security 

area, such as node compromise detecting, key management, secure rouging in WSNs 

without introducing large overheads in sensor nodes that have limited recourses; our 

research works have promising application prospects.  

1.11 Outline of the dissertation 

The rest of this dissertation is organized as follows: Chapter 2 presents the related 

work for topics covered by this dissertation. Chapter 3 develops node compromise 

distribution models. In Chapter 4, a Proactive Secure Routing algorithm (PSR) based on 

node compromise distribution models is provided and analyzed in detail. Future work and 

final conclusions are provided in Chapter 5.    
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CHAPTER 2  

RELATED WORK 

In this chapter, we examine the literature relevant to this research. The research of 

node compromise distribution is based on current attack detecting mechanisms, secure 

environments, and node position. And this research work can be applied to key 

management, secure routing, etc. We classify the related works as attack detecting, secure 

routing, node positioning, key management, discussion and conclusion.  

2.1 Attack detecting 

Security issues mainly come from attacks. If no attack occurred, there is no need 

for security. Detecting and defending against attacks are important tasks of security 

mechanisms. To review easily, we summarize current related research works [11, 15-24] 

as attack detecting mechanisms, and node compromise detecting mechanisms.   

 Attack detecting mechanisms 

 As a whole, attack detecting methods can be classified as centralized approaches 

and neighbors’ cooperative approaches. Centralized approaches use the base station to 

detect attacks, e.g. [15, 16].  In the approach of [15], sensor networks may be diagnosed 

by injecting queries and collecting responses. To reduce the large communication overhead, 

which results in failure detection latency, their solution reduces the response implosion by 

sacrificing some accuracy.  Staddon et al [16] propose another centralized approach to 

trace the failed nodes. Nodes append a little bit of information about their neighbors to each 

of their measurements and transmit them to the base station to let the latter know the 

network topology. Once the base station knows the network topology, the failed nodes can 
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be efficiently traced using a simple divide-and-conquer strategy based on adaptively 

routing update messages.  

In neighbors’ cooperative approaches, neighbor nodes of a given node collect 

neighbors’ information and make a collective decision to detect attacks. Wang et al 

propose a distributed cooperative failure detecting mechanism to let the neighbors of a 

faulty node cooperate to detect the failure [17]. To achieve neighbors’ communication 

efficiency, they proposed Tree-based Propagation-Collection (TPC) protocols to collect 

the information from all neighbors of the suspect with low delay, low message complexity, 

and low energy consumption. Watchdog [18] also uses neighbors to identify misbehaving 

nodes. Ding et al propose another localized approach to detect the faulty sensors by using 

neighbors’ data and processing them with the statistical method [19]. Threshold 

approaches is a special type of neighbors’ cooperative approach, e.g. [20].  

Normally, centralized approaches gather the data from the monitoring node and 

compare them with the data from its neighbor nodes. Based on the comparing result, the 

system makes a decision whether the given node is failed or not. The disadvantage of this 

method is that it introduces more routing traffic from the given node to the base station. 

While in neighbors’ cooperative approaches, neighbor nodes of the given node make a 

collective decision to detect attacks. Though it does not need transfer larger data to the base 

station, it introduces more computing process and monitoring tasks for neighbor nodes.  

 Node compromise detecting mechanisms 

In the context of node compromise detection in WSNs, a number of software-based 

approaches, such as [21, 22], which rely on optimal program code and exact time 

measurements, have been presented. These approaches enable software-based attestation 
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by introducing an optimal program verification process that verifies the memory of a 

sensor node by calculating hash values of randomly selected memory regions. Some 

hardware-based approaches such as [23] are based on public-key cryptography and require 

extensive computational power, as well as the transmission of large messages, making 

these approaches not usable in WSNs. Krauss et al [24] supposed that some cluster nodes 

possed much more resources than the majority of clusters and were equipped with a 

Trusted Platform Module in the hybrid WSNs. Their hardware-based attestation protocols 

use the  nodes equipped with Trusted Platform Module as trust anchors and can enable 

attestation with more efficiently. However, their mechanisms can only make sense in 

Hybrid WSNs.  

All of above mechanisms can be adapted to check whether the given node has been 

compromised under their assumptions, though sometimes their assumptions are very 

strong. For example, [22] assumed that the attacker’s hardware devices were not present in 

the sensor network for the duration of the repair process. Most of time, attackers use big 

nodes, such as laptops, as the attacking devices, and they present and attack the sensor 

network all the time. Though we may use these mechanisms detect whether the given 

nodes has been compromise or not, these approaches do not tell us when these mechanisms 

are executing. They just say that the mechanisms are executing by the request of the base 

station. So the base station must have some mechanisms to invoke these codes.  To 

express easily, we denote current approaches [21-24] as checking mechanisms and those 

mechanisms that invoke these checking mechanisms as starting mechanisms. The 

algorithm of the starting mechanisms is very important because if the executing interval for 

each node is small, they introduce a lot of communication cost and consume large 
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computing resources; on the contrary, if the executing interval for each node is large, the 

compromised nodes may have long time to paralyze the network. A good idea is let the 

checking mechanisms start when the node has larger probability of being compromised.   

Song et al [11] provide a method to detect node compromise by comparing the 

previous position of nodes with current position. The main idea of their mechanism is 

based on the assumption that a node compromise often consists of three stages: physically 

obtaining and compromising the sensors, redeploying the compromised sensors, and 

compromised nodes launching attacks after their rejoining the network. In some 

applications an attacker may not be able to precisely deploy the compromised sensors back 

into their original positions. Their mechanism can detect compromise events when 

compromised nodes change positions or identities. But sometimes adversaries can 

compromise the nodes by communicating them, breaching their security mechanism, and 

controlling them without physically touching them or moving their positions. Under such 

condition, their mechanism will not detect the compromise events. 

 

2.2 Secure routing 

2.2.1 State-of-the-art 

WSNs use multi-hop routing and wireless communication to transfer data, thus 

incur more security issues. There are a lot of approaches to ease routing security. In this 

section, we review existing secure routing approaches. We particularly focus on their 

applicability to ad hoc or wireless sensor networks. 
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 Secure Routing Protocols for Ad Hoc Networks  

Because WSNs came from ad hoc, some of secure routing algorithms [25-30] in 

the latter are still value to be reviewed though they may have difficulty to be suited to 

sensor networks. There are some secure AODV algorithms [25, 26] that may be adapted in 

WSNs that have some effects on defending against external attacks because they suggest 

secure routing information. These security mechanisms still meet security issues when the 

nodes are compromised and the security information such as key is disclosed to the 

attackers.  

A certificate approach, URSA, a ubiquitous and robust access control solution 

proposed by Luo et al in [27], uses the multiple nodes decision to certify/revoke a ticket to 

ensure access control service ubiquity and resilience. Sanzgiri et al [28] also proposed a 

secure routing protocol based on certificate. These certificate approaches could defend 

against some attacks. However, there still existed the probabilities that the node had been 

compromised but the detecting mechanism have not detected it yet because the detecting 

mechanism needs time to collect enough data to make decisions; if some of neighbor nodes 

have already been compromised, the detecting mechanism cannot work properly; the 

compromise node self will pretend as normal node. 

Papadimitratos and Haas [29] propose a route discovery protocol that it only 

requires the security association between the node initiating the query and the sought 

destination only in order to defend against routing attacks, such as fabricated, 

compromised, or replayed attacks for mobile Ad Hoc Networks. An on-demand routing 

protocol for ad hoc to provide resilience to Byzantine failures (which include nodes that 

drop, modify, or mis-route packets in an attempt to disrupt the routing service) ,proposed 
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by Awerbuch et al in [30], can be separated into three successive phases: route discovery 

with fault avoidance by using flooding and cryptographic primitives, Byzantine fault 

detection by using adaptive probing technique to identify a malicious link after log n (n is 

the length of the path) faults occurred, and link weight management by multiplicatively 

increasing the malicious link weight. All of these secure routing algorithms can defend 

against some attacks. However, they have few effects on defending against internal 

attacks because: compromised nodes have the same secret information such as keys as 

benign nodes; it is difficult to differentiate compromised nodes from benign nodes 

without some special detecting mechanisms.   

 Multi-path routing and neighbor collaboration approaches 

Some approaches use multi-path routing and neighbor collaboration technique, 

such as [31, 32].  Although multi-path routing algorithms use multi-path, instead of one 

routing path, to transfer data, which can provide more reliability, they involve more 

security issues than single-path algorithms when the network has large number of 

compromised nodes. The reasons are as the following: more paths mean more probabilities 

that the routing paths include compromised nodes; any compromise detecting mechanism 

needs time to make decisions; and there exists the probability of undetected compromise 

events.  

A probabilistic routing algorithm, ARRIVE [33] also uses multi-path technique. 

The main idea of this algorithm is that: the next hop in the routing path is chosen 

probabilistically based on link reliability and node reputation; it uses multiple paths and it 

ensures the packets of the same event use different outgoing links when they meet at one 

node. This algorithm can defend against link failures, patterned node failures and malicious 

25 



 

or misbehaving nodes without resorting to periodic flooding of the network Other 

approaches [34, 35] collect neighbor feedbacks or information to decide routing paths. 

These proposals are based on reputation or corporate decision, etc, and they can prevent 

routing paths from passing some nodes that have less reliability factors or the reputations 

are bad. However when the reputation of the compromised node is still high (the reputation 

cannot increase or decrease immediately) or the compromised node pretends to have high 

link reliability, these mechanisms have probabilities to construct compromised paths. 

 Secure routing approaches for cluster or hierarchical sensor networks 

Some researchers utilize the special structure of cluster or hierarchical sensor 

networks in order to provide more efficient secure routing algorithms. For example, Deng 

et al [36] introduce a secure in-network routing algorithms involved processes of 

downstream and upstream between aggregators and sensors.  Tubaishat et al in [37] 

classifies the sensors as different functions by considering the energy level of sensors. 

Based on this classification, they provide a secure energy efficient routing algorithm.  

All of these secure routing schemes improve the security and efficiency by 

balancing the computing and transmission overheads between big nodes and normal nodes, 

however, they do not conquer internal attacks, especially undetected node compromise. 

2.2.2 Summary  

In all, all of current secure routing algorithms can defend against attacks and provide 

routing security in some extents. Some of them utilize the special structure to balance the 

overheads, e.g. [36, 37]. Others use cache to improve the efficient [38]. However, these 
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approaches do not consider the security issues that come from those undetected 

compromised nodes. 

2.3 Node positioning  

Location information is very important in some applications of sensor network, 

such as reconnaissance of opposing forces. Many monitoring applications require near 

accurate position besides event self. In such conditions, how to provide accurate and secure 

location information is a critical task. Besides this type of application, many routing 

protocols or other security mechanisms also need location information or distance 

information among neighbor nodes. Thus, providing secure and reliable location 

information in some special applications under adversaries’ attacks need pay more 

attention.  

2.3.1 State-of-the-art 

In some location systems, some sensors have a position system such as GPS to 

locate their positions. We call this type of sensors beacon nodes. These location systems 

use location information from these beacon nodes to construct the whole location system 

by utilizing ultrasound and time-of-flight techniques. Capkun and Hubaux [39] propose a 

mechanism for position verification, called Verifiable Multilateration (VM) based on 

Distance bounding techniques [40], which can prevent a compromised node from reducing 

the measured distance. VM use the distance bound measurements from three or more 

reference points (verifiers) to verify the position of the claimant. Lazos and Poovendran 

[41] propose a range overlapping method instead of using the expensive distance 

estimation method. Its main idea is as follows: each locator transmits different beacons 
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with individual coordinates and coverage sector areas. After receiving enough sector 

information from different locators, the sensor estimates its location as the center of gravity 

of the overlapping region of the sectors that include it. Instead of solving the secure 

location determination problem, Satyr et al [42] introduce the in-region verification 

problem (a problem how verifiers verify whether a prover is in a given region of interest) 

and show how it can be used for location-based access control. Li et al [43] propose robust 

statistical methods in order to make two broad classes of localization including 

triangulation and RF-based fingerprinting attack-tolerant. For triangulation-based 

localization, their adaptive algorithm uses least squares (LS) position estimator in normal 

status and switchs to use least median squares (LMS) instead of least squares (LS) for 

achieving robustness when being attacked. For fingerprinting-based location estimation, 

they introduce robustness by using a median-based distance metric instead of traditional 

Euclidean distance metrics.  

Beacon location systems will meet difficulty issues when the beacon nodes are 

compromised. To detect malicious beacon nodes, [44] uses redundant beacon nodes 

instead of normal nodes in the sensing field to verify them.  To defend against malicious 

beacon node compromise, Liu et al [45] propose two methods: attack-resistant Minimum 

Mean Square Estimation, and collective “votes”. The main idea of the first method is that 

the malicious location references introduced by attacks are usually inconsistent with the 

good ones due to their misleading characteristic. The main idea of the second technique is 

as follows: the deployment area is quantized as small cells; each location reference (beacon 

node) “votes” which cell the node belongs to; and finally the center of the selected cell is 

thought of as the location of the node.  
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In practical environments, sensor networks may not have beacon nodes. Under such 

condition, some approaches [46, 47] estimate location by combining deployment 

knowledge and probability theory.  Fang et al [46] propose a Beacon-Less Location 

Discovery Scheme. Their scheme supposes that: sensors in the same group are deployed 

together at the same deployment point; and the locations of sensors from the same group 

follow a probability distribution that can be known a priori. With their supposition, they 

can estimate the actual location of a sensor in static sensor networks by observing the 

group memberships of its neighbors and using the Maximum Likelihood Estimation 

method. Furthermore, they propose a general scheme called Localization Anomaly 

Detection (LAD), to detect localization anomalies that are caused by adversaries [47] by 

comparing the inconsistency of location between pre-deployment and after deployment.   

2.3.2 Summary  

Providing reliable and accurate location is the key factor in some sensor networks 

when position or location information is the object of these networks, or if they need 

position information in those systems. From above review, we know that two main 

methods, including beacon detection and deployment estimation, can be used to locate 

sensors. When the first method is used, we can use multiple beacons to detect location, 

tolerating attacks and even malicious beacon attacks by using a voting mechanism or by 

utilizing statistical methods. To defend attacks in the second location method, we only 

need to ensure the group membership is guaranteed by a secure mechanism.  
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2.4 Key management  

Confidentiality, integrity, accountability and authentication services are critical in 

preventing an adversary from compromising the security of a sensor network. 

Cryptography is the basic encryption method used in implementing security. Cryptography 

selection and key management are somehow correlated. On one hand, asymmetric 

cryptography (e.g., the RSA signature algorithm) requires more computation resources 

than symmetric cryptography (e.g., the AES block cipher) does, on the other hand, 

symmetric cryptography is difficult for key deployment and management. Due to the 

nature wireless sensor network, intermittent connectivity, low connection speed, and 

resource limitations, most research adopts a symmetric mechanism; however, the key 

management including key distribution, key revocation, and renewal is complex, 

especially when considered node compromised. And providing  scalable, self organized, 

and flexible key management in large, dynamic sensor networks is not an easier task.  

  

2.4.1 State-of-the-art 

Due to the importance and difficulty of key management in WSNs, there are a 

large number of approaches focused on this area. Based on the main technique that these 

proposals used or the special structure of WSNs, we classify the current proposals as key 

pre-distribution approaches, hybrid authenticated key establishment approaches, one way 

hash approaches, key infection mechanisms, and key management in hierarchy networks, 

though some approaches combine several techniques. 
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1. Key pre-distribution approaches 

Due to the resource constraint, many approaches adopt key pre-distribution 

method, storing keys before deployment, especially considered initial keying in order to 

ease key management. A naive solution is to let all the nodes to carry a master secret key. 

Any pair of nodes can use this global master secret key to initiate key management. The 

advantage of this scheme is that it only needs store one master key in a node before its 

deployment. However, if one node is compromised, the security of the whole network will 

be compromised. Some existing studies suggest storing the master key in tamper-resistant 

hardware to make the system more secure, but it is impractical to implement such 

equipment in sensor nodes. Furthermore, tamper-resistant hardware might also be 

conquered [48]. Another normal key pre-distribution scheme is to let each sensor store N-1 

secret pairwise keys, each pairwise key is only known to this sensor and one of the other 

N-1 sensors (assuming N is the total number of sensors). Though compromising one node 

does not affect the security of the other nodes, this scheme is impractical for current 

generation sensor with an extremely limited amount of memory because N could be large. 

Moreover, it is difficult for new nodes to join in a pre-existing sensor network because the 

currently deployed nodes do not have pairwise keys with new added sensors.   

In some key pre-distribution approaches, the existence of a shared key between a 

particular pair of nodes is not certain but is instead guaranteed only probabilistically; while 

other approaches guarantee that any two nodes can be able to establish a key.  Thus, we 

classify key pre-distribution approaches as probability approaches and initial trust 

approaches. 
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• Probability approaches   

We classify some proposals of key management as probability approaches when 

the existence of a shared key between a particular pair of nodes is not certain but is instead 

guaranteed only probabilistically. The basic probabilistic key pre-deployment scheme is 

introduced by Eschenauer and Gligor in [49]. Their scheme consists of three phases: key 

pre-distribution, shared-key discovery, and path-key establishment. The main contribution 

of this paper is that: randomly drawing a small number of keys from a large key pool and 

storing in each sensor node can obtain a considerably large probability that two neighbor 

nodes will have a shared key. Based on the Eschenauer-Gligor scheme, some researchers 

provided key pre-distribution schemes that improve the network resilience to prevent 

node compromise. Chan et al propose a q-composite random key pre-distribution scheme 

[50]. In their scheme, it requires q common keys (q ≥ 1) to establish secure 

communications between a pair of nodes, while Eschenauer-Gligor scheme only need one 

common key. And they show that when the value of q is increased, network resilience 

against node capture is improved, i.e., more nodes have to be compromised in order to 

achieve a high probability of compromised communication. Of course, when q is 

increased, the sensor nodes should store more pre-distribution keys in order to obtain an 

applicable probability of key-shared within neighbors. Du et al [51] propose a key 

predistribution scheme with a definite node compromise threshold λ, which improves the 

resilience of the network. This scheme exhibits a nice threshold property: when the number 

of compromised nodes is less than the threshold λ, the probability that any nodes other than 

these compromised nodes are affected is near to zero.  This desirable property makes it 

necessary for the adversary to attack a significant proportion of the network in order to 
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breach the network when the security designers elaborately select the λ. Liu and Ning [52] 

develop a similar method.  Based on the combination of probabilistic key sharing and 

threshold secret sharing schemes, Zhu et al [53] present an approach for establishing a 

pairwise key that is exclusively known to a pair of nodes with overwhelming probability. 

They implement a secure pairwise key between any pair of nodes by splitting the key into 

multiple shares and transmitting these shares into different paths and cooperating them to 

reconstruct it. Another type of probabilistic model to establish pair-wise key scheme 

proposed by Pietro et al in [54] use pseudo-random, seed-based technique. Their Direct 

Protocol and Co-operative Protocol establish a secure pair-wise communication channel 

between any pair of sensors in the sensor network by assigning a small set of random keys 

to each sensor as key seeds, executing key discovery, and setup procedure. 

Besides using the probabilistic theory, some approaches [55-59] exploit 

deployment knowledge or location information to ease key management. For example, Du 

et al [55] improve the security performance of the random key pre-distribution scheme by 

exploiting deployment knowledge and avoiding unnecessary key assignments. Their 

scheme is based on the followsing: dividing the key pool into small key pools 

corresponding sensor groups; dividing the deployment area into grids; and the special 

key-setup making the nearby key pools share more keys.  Instead of randomly 

distributing keys from a large key pool to each sensor, Huang et al [58] propose a 

structured key-pool random key predistribution (SK-RKP) scheme to systematically 

distribute secret keys to each sensor from a structured key pool. Their key predistribution 

scheme includes two steps: key predistribution within a given zone and key 

predistribution for two adjacent zones. After the deployment of sensors, each sensor first 
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sets up pairwise keys with all its neighbors within its zone; then it sets up a pairwise key 

with its neighbors located in adjacent zones.   

• Determinate approaches 

Contrary to probability approaches, some of approaches guarantee that any two 

nodes can be able to establish a key. We call this type of approaches as determinate 

approaches, e.g. [60, 61].  In thses approaches, they suppose that there is an interval 

secure time (during this interval, small number of shared keys is secure enough for 

bootstrapping process) after sensor deployment, and systems can utilize this interval time 

to establish security and transmit keys between neighbor nodes. Dutertre et al [62] also use 

the same idea in order to improve key management efficiency by introducing small set of 

shared keys in initial trust.  

In [60], Chan and Perrig describe Peer Intermediaries for Key Establishment 

(PIKE), a class of key-establishment protocols that use one or more sensor nodes as a 

trusted intermediary to perform key establishment between neighbors. Unlike random 

key-establishment protocols, the key establishment of PIKE is not probabilistic, and any 

two nodes are guaranteed to be able to establish a key. Though both the communication 

and memory overheads of PIKE protocols scale sub-linearly (O( n )) with the number of 

nodes in the network yet achieving higher security against node compromise than other 

protocols, the deployment of PIKE requires more complex work than random deployment 

schemes. Another example of deterministic security scheme, LEAP (Localized Encryption 

and Authentication Protocol) [61] does not expose the pairwise keys between other nodes 

when the network is compromised by a fraction of sensor nodes. To ease the overhead of 

key management, LEAP supports four types of keys for each sensor node which is 

34 



 

appropriate for all types of communication in sensor networks – an individual key shared 

with the base station, a pairwise key shared with another sensor node, a cluster key shared 

with multiple neighboring nodes, and a group key that is shared by all the nodes in the 

network. LEAP also supposes the interval secure time for bootstrapping process.  

2. Hybrid authenticated key establishment approaches  

Some schemes use both public-key and symmetric-key cryptographs. For example, 

a hybrid scheme proposed by Huang et al in [63] balances cryptographic computations in 

the base station side and symmetric-key computation in sensors side in order to obtain 

adorable system performance and facilitate key management.  

3. One way hash approaches 

To ease key management, many approaches use the one-way key method that 

comes from one-way hash function technique. For example, Zachary [64] propose a group 

security mechanism based on one-way accumulators that utilizes a pre-deployment 

process, quasi-commutative property of one-way accumulators and broadcast 

communication to maintain the secrecy of the group membership. The one-way hash 

function can also adapt in order to conduct public key authentication. For example, Du et 

al [65] use all sensors’ public keys to construct a forest of Merkle trees of different heights, 

and by optimally selecting the height of each tree, they can minimize the computation and 

communication costs.  To ease the joining and revocation issues of membership in 

broadcast or group encryption, many approaches use predistribution and/or a local 

collaboration technique. For example, RBE (Randomized Broadcast Encryption scheme), 

proposed by Huang and Du in [66], uses a node-based key pre-distribution technique. 
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Besides predistribution future group keys, the group rekeying scheme of Zhang and Cao 

[67] also adopts the neighbors’ collaboration. 

4. Key infection mechanisms  

Contrary to most of key management using pre-loaded initial keys, Anderson et al 

[68] propose a key infection mechanism. It is a novel and quite counterintuitive way of 

managing keys in sensor networks without pre-loaded initial keys after identifying a more 

realistic attacker model that is applicable to non- critical commodity sensor networks.  

5. Key management in hierarchy networks  

Though many key management approaches are based on a normal flat structure, 

there are still some approaches [69-75] that utilize a hierarchical structure in order to ease 

the difficulties by balancing the traffic among a command node (base station), gateways, 

and sensors. These are the three parts of networks that have different resources.  

In this type of key management, some use the physical hierarchical structure of 

networks such as [69-73], while others [74, 75] implement their hierarchy key 

management logically in physical flat structure sensor networks, which only include a base 

station and sensors. For example, LKHW (Logical Key Hierarchy for Wireless sensor 

networks), proposed by Pietro et al in [75], integrates directed diffusion and LKH (Logical 

Key Hierarchy) where keys are logically distributed in a tree that is rooted at the key 

distribution center (KDC). A key distribution center maintains a key tree that will be used 

for group key updates and distribution, and every sensor only stores its keys on its key path, 

i.e. the path from the leaf node up to the root. In order to efficiently achieve confidential 

and authentication, they apply LKHW: directed diffusion sources are treated as multicast 

group members, whereas the sink is treated as the KDC.  
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The disadvantage of this type of key management is that once a cluster node is 

compromised, forward secrecy is broken. In addition, the key storage of key management 

server should be large because it has to store not only its own key pair, but also the public 

keys of all the nodes in the network. The overhead, including the signing and verifying of 

routing messages both in terms of computation and of communication, is also large. 

2.4.2 Summary 

Key management is the linchpin of cryptograph mechanism. Most proposals use a 

key-predistribution technique to easy key management. In some key-predistribution 

approaches, the existence of a shared key between a particular pair of nodes is not certain 

but is instead guaranteed only probabilistically; while others have the deterministic 

property so that there exists one or more shared keys between a node and its neighbors. 

To decrease the number of predistribution keys stored in sensor nodes, some approaches 

assume that there is an interval secure time after deployment. During this interval time, 

predistributing a small number of keys in sensor nodes is secure enough. To ease the 

difficulty of key management, some approaches utilize deployment knowledge, special 

structure of cluster sensor networks, key classifications, one-way hash functions, etc. 

Some security mechanisms only use one of cryptographs while others use both 

public-key and symmetric-key cryptographs.  

Though many key management approaches consider defending against node 

compromise, the efficiency and security performance is not high when their mechanisms 

are deployed in some special application environment. In their mechanisms, they imply 

the probability of node compromise to be the same for every node. However, when their 
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security systems are deployed in a different environment from their supposition, the 

security performance will decrease largely. For example, in battlefield surveillance, the 

probability of nodes of being compromised in an enemy controlled area is larger than in 

our controlled areas. Under such environment, the security performance will decrease 

because: the system has the same capability to defend against node compromise in all areas, 

while adversaries attack the system with different strengths in each area; thus making the 

system unable to provide enough security in some areas, while it provides more security 

than needed in other areas.   

2.5 Discussion and conclusion 

In this chapter we have reviewed the major works relating to this dissertation. 

Based on the previously mentioned shortcomings and limitations of prior proposals in 

attack detecting, secure routing and key management, we have developed two separate 

but related techniques to defend against node compromise with more efficient and 

effective.  

The first approach of this dissertation addresses the issue of node compromise 

distribution. With node compromise distribution models, we can estimate the probability 

of node compromise. This will help to answer the question when the current node 

compromise detecting mechanisms start. We can also to use this approach to analyze the 

system security weakness, improve security performance, distribute system resources 

efficiently based on security cost consideration, etc. After a carefully survey by Google, I 

found that few of them study the issue of node compromise distribution. De et al [76] 

investigate the potential threat for compromise propagation in WSNs. Based on epidemic 
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theory they model the process of compromise spreading from a single node to the whole 

network, while we model the probabilities of nodes of being attacked with considering all 

the adversaries as a whole. 

 The second approach of this dissertation addresses the issue of secure routing 

under undetected node compromise event. Although the node compromise detecting 

mechanisms may be used to detect node compromise, the compromised nodes cannot be 

located immediately because of the following: 

 Compromised nodes pretend as good nodes because they do not want to be found by 

the system; 

 Most node compromise detecting mechanisms need time to gather enough data to 

detect attacks; 

 Most node compromise detecting mechanisms use collective majority methods and 

compromised nodes will disturb these processes and delay the detecting. 

Under current node compromise detecting mechanisms, if the routing algorithm 

only filter out those detected compromised nodes in routing paths, it still has some 

probabilities that routing paths pass those node that have been compromised but have not 

been detected. That’s the main reason why the current routing proposals cannot defend 

against undetected node compromise. To solve the security issue of undetected 

compromise, we propose a novel probability secure routing to let the rouging paths detour 

those nodes that have been detected as compromised nodes or the nodes that have larger 

probabilities of being compromised. 
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CHAPTER 3  

MODELING OF NODE COMPROMISE DISTRIBUTION 

Node compromise is the major and unique problem in sensor networks that leads 

to internal attacks. There are some approaches that can be adapted to detect and defend 

against node compromise, yet few of them have been done to provide a method to 

estimate the probability of node compromise for each node. In this chapter, we develop 

basic uniform, basic gradient, intelligent uniform and intelligent gradient models of node 

compromise distribution in order to adapt to different application environments by using 

probability theory. These models allow systems to estimate the probability of node 

compromise under the given position and time. Applying these models in system security 

designs can improve system security and decrease the overheads in nearly every security 

area. To explain how to apply these models in security consideration and designs, we 

introduce some applications that can be improved in security by using our models, such 

as secure routing, detecting node compromise, and key management. 

To focus on the main viewpoint of node compromise distribution models, we only 

use 2-dimension distribution models, which assume that all the nodes are in the same 

plane. The remainder of the paper is organized as follows. In the next section, we give the 

assumptions of our models. In Section 3.2, we present our basic models of node 

compromise distribution. Section 3.3 describes the intelligent models of node 

compromise distribution. Section 3.4 shows some applications of these models. Finally 

we conclude and lay out some future work in Section 3.5. The research in this chapter has 

been published in [77, 78]. 
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3.1 Network and security assumptions 

Before presenting the models of node compromise distribution, we describe some 

assumptions regarding the sensor network security scenarios as follows:  

 Base station: The base station is computationally robust, having the requisite 

processor speed, memory and power to support the cryptographic and routing 

requirements of the sensor network. Adversaries can destroy the base station but they 

cannot compromise it within the limited time.  

 Sensor node: The sensor nodes are similar to current generation sensor nodes in their 

computational and communication capabilities and their power resources [79]. They 

can be deployed via aerial scattering or by physical installation. We assume that any 

sensor node will know the position of itself and its immediate neighbor nodes after 

deployment and the base station will know all the nodes’ positions [39-47]. All the 

sensor nodes will not change their positions after deployed. If adversaries change the 

positions of nodes or identities, the neighbor nodes will detect this attack [11]. And 

this case is not the focus of this paper. In some applications, compromised nodes will 

be recovered and will be included in the network after systems detected them, while 

they will not be recovered in other applications. 

 Adversary: Adversaries have unlimited energy and computing power. They can break 

the cryptography system of sensor nodes and compromise them within limited time. 

They will continue attacking benign nodes without any halt, stop, or hibernation. They 

also will not change the target until the node was compromised. With node 

compromise, the adversaries can perform many types of internal attacks that one can 

imagine. 
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3.2 Basic node compromise models 

We label some models as basic node compromise models because the probability 

of one compromised sensor does not affect the neighbors within this model. When the 

probability and the frequency of node compromise are comparatively small, the 

correlation of compromising among neighbor can be neglected. Under this condition, 

basic models are accurate enough to estimate the probability of node compromise. Due to 

different application environments, we classify the basic models as either uniform models 

or gradient models.  

3.2.1 Basic uniform node compromise model 

In some sensor network application situations, such as environmental and health 

applications, every sensor node has nearly the same compromise probability despite of its 

position. In such cases, the probability of node compromise following uniform 

distribution is reasonable, as shown in Figure 3.  

 

Figure 3 Basic Uniform Node Compromise Model 
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The mathematical model is given by: 

  ( )tP tyx ρ=),,(                              (1) 

where (x, y) is the coordinate of the sensor; P(x,y,t) is the node compromise probability of 

this sensor at time t; ρ(t) is a distributed function, which is independent of the coordinate 

of the sensor. Most current security approaches use this simple model without a clear 

declaration.  

3.2.2 Basic gradient node compromise model 

 

Figure 4 Basic Gradient Node Compromise Model 

In some special application scenarios, such as battlefield surveillance, 

reconnaissance of opposing forces and terrain and other military applications, the basic 

uniform model is not suitable because the nodes close to an enemy controlled area may 

have a larger probabilities of being compromised than the nodes that are far away from an 

enemy controlled area.  Thus, a rough gradient based node compromise model 
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approximates to the real environment. The gradient is based on the distance from the 

opponent or the base station, as shown Figure 4. 

The mathematical model is given by: 

( ) ( )( )yxtyx gdtP ,),,( 1,0,0 += ρ                         (2) 

where ρ(0,0,t) is the node compromise probability in base station area at time t; g is the 

gradient function; d(x,y) is the projective vector of the sensor at (x, y) in the gradient 

direction. In this model, the closer a sensor node is to an enemy controlled area, the more 

probable that it is to becomes a compromised node. The difference between a uniform 

model and a gradient model is that the location of a sensor may affect the node 

compromise probability in the latter model, while it does not matter in the previous 

model.   

3.3 Intelligent node compromise models 

Above basic models assume that every node compromise is an independent event. 

This supposition is not accurate enough when the probability and frequency of node 

compromise are comparatively larger, especially in a dense sensor network. In this 

environment, the node compromise probability will increase when its neighbors have 

been recently compromised. It is easier and more conceivable for adversaries to 

compromise the nearest neighbors in the next period after they have compromised a 

sensor because of the following: 

 The communication information between the compromised node and its neighbors 

may help adversaries to attack them, and the adversary is intelligent enough to utilize 

this correlation; 
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 A recently compromised node normally means that the adversary is close to that 

node, and thus its neighbor nodes have a larger probability of being chosen as the 

target of this adversary;  

 Compromising more nodes in a nearby area may badly impair the system when the 

sensor network uses a majority decision mechanism to integrate data, prevent error, 

etc. 

The difference between a basic model and an intelligent model is that the latter 

model considers the effect of compromise events come from neighbor nodes when 

estimating the probability of node compromise. In intelligent models, system should have 

mechanisms, as in [11, 15-24], to detect and record the node compromise events and use 

current node compromise events to estimate future node compromise. That’s why we call 

these models as intelligent models. 

In this type of model, we assume that an adversary needs average time τ to 

compromise a node, and that adversaries will continue compromising the good nodes 

with this frequency without any halt, stop, changing attacking target, or hibernation. In 

some sensor security mechanisms, the spending time for an attacker compromising a 

node maybe decreases when more nodes are compromised. But the difficulty of node 

compromise can be retained as the previous and the assumption of the average time of 

node compromise is still suitable if the application meet one or two cases: the total 

number of compromised nodes is comparatively small compared with the large number 

of normal nodes; the system assumes some adapting methods to enhance the security. A 

normal distribution with expected value τ can approximate the compromise probability. 

Under this assumption, we time the system with each interval of τ.  Our object is to use 
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current available node compromise event information to estimate the probability of node 

compromise in the next time period. We imagine that the probability of a node being 

compromised includes two parts: current adversaries and new adversaries, which will be 

introduced in the next period. Thus, we get the following mathematical model:  

( ) ( tyxtyxtyx CSP ,,,,),,( += )     ),...,2,1,0,)1(( =+<< nntn ττ             (3) 

where S(x,y,t) is the compromise probability which is introduced by newly added 

adversaries in the time period from nτ to (n+1)τ; C(x,y,t) is the probability that is 

introduced by current adversaries.  

Similar to basic model classifications, an intelligent model can also be classified 

as a uniform model and a gradient model.   

3.3.1 Intelligent uniform node compromise model 

This model adapts the application environment where the new adversaries evenly 

distribute within the coverage area. In this model, (3) can be expressed with the 

following: 

( ) ( )tyxttyx CSP ,,),,( +=   ),...,2,1,0,)1(( =+<< nntn ττ                  (4) 

where S(t) follows uniform distribution, which does not care about node positioning, and 

this part is introduced by newly added adversaries from time nτ.  

We denote 1-hop neighbors of the given node are the nodes which are the 

immediate neighbor nodes of the given node and can directly connect to this node; 2-hop 

neighbors of the given node are the nodes which can contact the given node at least by 

two hops, etc. We call all the 1-hop neighbors of the given node as 1-hop layer nodes, 

and all the 2-hops neighbors as 2-hops layer, etc. In dense WSNs, the distances between a 
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given node and its 1-hop neighbors are nearly equal. Therefore, we suppose that each 

1-hop uncompromised neighbor of a recently compromised node has the same probability 

of being chosen as the attacking target of an adversary which corresponds to this recently 

compromised node. Similarly, we make the same assumptions for 2-hops neighbors, 

3-hops neighbors, etc. While the probability that one of 1-hop layer node of being chosen 

as the attacking target is larger than that of 2-hop layer node, etc., a geometric 

distribution can approximate the probability of the adversary, which corresponds to the 

recently compromised nod, choosing an attacking target from different layers.  

  

Figure 5 Definitions in Intelligent Models 

As shown in Figure 5, node a is the given node; nodes b, c, d, e, f and g are 1-hop 

neighbor nodes of node a; nodes 2b-2l are 2-hops neighbors of node a. Nodes b-g have 

the same probability of being chosen as the attacking target in the next time period. 

Similarly nodes 2b-2l have the same probability of being chosen as the attacking target in 

the next time period. The probability of one of 1-hop layer nodes (b-g) of being chosen as 
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the attacking target is larger than that of one of 2-hop layer nodes (2b-2l), etc., a 

geometric distribution can approximate this assumption. 

In intelligent models, the node compromise detecting mechanism can detect 

compromise nodes. For some applications, compromised nodes will not be recovered and 

will be excluded from the network after detecting systems locate them. However in other 

applications, compromised nodes will be recovered and will be included in the network. 

 

Following we will derive the C(x,y,t) in an intelligent uniform model that 

compromised nodes will not be recovered in the applications: 

Suppose:  

Benign node (x, y) can access all the nodes in the network at most by N hops; 

node (x, y) has Mi recently compromised nodes which are i-hops to it. We denote node (xij, 

yij) as the jth recently compromised node in all Mi nodes; node (xij, yij) has nij i-hops 

neighbors and kij of them are compromised nodes. The probability of one of i-hops nodes 

of being chosen as the attacking target of the adversary, which corresponds to a recently 

compromised node, is pi.  pi follows geometric distribution and is given below: 

)1( −= id
i arp   (i=1,2,,,, 0<a<1, 0<r<1 )           (5) 

1
1

=∑
=

N

i
ip

                                   (6) 

where a, r d are parameters of geometric distribution; a is the total probability of an 

adversary choosing an uncompromised node, 1-hop to the recently compromise node, as 

the attacking target; r is the ratio which is less than 1, and d is a natural number. 
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From (6), we have the following equation: 
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                        (7) 

If N is a large natural number, (7) can be expressed as: 

d

N

i
i r
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≈∑
= 11

                                                 (8) 

From (6) and (8), we get the following equation: 

dra −=1                                                      (9) 

 

 

Derivation of C(x,y,t): 

From the above suppositions, the probability (denoted as e) of node (x, y) of being 

chosen as the attacking target of the adversary which corresponds to node (xij, yij) is given 

by:      i
ijij

p
kn

e
−

=
1                                          (10) 

The probability (denoted as f) of node (x, y) of being compromised at time t, which 

corresponds to node (xij, yij), is given by: 

)(1 tQp
kn

f iji
ijij −

=                                        (11) 

where Qij(t) is the compromise probability of the chosen attacking target in time t. Qij(t) 

follows normal distribution and the expected value is τ. Thus, the un-compromised 

probability (denoted as h) of node (x, y), which corresponds to node (xij, yij), is given by: 

)(11 tQp
kn

h iji
ijij −

−=                                      (12) 
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Then, the un-compromised probability (denote as l) of node (x, y), which corresponds to 

all recently compromised i-hops nodes, is given by: 

∏
=

⎟
⎟
⎠

⎞
⎜
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⎝

⎛
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−=
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j
iji

ijij

tQp
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)(11                                    (13) 

Consequently, the un-compromised probability (denote as s) of node (x, y), which 

corresponds to all recently compromised nodes, is given by: 
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Finally, the probability of node (x, y) of being compromised, which corresponds to all 

recently compromised nodes, is given by 
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In the case of in (15), we use 1 instead of the product item ijij kn = )(11 tQp
kn iji

ijij −
−  

first, and then replace with (b>i) for each product item with index j. E.g., 

if , we use 1 instead of the product

1+bp bp

jj kn 11 = )(11 11
11

tQp
kn j

jj −
− , and replace  with ,  

 with , etc., for each product item with index j.  In normal distribution about 

99.7% of values lie within 3 standard deviations. The beginning attacking time (denotes 

as ts) is the time when node (xij, yij) is actually compromised. In time ts, Qij(t) is equal to 0. 

In a practical environment, we cannot know the actual node compromising time ts, but we 

can approximate it by subtracting the average detecting time of node compromise from 

the actual detecting time of node (xij, yij) of being compromised.  

2p 1p

3p 2p
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In other applications, compromised nodes will be recovered and will still be 

included in the network after the detecting system locates and recovers them. Under such 

applications, similar to (15), C(x,y,t) is given by:  

( ) ∏∏
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Compared with parameter kij in (15) which includes all old and recently 

compromised nodes, Kij is the number of recently compromised nodes which i-hops to 

node (xij, yij) and it only includes recently compromised nodes because old compromised 

nodes are recovered as benign nodes.  

 

In the following we will derive the S(t) in the intelligent uniform model: 

Suppose:  

The number of newly added adversaries follow uniform distribution of time and 

the time for an adversary to compromise a node follows normal distribution which is 

expressed as Q function. Δt is a very small time period which can be thought of as the 

smallest time unit in the system; tmnt Δ+= τ (m=1,2,3,,,); λ is the number of new 

adversaries that are introduced in a unit time; Ng is the number of current good nodes in 

the network; Q(nτ+(i-1) Δt ) is a normal distribution function; δ is the attack probability 

in unit time for each node (i.e., a node has δ probability of being chosen as the attacking 

target in a unit time), which is given by: 

gN
λδ =                                           (17) 
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Derivation: 

In each Δt time period, there are λΔt adversaries added to the network. 

Considering the ith time period which begins from tin Δ−+ )1(τ  to tin Δ+τ , we have: 

the probability (denoted as ) of one node of being chosen as the attacking target by 

the new λΔt adversaries that are introduced in the ith time period, is given by: 

tsP Δ,

g
ts N

tP Δ
=Δ
λ

,                                         (18) 

Then, the probability (denoted as ) of one node of being compromised by the new λΔt 

adversaries that are introduced in the ith time period is given by: 

tcP Δ,

( tinQ
N

tP
g

tc Δ−+
Δ

=Δ )1(, τ )λ                             (19) 

Consequently, the probability (denoted as ) of a node that has not been compromised 

by the new 

tncP Δ,

tΔλ adversaries that are introduced in the ith time period is given by:   

( tinQ
N

tP
g

tnc Δ−+
Δ

−=Δ )1(1, τ )λ                      (20) 

Thus, the probability (denoted as ) of a node that has not been compromised by all 

the new adversaries that are introduced from nτ to now, is given by: 
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Finally, the probability of one node of being compromised, which is introduced by all 

new adversaries that are introduced from time nτ, is given by: 
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To describe clearly of the intelligent uniform model, we use Figure 6 in order to calculate 

compromise probability of node a. In Figure 6, compromised nodes will not be recovered 

after detected. 

 
Figure 6 Intelligent Uniform Node Compromise Model 

 

In Figure 6, nodes b, c, d, e, f, and g are 1-hop neighbors of node a; nodes 2b-2l 

are 2-hops neighbors of node a; nodes a, c, 2c, 2b, 2l, and g are 1-hop neighbors of node 

b; node b and 2c are recently compromised nodes that have been compromised in the last 

time period; nodes d, c are old compromised nodes. In Figure 6, for node a, N=2, i.e., 

node a can reach all the sensors in the network within 2 hops, node a has one 1-hop 

neighbor node (node b) and one 2-hops neighbor node (node 2c) that have been recently 

compromised.  So M1=1, M2=1. Node b has 6 1-hop neighbors, thus n11=6. Node b has 2 

1-hop compromised neighbors, i.e., node c and node 2c, then k11=2. Node 2c has 5 2-hops 

neighbors (nodes 2l, g, a, d, and 2e) and 1 2-hops compromised neighbor (node d), 

consequently n21=5, k21=1. Suppose p1=0.8, p2=0.16, 6.0)( =tQb 4.0)(2 =tQ c  and no new 
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adversaries are introduced in the network. We calculate the probability of node a’s node 

compromise as follows:  

( ) 13408.04.0*16.0*
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3.3.2 Intelligent gradient node compromise model 

This model adapts to an application environment in which the newly introduced 

attackers follow a gradient distribution of positions. Similar to the above intelligent 

uniform model, some applications do not recover compromised nodes and they just 

exclude them in the network after they detect them. While other applications recover the 

compromised nodes and still use them in the network after they detect them. 

In those applications that compromised nodes are not recovered and excluded in 

the network, the mathematical model of node compromise probability is give by: 
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In those applications that compromised nodes are recovered and included in the 

network, the mathematical model of node compromise probability is give by: 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−+= ∏∏

= =

N

i

M

j
iji

ijij
tyxtyx

i

tQp
Kn

SP
1 1

,,,, )(111 ),...,2,1,0,)1(( =+<< nntn ττ    (24)  

where in (23) and (24) S(x,y,t) is given by: 

( ) ( ) ( ))1(,0,0 ,,, yxtyx gdtS += ρ     ),...,2,1,0,)1(( =+<< nntn ττ               (25) 

Equation (25) is similar to (2). The only difference between these two equations is 

that the intelligent models partition the system time in small time period, which equals to 
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the average compromise time τ. The only difference between an intelligent uniform 

model and an intelligent gradient model is that they have different first items in the 

mathematical model expression. The first item of the latter follows a gradient distribution 

of positioning, while the previous follows a uniform distribution. Similar to an intelligent 

uniform model, ρ(0,0,t) can be estimated by the following equation: 

( ) ( ) ),...,2,1,0,)1((( )tittQt
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0
11,0,0 δρ =+<< nntn ττ           (26) 

where δ0 is the attack probability in a unit time in the base station area (i.e., a node has δ0  

probability of being chosen as the attacking target in a unit time in this small area); the 

other parameters in (26) are the same as in (22) 

 

Figure 7 Intelligent Gradient Node Compromise Model 

Someone may say that the second part of (23) and (24) should also adjust with 

gradient weight. Firstly, for a given recently compromised node, the probability of a 

corresponding adversary choosing an 1-hop layer node as the attacking target is larger 

than the probability to choose a 2-hops layer node, i.e.,  p1> p2> p3…. Secondly, the 
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difference of gradient weight among 1-hop neighbors is comparatively small especially in 

dense networks. Thirdly, for an attacker, the difference of attacking probabilities in 

different directions is close to zero. The number of attackers in different directions can 

embody the gradient model enough. Thus, for easy estimation, we only introduce the 

gradient vector in the first part of (23) and (24). Figure 7 shows this model without node 

recovery. 

3.4 Applications of node compromise distribution models 

Node compromise distribution model can help systems defend against 

compromise either before it has occurred or it has already occurred but has not been 

detected. We can also apply node compromise distribution models to analyze system 

security weakness, improve security performance, distribute system resources efficiently 

on security cost, etc. Because this is the first introduction of the node compromise 

distribution model, more research works should be performed in the future. We will give 

some application examples of how to use our models to provide efficient and effective 

security mechanisms. 

3.4.1 Secure routing 

Because WSNs have unique node compromise attacks, secure routing meets more 

challenges. To our knowledge, there is few previously published work to provide an 

effective routing algorithm that can prevent a routing path from an internal attack, which 

comes from those compromised nodes whether detected or not. Based on our survey, 

until now even few proposals consider undetected node compromise attack. We propose 
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a novel proactive secure routing algorithm in order to defend against undetected node 

compromise, which is described clearly in Chapter 4.  

Besides improving routing security, our models can also help systems save 

effective energy. As we know, systems cannot use compromised nodes in some 

applications, in which compromised nodes can only be detected but can not be recovered, 

though they may have larger energy. If we know a node that has a larger probability of 

being compromised in the future, utilizing its resources and energy before its compromise 

may help systems decrease the energy and resource loss. Node compromise distribution 

models can estimate node compromise probabilities in the future. If we apply node 

compromise distribution models and design a routing algorithm which allows routing 

paths to choose those nodes whose compromise probabilities are still in the secure scope 

but may enter into an insecure scope in the future, it will save systems effective energy 

and resources while still providing enough security. 

3.4.2 Detecting node compromise 

Because node compromise is the main form of internal attacks, detecting node 

compromise is an important task for system security. In this area, the modeling of node 

compromise will help a lot. For example, most current monitoring systems such as in 

[15-24] monitor all the nodes in the system without emphasis, and the system should 

decentralize their resources evenly in all nodes in order to monitor whether they have 

larger compromise probabilities or not. That makes the detecting mechanism less 

efficient. Due to the heavy work, the system performance may decrease largely, and may 

even make this work unpractical. Applying our models to these monitoring systems and 
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choosing nodes that have larger compromise probabilities as the main monitoring objects, 

will make node monitoring work more effectively and more efficiently; thus allowing the 

system to have enough resources to defend against node compromise. 

3.4.3 Key management 

For security, key management is very important and complex, especially in 

symmetric cryptography structures. Many current key management proposals do not 

consider the node compromise distribution. They imply the probability of node 

compromise to be the same for every node. However, when their security system is 

deployed in a different environment from their supposition, the security performance will 

decrease greatly. 

For example, in [50], the security scheme requires q common keys (q is a constant, 

q ≥ 1) to establish secure communications between a pair of nodes. In their scheme, q is 

equal in each area. When their schemes is deployed in a gradient based environment, the 

security performance will decrease because: the system has the same capability to defend 

against node compromise in all areas, while adversaries attack the system with different 

strengths in each area; thus making the system unable to provide enough security in some 

areas, while it provides more security than needed in other areas. Of course, you can 

increase q to provide security everywhere, but it will consume more resources. It looks 

difficult to get a high security performance with a low overhead; however, when you 

apply a node compromise distribution model to this security mechanism, you will find 

that this is the key in solving this issue. For example, if we apply q to follow the same 

distribution as the node compromise distribution model, i.e., , where (x, y) is ),( yxqq ⇒
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the coordinates of node, the system will solve the above mentioned issue. In the modified 

security scheme, the ratio between the strength of preventions and attacks can be kept the 

same in every area.  In [51], though this scheme has a nice threshold property λ (when 

the number of compromised nodes is less than the threshold λ, the probability that any 

nodes other than these compromised nodes are affected is close to zero), it needs more 

resources to implement this desirable threshold when it is deployed in a gradient based 

application environment. Similarly, we can also apply λ to follow the same distribution as 

the node compromise model of the given application environment to ease the issue. 

Besides improving the key pre-distribution step of key management, we can also 

apply our models to aberrant node management, re-keying frequency, etc. with the 

similar modification method in order to improve system performance and security. 

3.5 Conclusions and future work 

In this chapter, we have developed several models to estimate node compromise 

distribution in different sensor network application environments. These models allow 

systems to estimate the probability of node compromise. Applying these models to 

system security design will improve system security performance and decrease the 

overheads in nearly every security related area. Based on these models, we introduce 

some applications of our models, such as secure routing that both save systems available 

energy and resources while still providing enough security, detecting node compromise, 

and key management.  

Because this is first time we try to model the distribution of node compromise, 

there are some important work that we plan to study in the future. For example, how to 
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model the distribution of node compromise for mobile networks? How to find the 

suitable values for the parameters in current models when they are deployed in practical 

applications? 
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CHAPTER 4  

PROACTIVE SECURE ROUTING PROTOCOL  

4.1 Introduction 

 Node compromise is a major and unique problem in sensor networks that leads 

to internal attacks. In contrast to disabled nodes, compromised nodes actively seek to 

disrupt or paralyze the network [7]. Thus, design a secure routing algorithm that can 

defend against node compromise attack is an important and challenging problem in 

sensor networks. The current cryptography mechanisms, such as authentication, 

identification, etc. may detect and defend against node compromise in some extent. 

However, most compromise activities cannot be detected immediately because any 

detecting mechanism needs time to collect and process collected data, and the fraudulent 

action of adversaries (adversaries don’t want system to notice their attacking activities.) 

even makes the detecting time longer.  In such condition, the ideal secure scheme that 

makes routing paths only detour those detected compromised nodes still has secure issues 

because some routing paths are still compromised when they pass those “good” nodes, 

which system considers as good nodes while they are actually compromised nodes that 

just have not been detected yet. Thus, this type of approach has immanent limitations. 

Some approaches have been developed to protect routing paths from passing the detected 

compromised nodes in WSNs, yet few research works have paid any attention to the 

probability of routing paths to pass those compromised but not be detected nodes.  

To overcome the above mentioned immanent limitation, in this chapter, we 

develop a novel secure routing scheme to defend against undetected compromise based 
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on node compromise distribution models, as described in Chapter 3. Our scheme is based 

on current security mechanisms including but not limited authentication, identification, 

node compromise detecting, etc. Although these convention methods are the footstone of 

our secure algorithm, they are not the focus of this approach. Our routing protocol 

estimates the node compromise probability and makes the routing paths detour those 

nodes that have either been detected as compromised nodes or have larger probabilities of 

being compromised. We call our protocol as Proactive Secure Routing algorithm (PSR) 

because it prevents routing path from passing those nodes that have not been detected as 

compromised nodes but have larger probabilities of being compromised. Compared with 

current secure routing protocols that have few considerations about undetected node 

compromise, our scheme can defend against them effectively. Based on our survey, this is 

the first time that routing paths detour both the detected compromised nodes and the 

probability compromised nodes.  

The remainder of the paper is organized as follows. In the next section, we give 

the assumptions and theory of our algorithm. Section 4.3 describes the details of our 

protocol. Section 4.4 shows the simulations. Finally, Section 4.5 concludes this chapter. 

4.2 Overview of proactive secure routing protocol  

4.2.1 Basic Assumptions 

We focus on bi-directional communication between a pair of nodes. We assume 

that: the system has a security mechanism such as descreibed in [11, 15-24] to detect 

node compromise; any two nodes can negotiate a shared secret key in the system [49-62]. 

Besides these assumptions, we also have the following: 
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 Base station: The base station is computationally robust, having the requisite 

processor speed, memory, and power to support the cryptographic and routing 

requirements of the sensor network. Adversaries can destroy the base station but they 

cannot compromise it within the limited time.  

 Sensor node: The sensor nodes are similar to current generation sensor nodes in their 

computational and communication capabilities and their power resources [79]. They 

can be deployed via aerial scattering or by physical installation. We assume that any 

sensor node will know the position of itself and its immediate neighbor nodes after 

deployment and the base station will know all the nodes’ positions [39-47]. All the 

sensor nodes will not change their positions after deployed. If adversaries change the 

positions of nodes or identities, the neighbor nodes will detect this attack [11].   

 Adversary: Adversaries have unlimited energy and computing power. They can break 

the cryptography system of sensor nodes and compromise them within limited time. 

They will continue attacking benign nodes without any halt, stop, or hibernation. 

They also will not change the target until the nodes were compromised. With node 

compromise, the adversaries can perform many types of internal attacks that one can 

imagine. 

4.2.2 Theory 

Because node compromise detecting mechanisms need time to detect compromise 

events, current secure routing proposals cannot prevent routing path from passing those 

nodes that have already been compromised but have not been detected yet. Even none of 

them notice the existence of undetected compromises nodes. We call those paths that 
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including one compromised node or more as compromised paths. And apparently, data 

transferred by compromised path will introduce security issues because the data are 

disclosed to the compromised nodes. How to decrease compromised paths occurring? 

One common idea is to reduce the node compromise detecting time. However, this idea is 

hard to implement, because any node compromise detecting mechanism needs time to 

gather enough data to provide accurate decision. To defend against the attacks that come 

from the undetected compromised nodes, we present a new proactive secure routing that 

based on node compromise distribution models, such as described in Chapter 3. We use 

Figure 8 to illustrate how our routing algorithm works. 

 

Figure 8 Routing Algorithms Comparisons  

In Figure 8, node S is the source node, and node D is the destination node. A 

detected compromised node is a node that has already been compromised and detected by 

the system. An estimate compromised node is a node that has larger compromise 

probability than the given threshold. All the edges in Figure 8 represent bidirectional 

wireless links between nodes. In the normal routing algorithms without security 

considerations, such as AODV [80], the system will choose the path S-C-G-D as the 

routing path, which the number of links is 3. Because node G is a detected compromised 
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node, in some secure routing algorithms, the system will bypass the node G and choose 

S-B-F-I-D as the routing path, which the number of links is 4. In our algorithm, the 

system will bypass both the detected compromised node G and the estimate compromised 

node F, and choose S-A-E-H-I-D as the routing path, which the number of links is 5. 

4.3 Detailed protocol description  

The protocol of PSR includes path discovery, routing table management, and bad 

list management and path maintenance. Before describing PSR, we give some technical 

terms in the following: 

 Threshold: A probability value that discriminates between estimate bad node and 

good node.  

 Bad node: A bad node is either a detected compromised node or a node with node 

compromise probability larger than the threshold.  

 Good node: A node which is not a bad node is called a good node. 

 i-hop neighbor: An i-hop neighbor is a node that needs i hops to reach the given node. 

For example, 1-hop neighbor means the node is directly connected to the given node. 

 RREQ: the abbreviation of routing request packet.  

 RREP: the abbreviation of routing request reply packet. 

4.3.1 Path discovery 

The path discovery process in PSR is similar to AODV [80]. But PSR is based on 

security mechanisms. The difference in path discovery between AODV and PSR is that 

the former does not consider security. The unique properties of PSR, which come from 

the partition of good nodes and bad nodes, are as follows: 
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 PSR is based on secure environments and node compromise detecting mechanisms; 

thus it conquers most external attacks and some internal attacks; 

 In PSR, source node and intermediate nodes only broadcast and rebroadcast RREQ 

to there good neighbors;  

 In PSR, good nodes will not rebroadcast or reply the routing requests from bad nodes. 

If the source node is thought of as a bad node, its neighbors cannot process the 

request.  

 In PSR, an intermediate good node will stop rebroadcast a request, if there is no good 

neighbor for this node except the previous good node that broadcasts or rebroadcasts 

the request to this intermediate node; 

 In PSR, it is still possible that in a completely connective network, the system cannot 

find secure routing paths for some routing requests because system may fail to find 

secure paths that only include good nodes.  

The path discovery process is initiated whenever a source needs to communicate 

with another node and at this time there is no routing information in its routing table. 

Every node maintains two separate counters: a node sequence number and a broadcast_id. 

The source node initiates the path discovery process by broadcasting a route request 

(RREQ) packet to its good neighbors. The RREQ is encrypted and can only be decrypted 

by the good neighbors. The RREQ contains the following fields:  source_addr, 

source_sequence_#, broadcast_id, dest_addr, dest_sequence_#, hop_cnt. The pair  

<source_addr, broadcast_id> uniquely identifies each RREQ. The broadcast_id is 

incremented whenever the source issues a new RREQ. After receiving RREQ, a good 

intermediate node will do the following: 
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 Return a route reply packet (RREP) (if route information about destination is in its 

cache and current), or 

 Forward the RREQ to its own good neighbors (if route information about destination 

is not in its cache, or is in its cache but is outdated), or  

 Stop forwarding the RREQ (when there is no good neighbor for this node except the 

sending node). 

 If it cannot respond to RREQ, it will increment hop count, and save info to 

implement a reverse path set up, in order to be used when sending reply (assumes 

bidirectional link…) 

An intermediate node will determine whether the route is current by comparing 

the destination sequence number in its own route entry with the destination sequence 

number in the RREQ. The recorded route information in the intermediate node is 

outdated when the destination sequence number in RREQ is greater than that recorded by 

the intermediate node. If a node receives multiple copies of the same route broadcast 

packet (same source_addr and broadcast_id) from various neighbors, it drops the 

redundant ones and does not rebroadcast them.  

After rebroadcasting the RREQ, the intermediate node will keep the track of < 

source_addr, source_sequence_#, broadcast_id, dest_addr>, and the expiration time for 

reverse path route entry, in order to implement the reverse path setup, as well as the 

forward path setup that will accompany the transmission of the eventual RREP. To setup 

a reverse path, a node records the address of the neighbor from which it received the first 

copy of the RREQ. These reverse path route entries are maintained at lease enough time 

for the RREQ to traverse the network and produce a reply to the sender. 
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Finally, a RREQ will arrive at a good node (possibly the destination itself) that 

possesses a current route to the destination. By the time, a reverse path has been 

established to the source of the RREQ by the intermediate nodes’ tracking information. If 

this good node has not processed RREQ previously, it then unicasts a RREP back to its 

neighbor from which it received the RREQ.  A RREP contains the following fields: 

<source_addr, dest_addr, dest_sequence_#, hop_cnt, lifetime> 

As the RREP travels back to the source following the reverse path, each 

intermediate node along the path will do the following: 

 Propagate RREP towards the source using cached reverse route entries; 

 Set up a forward pointer to the node from which the RREP came, update its timeout 

information, and record the latest destination sequence number for the requested 

destination; 

 Discard other RREP packets unless dest_sequence_# is higher than the pervious or 

same but hop_cnt is smaller. 

After passing above steps, a routing path will be constructed when the source 

node received the first RREP. Then the source node can begin data transmission. This 

routing path can be updated if a better route is found. Nodes that are not received RREP 

within timeout will delete the reverse tracking information and this routing request failed. 

4.3.2 Routing table management 

Similar to AODV, PSR also needs routing table management to manage other 

useful information stored in the routing table entries. This information includes the 

following: 
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 Route request expiration timer: It is used for purge reverse path routing entries from 

those nodes that do not lie on the path from the source to the destination. 

 Route caching timeout timer: The time after which the route is considered to be 

invalid. 

 Active neighbors: A neighbor is called as active neighbor if it originates or replays at 

least one packet for the given destination within the most recent active timeout 

period. This information is maintained so that all active nodes can be notified when a 

link in the routing path breaks. 

A good node maintains a route table entry for each destination of interest.  

4.3.3 Bad list management and path maintenance 

The main difference between PSR and other protocols is that our protocol makes 

sure routing paths detour those bad nodes. And this can be implemented by bad list 

management. Similar to other schemes, our scheme has a path maintenance part to 

maintain the routing paths after they are constructed.  

4.3.3.1 Bad list management 

Bad list includes those nodes whether they are detected as compromised nodes or 

their node compromise probabilities are larger than the given threshold, which is defined 

based on system security requirement. Bad list management includes following 

procedures: 

 At the beginning time of system deployment, a cryptography mechanism and a node 

compromise detecting mechanism are deployed, and all nodes are treated as good 

nodes and the bad list is empty.  
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 As time goes on, the base station will be notified the new detected compromised 

nodes by the node compromise detecting mechanism. The base station also repeats 

calculating the node compromise probabilities for all the nodes based on node 

compromise distribution, such as described in Chapter 3. If the node compromise 

probability of a node is larger than the given threshold, this node is also thought of as 

a bad node. The base station will inform the updated bad node information to the 

whole network when bad list has changes.  

Each node only stores its immediate neighbor bad list, and it only rebroadcasts or 

replies good neighbors’ requests.    

4.3.3.2 Path maintenance and local connectivity management 

Similar to other schemes, it uses period hello message to detect local connectivity 

status and informs the base station. In PSR, the hello message and local connectivity 

management are controlled under secure environment [49-62] that brings hello message 

only available to good nodes. In PSR, path maintenance occurs when the following:  

 Link failure in routing path: when either the destination or some intermediate nodes 

are unreachable.  

 Bad node in the routing path: when the nodes in the routing path has been informed 

that one or more bad nodes have been detected in the routing path.  

In the first case, once the next hop in the routing path becomes unreachable, the 

path maintenance is initiated; while in the second case, once an intermediate node in the 

routing path is thought of as bad nodes, the path maintenance is initiated. When the path 

maintenance is initiated, the node upstream of the break propagates an unsolicited RREP 
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with a fresh sequence number (i.e., a greater sequence number than the previously know 

sequence number) and the hop count as an unlimited number to all active upstream 

neighbors. Those upstream nodes subsequently relay that message to their active 

neighbors in the routing path and so on. This process continues until all active upstream 

nodes including the source node are notified.  Upon receiving the notification of path 

maintenance request, the source node can restart the discovery process if it still needs a 

route to the destination. To determine whether a route is still needed, a node may check 

whether the route has been transferred data recently, as well as examine upper layer 

protocol control blocks to see whether connections remain open using the indicated 

destination. If a new discovery process is needed, the source node will initiate a new 

routing request with new destination sequence number of one greater than the previously 

know sequence number to ensure that it builds a new, viable route. 

If in the second case the source node is thought of as a bad node, its downstream 

active neighbor will stop data transmission immediately and inform the downstream 

active nodes to let them delete this routing entry in their routing table. 

In our protocol, it needs some computing resources to estimate the compromise 

probabilities for all nodes. Fortunately, the base station can execute this task. The sensor 

nodes in the network only need small storage to manage their own bad neighbors list. 

4.4 Simulations and results 

In this section, we present our simulations. The main objective of the simulations 

is to show that the routing security in our protocol is better than other secure protocols 

under node compromise attacks.  
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4.4.1 Simulation environment  

Our simulations are based on C-sharp programming. In these simulations, all 

WSNs are static WSNs, i.e., the position of each node does not change after deployment, 

with 100, 200,300,400,500, 600 and 1000 nodes. In these simulations, the node 

compromise distribution follows an intelligent uniform model without node recovery, 

which is described in Section 3.3.1. All the simulations have testified that our routing 

protocol has better security performance than other protocols.. 

Before describing our simulation metrics, we give some definitions as follows: 

 Compromised node: It is a node that has been compromised whether detected or not; 

 Detected compromised node: It is a node that has been compromised and has been 

detected by the system; 

 Compromise path: It is a routing path when it includes at least one compromised 

node; 

 Failed request: It is a routing request that cannot find a routing path under the given 

routing algorithm; 

 Successful request: It is a routing request that can find a routing path whether the 

path is compromised or not under the given routing algorithm. 

In our simulations, we evaluate following metrics: 

 Compromise ratio: This is the ratio of the number of compromise paths to the 

number of routing request. If the value is larger, it means less routing security under 

node compromise attacks.  

 Average path length: It is the average number of links for each routing path.  
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 Successful ratio: This is the ratio of the number of successful routing requests to the 

total number of routing requests.  

Based on simulation object, we design our simulation as follows: 

 Randomly generate a sensor network topology, which has the required node density 

and has the positions of sensor nodes within a fixed-size LxL area, coordinated 

between (0, 0) to (L, L) ; 

 Choose the node that its position is close to (0, L/2) as the base station. 

 Introduce a given number of adversaries at the beginning time.   

 The node compromise attacking time and the detecting time follow a normal 

distribution. 

 Randomly choose nodes except the detected compromised nodes as the source nodes, 

and generate routing requests to the base station in each time. 

 Compare different routing algorithms under above steps. 

4.4.2 Results and discussion 

Using the above mentioned assumptions and steps, we test the utility of various 

combinations of our extensions: different parameters in intelligent models, different 

compromise probability thresholds. 

Figures 9, 10 and 11 are the results from the same simulation. These three Figures 

are used to compare different routing algorithms. To describe easily, we define the routing 

algorithm without security consideration as ALG-I, the algorithm that the routing path 

bypasses those detected compromised nodes as ALG-II, our algorithm as ALG-III 

(threshold is 0.12). The threshold choosing corresponds to the security requirement. We 
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will discuss it later. In this simulation, there are 400 sensor nodes in the network and the 

node density is equal to 10. The expected time for an adversary to compromise a benign 

node is τ, which is equal to 300 unit time; the average time for the system to detect a 

compromise event is also equal to τ. In each unit time, there are 10 randomly chosen 

routing requests to the base station; the simulation time is 20τ; the parameters values in the 

uniform intelligent model described in Section 3.3.1, are: a=0.8; r=0.2; d=1. At the 

beginning of this simulation, there are 10 adversaries introduced to attack this sensor 

network, and there are no more newly adversaries to be introduced in this system. The 

probability threshold to distinguish good or bad nodes is 0.12. 

Routing Security Comparison
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Figure 9 Routing Security Comparison 

Figure 9 shows the comparison of the average compromise ratio in the whole 

simulation time under different algorithms. It shows: the average compromise ratio in 

ALG-I is the largest among three algorithms; the average compromise ratio in ALG-II is 
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in the middle; ALG-III has the least average compromise ratio as expected, and has the 

best security performance.  

That’s easy to understand. ALG-I has the largest probability of constructing a 

routing path to pass compromised nodes because the routing algorithm does not consider 

detouring compromised nodes. The compromise probability will be rapidly decreased 

when the system adopts node compromise detecting mechanisms and makes the routing 

paths bypass those detected compromised nodes. Besides bypassing those detected 

compromised nodes in the routing path, our algorithm also lets the routing path bypass 

those nodes that have larger probabilities of being compromised, and then the routing path 

may bypass nodes that have already been compromised but have not been detected by the 

system. As a result, our algorithm improves the routing security further. 

Routing Overhead Comparison
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Figure 10 Routing Overhead Comparison  

Figure 10 compares the average routing path length in different algorithms. It shows: 

the average path length in ALG-I is the smallest; the average path length in ALG-II is in 
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the middle; ALG-III has the largest average path length. The reason is that: ALG-I finds 

the routing paths that have the least hops, thus it has the smallest average path length; while 

ALG-II may find paths that satisfies the security requirement but may not be the least hops 

paths. In our algorithm, besides bypassing those detected compromised nodes in the path, 

the routing path should also detour some estimate compromised nodes, making the average 

path length the largest among the three types of algorithms.  

Successful Routing Ratio Comparison
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Figure 11 Successful Routing Ratio Comparison  

Figure 11 compares the average successful ratio in different algorithms. The 

average successful ratio is 100 percent in ALG-I, the average successful ratio in ALG-II is 

in the middle, and the average successful ratio in ALG-III is the least.  Radically, in a 

completely connected network, every routing request will find a successful path. While 

some routing requests cannot find successful routing paths in ALG-II because there exists 

some probabilities for some nodes that are surrounded by detected compromised nodes and 
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cannot find valid routing paths. The successful ratio will decrease further when system 

consider some probability compromised nodes as bad nodes in PSR. 

Figures 12, 13 and 14 compare the security, overhead, and successful ratio results 

with different thresholds in our algorithm. We use the same parameters as the simulation 

for Figures 9, 10 and 11, except different thresholds. 
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Figure 12 Routing Securities in Different Thresholds  
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Figure 13 Routing Overhead in Different Thresholds  
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Successful Routing Ratios in Different Thresholds
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Figure 14 Successful Routing Ratios in Different Thresholds  

The main object of Figures 12-14 is to compare security, overhead and successful 

routing effects under different thresholds. When the threshold increases, the security 

performance decreases (average compromise path ratio increases shown in Figure 12), the 

average length of routing paths decreases (average path length decreases shown in Figure 

13), and successful ratio increases (average successful ratio increases shown in Figure 14). 

The reason is that following threshold increase, the system considers more nodes as good 

nodes and it makes the secure network connectivity increase. Thus, the system has a larger 

probability to find a successful routing path for a routing request. And the average length 

for routing paths decreases because the total number of bad nodes in the algorithm is 

getting smaller. At the same time, the security performance decreases because a routing 

path has a larger probability to pass a node that has actually been compromised but has not 

been detected, and is thought of as a good node in the system.  These three figures also 
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show that the curves change sharply initially and tend to flat later. The reason is because 

we suppose that attacking time follows a normal distribution, and the attacking time for 

most compromise events will fall into the nearby area of the expected value of the normal 

distribution (normal distribution has a convergence property). If the threshold is close to 

the center value of the above converging area, then the number of undetected compromised 

nodes to be filtered by our algorithm will vary to a large extent, making the curves tilt 

sharply.  While the threshold is far from the center value of the above converging area, the 

number of undetected compromised nodes to be filtered by our algorithm will alter less, 

making the slope of the curves to be near constant. 

From what has been discussed above, we may safely draw the conclusion that the 

threshold choosing is based on the system security requirement. Although a smaller 

threshold provides more secure, it brings the cost of a longer average routing path and a 

higher probability ratio of routing request failure. A properly selected threshold under our 

algorithm may help to filter out most undetected compromised nodes while still providing 

a considerable routing successful ratio.  

 

4.5 Conclusion 

In summary, we notice that there exists the probability that routing paths pass 

some undetected compromised nodes in current secure routing algorithms. To conquer 

this issue, we have presented a novel secure routing algorithm based on node compromise 

distribution models, such as described in Chapter 3 that are suitable for WSNs. Compared 

with other secure routing algorithms, the routing path in our algorithm not only bypasses 
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the nodes that have been detected as compromised nodes but also bypasses the nodes that 

have larger probabilities of being compromised.  

We also have designed simulations to compare our algorithm with other two types 

of routing algorithms, and the results indicate that our routing algorithm provides a more 

effective method to conquer node compromise whether detected or not. 
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CHAPTER 5  

CONCLUSION 

This dissertation makes several important contributions to the field of wireless 

sensor networks security as stated in chapter 1. In this chapter, we reiterate our main 

contributions, then discuss some related shortcomings, and point out some future works. 

5.1 Modeling of node compromise distribution 

In Chapter 3, we develop basic uniform, basic gradient, intelligent uniform and 

intelligent gradient models of node compromise distribution in order to adapt to different 

application environments by using probability theory. Node compromise distribution 

model can help systems defend against compromise before it occurrs or if it has already 

occurred but has not been detected. We can also apply node compromise distribution 

models to analyze system security weakness, improve security performance, distribute 

system resources efficiently on security cost, etc. 

Basic models can help designers analyze the strength of the coming attacks and 

design secure mechanisms with more efficiency before system deployed, though the 

probability estimation is not accurate enough. For example, in most current security 

approaches, such as [51], the ability to tolerate or defend against node compromise is the 

same everywhere. And the security performance of these schemes is good when they are 

deployed in a uniform environment. However, when these schemes are deployed in a 

gradient based environment, the security performance will decrease greatly because of 

the following: the system has the same ability to tolerate or defend against node 

compromise in all areas, but adversaries attack the system with different strengths on 
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different areas; thus making the system unable to provide enough security in some areas, 

and able to provides more security than needed in other areas. If we design a secure 

mechanism that has a gradient based instead of a uniform based ability to defend against 

node compromise, then its application to the environment (where node compromise 

occurrence follows a basic gradient model), causes the security performance to improve 

efficiently. 

Though there are some mechanisms that can be used to detect node compromise, 

the efficiency is not high because current mechanisms distribute same resources to 

monitor each node, or execute the checking program with the same frequency for each 

node. Decreasing the checking interval will help detect node compromise; however, it 

brings more overheads. In fact, in any network, different nodes may have different 

probabilities of being compromised. If we apply intelligent models in the detecting 

mechanism, and let system spend more resources on those nodes that have larger 

probabilities of being compromised or check them with more frequent, the system will 

detect compromise more efficiently and effectively.  

5.2 Proactive secure routing algorithm 

In Chapter 4, we propose a proactive secure routing algorithm in order to defend 

against undetected node compromise. Although there are some mechanisms that can detect 

node compromise, the compromised nodes cannot be located immediately because of the 

following: 

 Compromised nodes pretend as good nodes because they do not want to be detected 

by the system; 
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 Most of these mechanisms need time to gather enough data to detect attacks; 

 Most of them use collective majority methods and compromised nodes will disturb 

the data process of this method by introducing wrong data, thus delaying the 

detecting. 

 Since the system cannot detect compromised nodes immediately, they can still 

paralyze the network routing before the completion of detection. There are some routing 

algorithms can defend against node compromise in some extent. However, they do not 

consider the security issues related to those undetected compromised nodes. In these 

routing algorithms, the routing path only detour those detected compromised nodes, 

making the routing path still have a probability to pass those undetected compromised 

nodes.  

To overcome above immanent limitation of current secure routing algorithms, we 

develop a novel secure routing scheme in Chapter 4 to defend against undetected node 

compromise based on node compromise distribution models, such as our models 

described in Chapter 3. Our scheme is based on current security mechanisms including 

but not limited with authentication, identification, node compromise detecting, etc. Our 

routing protocol estimates the node compromise probability and makes the routing paths 

detour those nodes that have already been detected as compromised nodes or have larger 

probabilities of being compromised. From the simulations, we have found: when the 

threshold increase, more nodes are considered as good nodes; the probability of the 

routing path passing those undetected compromised nodes is increased, i.e. the security 

performance decreases. At the same time, the routing performance increases, such as 

routing successful ratio increasing, path length decreasing. Thus, the threshold choosing 
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is the key factor that affects the routing security and overheads. In practical applications, 

security administrators should balance the security requirement and other performance 

costs to design a suitable security mechanism. 

This algorithm also testifies that applying node compromise distribution in secure 

design can definitely improve the system security. Though currently we use our own node 

compromise distribution models to calculate node compromise probability, other node 

compromise distribution models can also be  applied to our proactive secure routing 

algorithm.  

5.3 Future work 

Although our research has broken new grounds and laid a foundation for the 

development of secure wireless sensor networks, there is more work to be done.  

Currently, in our node compromise distribution models, we assumed that all the 

sensor nodes are static nodes, i.e., sensor nodes do not change their positions after 

deployment. However, in some applications, sensor nodes are dynamic nodes and they 

can change their positions. Under such condition, how to model node compromise still 

need more studies. And this study can also help to model node compromise distribution 

in ad hoc networks. 

In our current models, we did not give values of the parameters because each 

application may have different value for each parameter. How to find suitable parameters 

values of node compromise distribution models in practical applications, is an important 

task. We plan to design an adaptive mechanism to find suitable parameters values under 

different application environments. 
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Applying node compromise models can increase the security performance with 

high efficient and effective. Though we give some application examples in key 

management, detecting node compromise and secure routing, it still need more works to 

test them in concrete security mechanisms. For example, we know the principle to let the 

security strength follow the attack strength. However, how to apply node compromise 

models in key pre-distribution, aberrant nodes management, re-keying frequency, etc. in 

key management design still needs a lot of work.  

Section 3.4.1 gives an idea to save system available resources and energy in those 

application enviroments where compromised nodes can only be detected but can not be 

recovered. The idea is that system utilize those nodes that are still secure enough now but 

may have larger probabilities of being compromised in the future, to decrease the lost of 

system available resources. How to implement this idea still needs more works. 

Though we provide a secure routing algorithm to defend against undetected node 

compromise in Chapter 4, how to choose a suitable threshold to distinguish between 

probability benign nodes and probability compromised nodes still needs further study. 

Although our distribution models and secure routing algorithm are suitable for the node 

compromise attack, modifying and adapting them to other types of attacks may also help 

to defend against those types of attacks. Therefore, our another plan is to develop 

distribution models for other types of attacks in sensor network security. 
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