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ABSTRACT OF THE DISSERTATION

ALGEBRAIC THEORY OF MINIMAL NONDETERMINISTIC FINITE

AUTOMATA WITH APPLICATIONS

by

Daniel Cazalis

Florida International University, 2007

Miami, Florida

Professor Geoffrey Smith, Major Professor

Since the 1950s, the theory of deterministic and nondeterministic finite automata

(DFAs and NFAs, respectively) has been a cornerstone of theoretical computer sci-

ence. In this dissertation, our main object of study is minimal NFAs. In contrast

with minimal DFAs, minimal NFAs are computationally challenging: first, there

can be more than one minimal NFA recognizing a given language; second, the prob-

lem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs

over a unary alphabet. Our study is based on the development of two main theo-

ries, inductive bases and partials, which in combination form the foundation for an

incremental algorithm, ibas, to find minimal NFAs.

An inductive basis is a collection of languages with the property that it can

generate (through union) each of the left quotients of its elements. We prove a

fundamental characterization theorem which says that a language can be recognized

by an n-state NFA if and only if it can be generated by an n-element inductive basis.

A partial is an incompletely-specified language. We say that an NFA recognizes

a partial if its language extends the partial, meaning that the NFA’s behavior is

unconstrained on unspecified strings; it follows that a minimal NFA for a partial is

also minimal for its language. We therefore direct our attention to minimal NFAs

recognizing a given partial. Combining inductive bases and partials, we generalize
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our characterization theorem, showing that a partial can be recognized by an n-state

NFA if and only if it can be generated by an n-element partial inductive basis.

We apply our theory to develop and implement ibas, an incremental algorithm

that finds minimal partial inductive bases generating a given partial. In the case of

unary languages, ibas can often find minimal NFAs of up to 10 states in about an

hour of computing time; with brute-force search this would require many trillions

of years.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Finite automata are among the simplest mathematical models of computation, and

since the 1940s their theory has been one of the cornerstones of theoretical computer

science. A finite automaton reads an input string, symbol by symbol, moving among

a finite set of states in response to the symbols that it reads. It begins in an initial

state and, upon reaching the end of the input, it accepts the input if it is in one of its

final states; otherwise it rejects the input. The language recognized by an automaton

is the set of all the strings that it accepts; a language is regular if it is recognized

by some finite automaton. The seminal 1959 paper by Rabin and Scott [RS59]

introduced nondeterministic finite automata, in which the state transitions are not

necessarily uniquely determined by the current state and input symbol; instead the

automaton is imagined to have a magical ability to “guess” the correct transition at

each step. Remarkably, Rabin and Scott proved that every nondeterministic finite

automaton is equivalent to a deterministic finite automaton; however, the number

of states in the deterministic automaton might be exponentially larger.

This result leads naturally to the question of the minimum number of states

required for a finite automaton to recognize a given language. With respect to de-

terministic finite automata (DFAs), the Myhill-Nerode theorem [Ner58] shows that

each regular language has a unique minimal DFA, up to isomorphism. Moreover,

this minimal DFA can be computed efficiently: Hopcroft [Hop71] showed that an

n-state DFA can be converted into the minimal equivalent DFA in time O(n log n).

(More recently, some simpler implementations of Hopcroft’s algorithm have been de-

veloped [Blu94]. Also, it has been shown that if the size m of the input alphabet is
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not viewed as fixed, then the original algorithm does not run in time O(mn log n), as

was commonly believed in the literature; however some recent variations do achieve

that running time [Knu01].)

When we turn our attention to the minimization of nondeterministic finite au-

tomata (NFAs), the situation is much more challenging. First, there can be more

than one minimal NFA recognizing a given language. Second, the problem of con-

verting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary

alphabet [SM73, JR93, Gra03]. These negative results also apply to unambiguous

finite automata (UFAs), which are NFAs with the property that each accepted string

has just one accepting path [JR93]. It has been proved that even the slightest ex-

tension of the deterministic model, such as allowing just one nondeterministic move

in every accepting computation, or having two initial states, results in intractable

minimization problems [Mal04].

Such negative results have led to efforts, such as [MP95, Koz97, IY02], that are

aimed at reducing the size of an NFA without necessarily finding a minimal NFA.

Also results have been shown on the difficulty of even approximating the size of a

minimal NFA [Gra03, GS05].

In this dissertation, we develop theoretical foundations and algebraic techniques

to enable searches for minimal NFAs recognizing a specified language. In the case

of unary languages, our techniques often allow us to find minimal NFAs of up to

10 states in about an hour of computing time; with brute-force search this would

require many trillions of years.

Considering the continuous interest and complexity of the study of NFA min-

imization, an enterprise like ours, which is general, methodologically unique, and

theoretically sound, will be a modest addition to this important field.
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1.2 Dissertation Overview

Our main object of study is minimal nondeterministic finite automata. Our study

is based on the development of two main theories: inductive bases and partials.

Combining these theories, we develop and implement an incremental algorithm,

ibas, to find minimal NFAs.

The scope of our theoretical work is wider than the ibas algorithm. Especially

we feel that our characterization theorems (Theorem 3.1.7, Corollary 5.4.3, and The-

orem 6.2.3) are significant. Characterization theorems are among the most powerful

mathematical tools, because they allow the use of specific properties of the new

representation in addition to the properties of original objects. In our case, our two

main characterization theorems allow us to treat languages as partials and NFAs

as partial inductive bases, taking good advantage of the properties of these novel

representations.

Lexicographical order is important throughout our presentation. By ordering

the strings in Σ∗, we enable the representation of a language as an infinite (0,1)

property vector. Moreover, these property vectors can themselves be lexicographi-

cally ordered, allow us to put bases, which are finite collections of languages, into a

canonical order—this is quite important for eliminating permutations.

We now outline each of the chapters of this dissertation.

Chapter 2 discusses preliminary concepts of formal languages and NFAs, includ-

ing the left quotient operation, a\L. Of particular importance is the notion of the

prophecy of a state q of an NFA M , which we denote Proph(q). This is the set of all

strings that M accepts if started in state q. Thus if M chooses to enter q, we can

view it as making the “prophecy” that the rest of the input will be in Proph(q).

3



Chapter 3 discusses bases, which are collections of languages. A basis B is said

to generate a language L if some subcollection of B has union L. Bases will often

be represented as (0,1) matrices in which the rows are the property vectors of the

languages in the basis. We introduce a fundamentally important type of basis, which

we call an inductive basis, which has the property that it generates each of the left

quotients of its elements. We show a fundamental characterization theorem, which

says that a collection of languages can be the prophecies of the states of an NFA iff

the collection is an inductive basis; thus a language can be recognized by an n-state

NFA iff it can be generated by an n-element inductive basis. Chapter 3 also explores

a weaker notion of functional basis and shows that functional bases have interesting

connections to inductive bases.

Chapter 4 introduces partials, which are partially-specified languages. Formally

a partial P is a function from Σ∗ into the flat domain Bool⊥ = {True,False,⊥}.

Having generalized the logical operators to this domain, we generalize language

operations (like union and quotient) to partials, and prove various properties of our

generalizations. We also introduce the important concept of extension to say that

one partial is more specified than another; our notation for this is P ⊑ P ′.

Chapter 5 considers partials and NFAs. We say that an NFA M recognizes a

partial P if its language extends P ; this means that M is unconstrained on strings

that P maps to ⊥. A nice consequence is that if an NFA M is minimal for some

partial P , then M must also be minimal for its language, L(M); the reason is that a

smaller NFA recognizing L(M) would also be a smaller NFA recognizing P . We also

establish the existence of the canonical partial for each regular language L, which

is the “narrowest” partial P with the property that any minimal NFA recognizing

P also recognizes L.

4



Chapter 6 combines inductive bases and partials to define partial inductive bases.

We generalize our characterization theorem from Chapter 3, proving that a partial

can be recognized by an n-state NFA iff it can be generated by an n-element partial

inductive basis. We also generalize the notion of extension to bases, and explore

the question of how a partial inductive basis can be extended to a wider one; this

theory allows partial inductive bases to be constructed incrementally.

Chapter 7 presents our ibas algorithm, which searches for minimal NFAs rec-

ognizing a given partial P by incrementally searching for partial inductive bases

generating P . The algorithm can be described as a depth-first search on a tree

whose nodes represent classes of NFAs recognizing prefixes of P .

Chapter 8 gives some experimental results to show the capabilities of ibas. We

find that, over unary languages, exhaustive search of 6-state NFAs takes over 4

hours, and exhaustive search of 7-state NFAs would take years. In contrast, we find

that ibas is often (but not always) able to complete searches for 10-state unary

NFAs in about an hour.

Chapter 9 presents some earlier work that we did prior to the development of

inductive bases. Using something called the characterization matrix of a language

L, previously studied by Condon, Hellerstein, Pottle, and Wigderson [CHPW98],

we revisit some traditional theorems and constructions of automata theory from the

point of view of the characterization matrix and its factorization. In this way we are

able to give a simpler and more unified view of topics including the Myhill-Nerode

theorem, the powerset construction, bideterminism, and lower bounds on the size of

minimal NFAs.

Chapter 10 concludes and presents some future directions.
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1.3 Other Related Work

Our theory imposes lattice-like structures on languages and NFAs. Lattice structure

is also associated with fuzzy sets and fuzzy automata, but the lattice structure is

quite different, because fuzzy automata are based on the idea of “fuzzily” accepting

an input; in contrast we always totally accept or reject, but on some inputs we do not

care which. Some variations of fuzzy automata to be used in lattice-valued regular

languages are presented as deterministic lattice automata, and their minimization is

studied in [LP07] and [LL07]. Some algebraic properties are presented in [Pet06].

A minimization algorithm in fuzzy automata is presented in [CM04]; similar results

are in [Pee88], whose results are also valid for stochastic automata. Also [MMS99]

minimizes fuzzy automata. Fuzzy automata applications in natural languages and

speech recognition are presented [T94].

Another line of work involves generalizations of NFAs, such as generalized au-

tomata [GM99] and the closely-related expression automata [HW04]; generalized

automata use words for transitions and expression automata use regular expres-

sions. Other generalizations of NFAs deal with the set operation used to generalize

the transition from the arrows; the most commonly-used union operation can be

replaced with any well-defined set operation. Symmetric difference is an interesting

case and leads to small automata for some languages. An example of an application

using NFAs based on symmetric difference is [vZ04].

There are other types of automata that are aimed at reducing the descriptional

complexity (a type of measurement on the size); one example is the conjunctive

acceptance criterion that may greatly reduce the size of NFAs, and there are other

acceptance criteria that rely on the whole computation of the string in order to

decide whether to accept [HK05].

6



Other work involves studies of special forms of NFAs for which minimization

is easier. One example is canonical automata where the minimal machine is a

subautomaton and the minimal NFA can often be obtained quickly using heuristics

[Mat]. Another case concerns acyclic automata for which minimization can be done

in linear time [Rev92, Wat03]. Similarly, minimization can be done efficiently in the

case of NFAs recognizing ω languages [Sta83].

Another line of work investigates the blow-up associated with concatenation and

complementation; tight upper bounds are known [JJZ04].

Cover automata are similar to our notion of an NFA accepting a partial, but cover

automata are deterministic and are applied to finite languages only; incremental

algorithms for constructing minimal cover automata are given in [CCY01, CCS06],

but they do not use the bases approach that we do.

Some papers model states as grids over a (0,1) matrix; this method has also been

called tiling . We use similar techniques in our study of bideterminism in Section 9.7.

The reduced automaton matrix RAM in [KW06] deals with minimization of NFAs

by the use of grids on matrices.

To the best of our knowledge, there is no work in the literature that closely

resembles our methods and results.
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CHAPTER 2

PRELIMINARIES

In this chapter we establish some notation and initial definitions; for the most

part we follow traditional references such as [HU79]. We give a formal definition of

alphabets, languages, nondeterministic finite automata (NFAs), history languages,

prophecy languages, and quotient languages ; these are our basic tools. We also give a

description of the graph representation of NFAs for a less formal intuitive approach.

In addition, we extend the ordering of the alphabet to get a lexicographical order

on strings, languages, states and NFAs; this allows us to give a numerical position

of any string, to represent languages as (0, 1) property vectors, to give a canonical

order to the states of an NFA, and ultimately to order NFAs.

2.1 Alphabets, Languages, and NFAs

An alphabet Σ is a finite set. Given an alphabet Σ, we let Σ∗ denote the set

of all finite-length strings of elements of Σ. We denote the empty string by ǫ, the

concatenation of strings x and y by xy, and the reverse of string x by xR. A language

L over Σ is simply a subset of Σ∗. We write LR for the reverse of L, formed by

reversing each of the strings in L. We write AB for the concatenation of languages

A and B, consisting of the set of all strings that can be formed by concatenating a

string from A with a string from B. Also, assuming that Σ is understood, we write

A for the complement of A, consisting of all the strings in Σ∗ but not in A.

Unlike [HU79], but like [RS59], [Per90], and [Koz97], we allow our NFAs to have

multiple start states and we do not allow ǫ-transitions:

Definition 2.1.1 An NFA M is a tuple (Q, Σ, δ, I, F ) where

• Q is a finite set (the states),

• Σ is a finite set (the alphabet),

8



• δ : Q × Σ → 2Q (the transition function),

• I ⊆ Q (the set of initial states), and

• F ⊆ Q (the set of final states).

As usual, we define the semantics of NFAs by extending δ inductively to δ̂ :

2Q × Σ∗ → 2Q (the generalized transition function).

δ̂(S, ǫ) = S

δ̂(S, xa) =
⋃

q∈bδ(S,x)

δ(q, a).

The language recognized by M , denoted L(M), is {w ∈ Σ∗ | δ̂(I, w) ∩ F 6= ∅}. If

w ∈ L(M), we say that M accepts w.

We remark that although the generalized transition function δ̂ is defined for every

subset of Q, in some sense this is not necessary, since the only subsets of Q that

actually arise when running M are the sets δ̂(I, w), for some w ∈ Σ∗. For example,

in the extreme case when I = ∅, the only set that arises is ∅.

Our main concern in this dissertation is with NFAs that are minimal with respect

to the number of states:

Definition 2.1.2 NFA M is minimal if no NFA with fewer states than M recognizes

L(M).

It is often clearer to represent an NFA as a labeled directed graph with a vertex for

each state and an edge labeled a from vertex q to vertex r whenever r ∈ δ(q, a); we

indicate initial states with arrows and final states with double circles. For example,

Figure 2.1 shows the graphical representation of a 5-state NFA that recognizes the

set of all strings of a’s whose length is not a multiple of 6.

9
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3

1

2

0

a a

a

a

a

Figure 2.1: A 5-state NFA for {ai | i mod 6 6= 0}

The graphical representation of an NFA M allows us a more intuitive characteri-

zation of acceptance: M accepts string w iff there exists a path labeled with w from

some initial state of M to some final state of M . (This path-based characterization

of NFA acceptance fits better with the intuition of angelic nondeterminism, which

views an NFA as having a magical “guessing” ability to make the right choice at

every step.) For example, the NFA of Figure 2.1 accepts aaaa because there is a

path labeled aaaa from initial state 2 to final state 3:

2
a

−→ 3
a

−→ 4
a

−→ 2
a

−→ 3

More precisely, we have the following characterization:

Lemma 2.1.3 For all S ⊆ Q and w ∈ Σ∗, δ̂(S, w) is the set of all states q such

that there is a path labeled w from some state s ∈ S to q.

Proof. By induction on the length of w.

For the basis, δ̂(S, ǫ) = S, by definition. And a path from s ∈ S labeled with ǫ

has length 0, so it ends at s.

For the inductive step, we note that t ∈ δ̂(S, xa) iff t ∈
⋃

q∈bδ(S,x) δ(q, a) iff

t ∈ δ(q, a), for some q ∈ δ̂(S, x). By induction, this holds iff t ∈ δ(q, a), for some q

10



3210
b a, ba, b

a, b

Figure 2.2: A UFA for {w ∈ {a, b}∗ | the third-from-last symbol of w is b}

such that there is a path labeled x from some state s ∈ S to q. And this holds iff

there is a path labeled xa from some state s ∈ S to t.

Corollary 2.1.4 NFA M accepts w iff there is a path labeled w from some state in

I to some state in F .

Proof. By definition, M accepts w iff δ̂(I, w) ∩ F 6= ∅. By the lemma, this holds iff

there is a path labeled w from some state in I to some state in F .

We also consider two special kinds of NFAs, namely deterministic finite automata

and unambiguous finite automata. A deterministic finite automaton (DFA) is an

NFA such that |I| ≤ 1 and |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ. Of course, this

implies that |δ̂(I, w)| ≤ 1 for all w ∈ Σ∗. (Notice that we do not require our DFAs

to include “dead” states; for example, under our definition we can recognize ∅ using

a 0-state DFA.) Less well known, an unambiguous finite automaton (UFA) is an

NFA in which each accepted string has just one accepting path [JR93]. Of course

every DFA is a UFA. A more interesting UFA is the well-known (n + 1)-state NFA

that recognizes all strings over {a, b} whose nth-from-last symbol is b; note that the

minimal DFA for this language requires 2n states. The version of this UFA when

n = 3 is shown in Figure 2.2.

Given an NFA M = (Q, Σ, δ, I, F ) recognizing a language L, we can define a

reverse NFA MR that recognizes the reverse language LR; we simply interchange I
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and F and reverse all the arrows:

MR = (Q, Σ, δR, F, I),

where

δR(q, a) = {r ∈ Q | q ∈ δ(r, a)}.

Notice that for any NFA M , (MR)R = M . Also note that the reverse of a DFA need

not be a DFA, but the reverse of a UFA is always a UFA.

2.2 Quotient Languages

Let L be a language over Σ and let a ∈ Σ.

Definition 2.2.1 The right quotient of L by a, written L/a, is {x ∈ Σ∗ | xa ∈ L}.

Definition 2.2.2 The left quotient of L by a, written a\L, is {x ∈ Σ∗ | ax ∈ L}.

Quotient languages can be easily generalized to strings and languages:

Definition 2.2.3 The right quotient of L by L′, written L/L′, is

{x ∈ Σ∗ | there exists y ∈ L′ such that xy ∈ L}.

2.3 History and Prophecy Languages

We will also find useful the concepts of history and prophecy of a state in an NFA

M [ADN92]:

Definition 2.3.1 For each state q in an NFA M , the history of q, denoted Hist(q)

is the set of all strings that can reach q from I:

Hist(q) = {w ∈ Σ∗ | q ∈ δ̂(I, w)}.
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Definition 2.3.2 For each state q in an NFA M , the prophecy of q, denoted

Proph(q), is the set of all strings that can reach F from q:

Proph(q) = {w ∈ Σ∗ | δ̂({q}, w) ∩ F 6= ∅}.

Equivalently,

Proph(q) = {w ∈ Σ∗ | q ∈ δ̂R(F, wR)}.

The name “prophecy” is appropriate, because when an NFA enters a state, it implic-

itly makes a prediction about what the rest of the input will be (assuming that the

input is good). Note also that, in terms of the graphical representation, Proph(q)

is the set of all strings w such that there is a path labeled w from q to some final

state.

As an example, the states of the NFA in Figure 2.1 have the following prophecies:

Proph(0) = {a, a3, a5, a7, a9, . . .}

Proph(1) = {ǫ, a2, a4, a6, a8, . . .}

Proph(2) = {a, a2, a4, a5, a7, . . .}

Proph(3) = {ǫ, a, a3, a4, a6, . . .}

Proph(4) = {ǫ, a2, a3, a5, a6, . . .}

Notice that the history of q in M is the reverse of the prophecy of q in MR. Also

notice that a string w is accepted by NFA M iff it is in the prophecy of some initial

state of M and iff it is in the history of some final state of M . That is,

L(M) =
⋃

q∈I

Proph(q)

and

L(M) =
⋃

q∈F

Hist(q).

13



Less obviously, we have the following theorem:

Theorem 2.3.3 For any NFA M = (Q, Σ, δ, I, F ),

L(M) =
⋃

q∈Q

Hist(q)Proph(q).

Proof. Let w ∈ Σ∗. We have

w ∈ L(M)

iff there is a path labeled w from a state in I to a state in F

iff there exist q ∈ Q and x, y ∈ Σ∗ such that w = xy and there is a path labeled x

from a state in I to q and a path labeled y from q to a state in F

iff there exist q ∈ Q and x, y ∈ Σ∗ such that w = xy and x ∈ Hist(q) and y ∈

Proph(q)

iff there exists q ∈ Q such that w ∈ Hist(q)Proph(q)

iff w ∈
⋃

q∈Q Hist(q)Proph(q).

2.4 Restricting the Generalized Transition Function δ̂

Given an NFA M , suppose that we can run it on any string w and observe the set of

states that can be reached. In other words, we can observe δ̂(I, w) for any w ∈ Σ∗.

We might wonder whether this gives us enough information to “reverse engineer”

the transition function δ.

Notice, however, that in this scenario we may not be able to observe the entire

δ̂ function, because we can only observe δ̂(S, w) if S is δ̂(I, x), for some x ∈ Σ∗.

This leads us to define a restricted function, which we denote as δ̂I , which is

simply δ̂ restricted to sets of the form δ̂(I, x), for some x ∈ Σ∗. For example, δ̂∅ is

defined only on ∅: δ̂∅ : {∅} × Σ∗ → {∅}.
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Dually, we can define δ̂R
F , which is δ̂R restricted to sets of the form δ̂R(F, x), for

some x ∈ Σ∗.

As will be made clear in Chapter 3, δ̂I is what we can see if we know the histories

of the states of M , while δ̂R
F is what we can see if we know the prophecies of the

states of M .

2.5 Lexicographical Order

Given a total order on an alphabet Σ, we can define the total lexicographic order on

Σ∗: we put shorter strings before longer strings, and we order strings of the same

length based on the first position where they differ. For example, the lexicographic

order on {a, b}∗ goes as follows:

ǫ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .

Definition 2.5.1 Given w ∈ Σ∗, the index of w, denoted indexΣ(w), is the 0-based

position of w within Σ∗.

For example, if Σ = {a, b}, then indexΣ(abb) = 10.

In view of the lexicographic order on Σ∗, we can represent each language L over

Σ as an infinite (0, 1) property vector. These property vectors in turn induce a

canonical order on languages over Σ:

Definition 2.5.2 Given distinct languages L1 and L2 over Σ, we say that L1 < L2

if the smallest string (lexicographically) that belongs to one of them and not to the

other belongs to L2.

Note that this makes the empty language, whose property vector is (000 . . .),

the smallest of all languages over Σ, and Σ∗, whose property vector is (111 . . .), the
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largest. Also note that all languages that contain the empty string ǫ are larger than

those that do not.

The canonical order on languages also induces a canonical order on the states of

an NFA, by ordering states based on their prophecies, assuming that no two states

have the same prophecy:

q < q′ iff Proph(q) < Proph(q′).

Finally, we can define a canonical ordering on NFAs over Σ. Let NFAs M and M ′

have canonically-ordered states {q1, . . . , qm} and {q′1, . . . , q
′
n}, respectively. First, we

say that M < M ′ if m < n. And if m = n, we say that M < M ′ if, letting i be the

first index such that Proph(qi) 6= Proph(q′i), we have Proph(qi) < Proph(q′i). Notice

however that this order is partial in the sense that two different NFAs with the same

number of states and the same prophecies for all states are not comparable.
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CHAPTER 3

INDUCTIVE BASES AND FUNCTIONAL BASES

As we saw in Chapter 2, an NFA M gives rise to two collections of languages,

namely the histories of its states and the prophecies of its states. In this chapter,

we study the collection of prophecies more closely. First we establish an important

interrelationship among the prophecies of an NFA. Going in the opposite direction,

we explore the question of when a collection of languages can be the set of prophecies

of some NFA. We introduce the concept of an inductive basis, and show that a

collection of languages can be the prophecies of some NFA iff it is an inductive

basis. This result will allow us to search for minimal NFAs by searching for minimal

inductive bases. This characterization will serve as the foundation of our work on

algorithms for finding minimal NFAs. In this chapter, we also develop a related

concept of functional basis, and establish some of its interesting properties.

3.1 From Prophecies to Inductive Bases

We begin with some useful terminology:

Definition 3.1.1 A basis B is a finite multiset of languages over some alphabet Σ.

We say that a basis B generates a language L if there is some subcollection of B

whose union is L.

Usually our bases will in fact be sets rather than multisets; after all, with respect

to the question of whether B generates L, there is no reason for B to include elements

of multiplicity greater than 1. However, we will be particularly interested in the basis

consisting of the prophecies of the states of an NFA, and it is of course possible for

two states to have the same prophecy—for this reason we allow bases to be multisets.

17



Definition 3.1.2 Given NFA M = (Q, Σ, δ, I, F ), Prophecies(M) denotes the basis

consisting of the prophecies of the states of M :

Prophecies(M) = {Proph(q) | q ∈ Q}.

It turns out that Prophecies(M) has some interesting properties as a basis. First,

it generates L(M), since L(M) =
⋃

q∈I Proph(q). More interestingly, it generates

each of its left quotients :

Theorem 3.1.3 For all q ∈ Q and a ∈ Σ, Prophecies(M) generates a\Proph(q).

Proof. We show that a\Proph(q) =
⋃

r∈δ(q,a) Proph(r). For w ∈ a\Proph(q) iff

aw ∈ Proph(q) iff there is a path labeled aw from q to some final state iff there

is there is a path labeled w from some state in δ(q, a) to some final state iff w ∈
⋃

r∈δ(q,a) Proph(r).

Abstracting from this property, we are led to introduce what we call an inductive

basis:

Definition 3.1.4 A basis B over alphabet Σ is an inductive basis if for each B ∈ B

and a ∈ Σ, B generates a\B.

(The name “inductive basis” is chosen to reflect the fact that if B generates a

language C, then it also generates a\C.) The theorem above can now be restated:

Theorem 3.1.5 For any NFA M , Prophecies(M) is an inductive basis.

Conversely, given a basis B we may wonder whether there is any NFA that has

B as its prophecies; we say that such an NFA realizes B.

Definition 3.1.6 We say that NFA M realizes basis B if Prophecies(M) = B.
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Interestingly, it turns out that any inductive basis can be realized; thus we have

a perfect characterization of when a basis can be the prophecies of some NFA. (This

result appeared earlier in [Smi06].)

Theorem 3.1.7 A basis B can be realized iff it is inductive.

Proof. The “only if” direction was proved above.

For the “if” direction, let B be an inductive basis over alphabet Σ and let the

elements of B be enumerated in some order:

B = {L1, L2, . . . , Ln}

where n ≥ 0. (Note that the Li’s need not be distinct.)

Let Nn denote the set of natural numbers from 1 to n. We construct an NFA

that realizes B, using Nn as the set of states.1 Define M = (Nn , Σ, δ, I, F ), where

• δ(i, a) is any subset of Nn such that
⋃

j∈δ(i,a) Lj = a\Li,

• I is arbitrary, and

• F = {i ∈ Nn | ǫ ∈ Li}.

The fact that B is an inductive basis exactly ensures that δ can be constructed;

notice however that δ is not necessarily uniquely determined. Next we prove that

Prophecies(M) = B by showing that each state i has Li as its prophecy:

Lemma 3.1.8 For all i ∈ Nn ,Proph(i) = Li.

Proof. We show that w ∈ Proph(i) iff w ∈ Li by induction on |w|:

Basis:

We have ǫ ∈ Proph(i) iff i ∈ F iff ǫ ∈ Li.

1In the case where B is a set, rather than a multiset, a more elegant option is to
use B itself as the set of states; this is how the proof is done in [Smi06].
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Induction:

Given a ∈ Σ, u ∈ Σ∗, we have

au ∈ Proph(i)

iff ∃k ∈ F such that there is a path from i to k labeled au

iff ∃j ∈ δ(i, a), ∃k ∈ F such that there is a path from j to k labeled u

iff ∃j ∈ δ(i, a) such that u ∈ Proph(j)

iff ∃j ∈ δ(i, a) such that u ∈ Lj (by the induction hypothesis)

iff u ∈ a\Li (by the definition of δ)

iff au ∈ Li.

We remark that the construction of M in the above proof can be seen as a

generalization of a construction given years ago by Conway: theorem 2 of chapter 5

of [Con71] builds the minimal DFA for a regular language L using the repeated left

quotients of L as states. This corresponds to an inductive basis B in which the

subcollections used in generating the left quotients all have size 1.

Notice that the language recognized by the NFA M constructed in the above

proof is not fixed, since its set I of initial states is arbitrary. In fact, by choosing I

appropriately, we can make L(M) be any language that is generated by the inductive

basis B. Thus we have the following corollary:

Corollary 3.1.9 A language L can be recognized by an n-state NFA iff L can be

generated by an n-element inductive basis.

We now explore some simple consequences of Theorem 3.1.7.

Let M = (Q, Σ, δ, I, F ) be an NFA. We know that Prophecies(M) is an inductive

basis. Now, Prophecies(M) may contain some languages more than once, since two
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states of M might have the same prophecy. But then M is not minimal: we can

delete all duplicates from Prophecies(M) to get a smaller inductive basis that still

generates L(M); this in turn gives us a smaller NFA that recognizes L(M). Thus,

in a minimal NFA, all of the state prophecies must be distinct.

More generally, no state in a minimal NFA M can have a prophecy that is equal

to the union of the prophecies of some other states of M . For if a language L in an

inductive basis B is the union of some other languages in B, then B−{L} is still an

inductive basis. (This follows from the fact that a\(L1 ∪ L2) = (a\L1) ∪ (a\L2).)

Theorem 3.1.7 also implies that all the elements of an inductive basis are regular

languages.

Corollary 3.1.10 If B is an inductive basis, then each element of B is regular.

Proof. By Theorem 3.1.7, there is an NFA M such that Prophecies(M) = B, where

the set of initial states I of M can be chosen arbitrarily. If Li ∈ B, then we can

choose I = {i}, making L(M) = Proph(i) = Li. Hence Li is regular.

We can also define a notion of equivalence on NFAs:

Definition 3.1.11 We say that NFAs M1 and M2 are equivalent iff L(M1) = L(M2)

and Prophecies(M1) = Prophecies(M2).

The number of equivalent NFAs can be exponential in the number of states. For

example, consider the set of 6-state NFAs recognizing a∗ and such that each state

has prophecy a∗. Figure 3.1 gives two such NFAs. The number of such NFAs is

greater than 221, but they all share the same inductive basis. This suggests that

searching for inductive bases may be far easier than searching for NFAs.

Going forward, our plan is to search for minimal NFAs recognizing a given lan-

guage L by searching for minimal inductive bases generating L. However, to make

21



a

aa

a

a

a a
a

a

a

Figure 3.1: Two equivalent 6-state NFAs recognizing a∗

this plan algorithmically feasible, we will need a finite representation of the lan-

guages in the inductive basis. In the next chapter, we will introduce what we call

partials to allow us to use finite approximations of potentially infinite languages.

But first we explore further the properties of the possible prophecies of an NFA.

3.2 Functional Bases

Given a basis B, we are interested in knowing whether B can serve as the set of

prophecies of an NFA. In the last section, we showed that this is possible iff B is an

inductive basis. Here we approach the question in a different way.

Given a basis, let us pick some order for its elements: B = {L1, L2, . . . , Ln}. We

can now represent B concretely as an (n×∞) (0,1) matrix whose rows are indexed

by Nn = {1, 2, . . . , n} and whose columns are indexed by Σ∗. Note that the ith row

then is the (0,1) property vector for language Li. For example, Figure 3.2 shows a

portion of this matrix for a three-element basis which we call B248:

B248 = {{aj | j mod 2 = 1}, {aj | j mod 4 = 2 or 3}, {aj | j mod 8 = 4, 5, 6, or 7}}.

(The portion shown repeats forever to the right.)
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ǫ a a2 a3 a4 a5 a6 a7 a8 . . .
1 0 1 0 1 0 1 0 1 0 . . .
2 0 0 1 1 0 0 1 1 0 . . .
3 0 0 0 0 1 1 1 1 0 . . .

Figure 3.2: A matrix representation of functional basis B248

The inductive basis characterization is based on the matrix’s rows; here we

consider what we can say about the matrix’s columns. To this end, for w ∈ Σ∗, we

define Col(w) to be the set of indices of the rows that contain w:

Definition 3.2.1 Given a basis in some chosen ordering, B = {L1, L2, . . . , Ln},

define Col : Σ∗ → 2Nn by Col(w) = {i ∈ Nn | w ∈ Li}.

For example, with respect to B248 we have Col(a5) = {1, 3}.

Now we can wonder about the relationship between Col(w) and Col(aw). To do

this, we can define a binary relation
a
→ on 2Nn for each a ∈ Σ∗:

a
→ = {(Col(w),Col(aw)) | w ∈ Σ∗}.

Using infix notation, what we get for basis B248 is

∅
a
→ {1}

a
→ {2}

a
→ {1, 2}

a
→ {3}

a
→ {1, 3}

a
→ {2, 3}

a
→ {1, 2, 3}

a
→ ∅

a
→ · · ·

Notice that in this case
a
→ turns out to be a function. We will then call B248 a

functional basis:

Definition 3.2.2 A basis over Σ is functional if for all a ∈ Σ,
a
→ is a function.

As an example of a non-functional basis, consider

B23 = {{ai | i mod 2 = 1}, {ai | i mod 3 = 2}}

whose matrix representation is shown in Figure 3.3. This basis is not functional,
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ǫ a a2 a3 a4 a5 . . .
1 0 1 0 1 0 1 . . .
2 0 0 1 0 0 1 . . .

Figure 3.3: A matrix representation of non-functional basis B23

because if we look at Col(ǫ) and Col(a4), we see that we have ∅
a
→ {1} as well as

∅
a
→ {1, 2}. So

a
→ is not a function.

How do functional bases relate to inductive bases? We have the following result:

Theorem 3.2.3 Every inductive basis is functional.

Proof. Suppose that B = {L1, L2, . . . , Ln} is an inductive basis over alphabet Σ.

Consider arbitrary strings x and y such that Col(x) = Col(y). To show that B is a

functional basis, we must show that Col(ax) = Col(ay) for every a ∈ Σ.

Let i ∈ Nn . We will argue that i ∈ Col(ax) iff i ∈ Col(ay). Before beginning,

we note the following two facts. First, since B is an inductive basis, we have that

there exists Si ⊆ Nn such that a\Li =
⋃

j∈Si
Lj . Second, since Col(x) = Col(y), we

have for any j ∈ Nn that x ∈ Lj iff j ∈ Col(x) iff j ∈ Col(y) iff y ∈ Lj . Now we

argue as follows:

i ∈ Col(ax)

iff ax ∈ Li

iff x ∈ a\Li

iff x ∈
⋃

j∈Si
Lj (by the first fact above)

iff ∃j ∈ Si such that x ∈ Lj

iff ∃j ∈ Si such that y ∈ Lj (by the second fact above)

iff y ∈
⋃

j∈Si
Lj

iff y ∈ a\Li
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iff ay ∈ Li

iff i ∈ Col(ay).

Here is an alternative proof of this theorem; this one makes use of Theorem 3.1.7:

Proof. Suppose that B = {L1, L2, . . . , Ln} is an inductive basis. Then, by the proof

of Theorem 3.1.7, there exists an NFA M = (Nn , Σ, δ, I, F ) such that for all i ∈ Nn ,

Proph(i) = Li. In that case, we have

Col(w) = {i ∈ Nn | w ∈ Proph(i)} = δ̂R(F, wR),

since w ∈ Proph(i) iff i ∈ δ̂R(F, wR). From this, we can now express Col(aw) in

terms of Col(w):

Col(aw) = δ̂R(F, (aw)R)

= δ̂R(F, wRa)

=
⋃

i∈δR(F,wR)

δR(i, a)

=
⋃

i∈Col (w)

δR(i, a)

Thus being functional is a necessary condition for a basis to be inductive. How-

ever, it is not a sufficient condition: for instance B248 is a functional basis that is

not inductive. (Notice that the left quotient of the first row is (10101010 . . .), which

is not generated by B248.) This means that a functional basis need not be realizable

by any NFA.

However, we can establish a weaker realizability result for functional bases.

Specifically, we show that if B is a functional basis with n elements, then there
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exists an NFA M with at most 2n + n states such that the elements of B are the

prophecies of n of the states of M . Thus the elements of B can be prophecies of

states of an NFA, but the NFA may require additional states.

To establish this result, we begin by observing that the columns of any basis B

give rise to an equivalence relation on Σ∗:

Definition 3.2.4 Given x, y ∈ Σ∗, we say that x ∼ y if Col(x) = Col(y).

It is easy to see that ∼ is an equivalence relation; it is called the kernel of Col. (Note

also that, unlike the Col function, the ∼ relation does not depend on the order in

which we choose to write the elements of B.) As usual we write [x] to denote the

equivalence class of x:

[x] = {y ∈ Σ∗|x ∼ y} = {y ∈ Σ∗|Col(x) = Col(y)}.

Thus [x] is just the inverse image (with respect to Col) of Col(x).

Note that each equivalence class of ∼ is a language over Σ; thus the set of all

the equivalence classes forms a basis, which we call the kernel basis of B, denoted

K(B). Notice that if B has n elements, then K(B) has at most 2n elements, since

there are 2n possible columns, but not all need actually be present in B.

As an example, K(B248) contains 8 elements:

{ai | i mod 8 = 0}, {ai | i mod 8 = 1}, {ai | i mod 8 = 2}, . . . , {ai | i mod 8 = 7}

Now we come to the key theorem:

Theorem 3.2.5 If basis B is functional, then its kernel basis K(B) is inductive.

Proof. Suppose that B is a functional basis. Given x ∈ Σ∗ and a ∈ Σ, we must show

that K(B) generates a\[x].
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To do this, we argue that

a\[x] =
⋃

y∈a\[x]

[y]

The “⊆” direction of this equation follows immediately from the fact that y ∈ [y].

To show the “⊇” direction, we show that if y ∈ a\[x], then [y] ⊆ a\[x]; this depends

crucially on the assumption that B is functional. For if y ∈ a\[x], then ay ∈ [x]

and hence ay ∼ x. And if y′ ∼ y, then Col(y′) = Col(y), which implies (since B is

functional) that Col(ay′) = Col(ay), which gives ay′ ∼ ay. So, by the transitivity

of ∼ we have ay′ ∼ x, which implies y′ ∈ a\[x].

Now we need one more fact, which holds whether or not B is functional:

Theorem 3.2.6 K(B) generates every element of B.

Proof. Let Li be an element of B and suppose that x ∼ y. Then Col(x) = Col(y).

Since Col(x) = {i ∈ Nn | x ∈ Li} and Col(y) = {i ∈ Nn | y ∈ Li}, it follows that

x ∈ Li iff y ∈ Li. Using also the fact that x ∈ [x], we conclude that x ∈ Li iff

[x] ⊆ Li, which implies that Li =
⋃

x∈Li
[x].

Now we can show the realizability result for functional bases that was mentioned

above.

Corollary 3.2.7 If B is a functional basis of size n, then there exists an NFA M

with at most 2n + n states such that B ⊆ Prophecies(M).

Proof. Since B is functional, we know that K(B) is inductive. And, since K(B)

generates every element of B, we have that K(B) ∪ B is also inductive. (This relies

on the fact that a\(L1 ∪ L2) = (a\L1) ∪ (a\L2).) Also note that K(B) ∪ B has size

at most 2n + n. So, by Theorem 3.1.7, it can be realized by an NFA with at most

2n + n states.
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As a final corollary, we note that Corollary 3.1.10 carries over to functional bases:

Corollary 3.2.8 If B is a functional basis, then every element of B is regular.

We do not consider functional bases further in this dissertation, since (unlike

inductive bases) they do not correspond closely to NFAs. We do remark, however,

that it might be possible to apply the results of this section to search more efficiently

for inductive bases. (For example, since every inductive basis is functional, we know

that if an inductive basis over a unary alphabet ever repeats a column, then the

whole basis must repeat from that point on.) Next chapter, we introduce partials,

which allow us to work with finite approximations of languages.
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CHAPTER 4

THEORY OF PARTIALS

In this chapter, we introduce the theory of partially-specified languages, which

we call partials. Partials are a central concept of the present work; they are used

at all conceptual levels, including the theoretical, algorithmic, and implementation

levels.

Partials generalize languages by allowing the status of some strings in Σ∗ to be

unspecified. For example, over {a}∗ we could have a partial P that specifies that ǫ

and a3 are in P , that a2 is not in P , and that all other strings are unspecified. P

could be described using the infinite property vector (1?01????? . . .), or by the finite

property vector (1?01) if we assume that all strings beyond the end of the vector

are unspecified.

The concept of recognition by an NFA can be straightforwardly generalized from

languages to partials—we will say that an NFA recognizes a partial P if it correctly

accepts or rejects each of the strings that P specifies; its behavior on unspecified

strings is unconstrained. An important consequence of this definition is that if

an NFA M is minimal for some partial P , then M must also be minimal for its

language L(M); the reason is that a smaller NFA recognizing L(M) would also be

a smaller NFA recognizing P . We will also see that the theory of inductive bases

from Chapter 3, including Theorem 3.1.7, can be generalized to partials.

4.1 Fundamental Definitions

We formalize partials as mappings from Σ∗ to {True,False,⊥}. The strings mapped

to True are in the partial, the strings mapped to False are not in the partial, and

the strings mapped to ⊥ are unspecified.
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Definition 4.1.1 Bool⊥ is the flat domain {True,False,⊥} partially ordered by ⊑,

so that ⊥ ⊑ True, ⊥ ⊑ False, and for all a ∈ Bool⊥, a ⊑ a. (Note that True and

False are incomparable.)

Definition 4.1.2 We extend the logical operators ∧ (“and”), ∨ (“or”), ¬ (“not”),

and → (“implies”) to Bool⊥ as follows:

• ⊥ ∧ ⊥ = ⊥

• ⊥ ∧ True = True ∧ ⊥ = ⊥

• ⊥ ∧ False = False ∧ ⊥ = False

• ⊥ ∨ ⊥ = ⊥

• ⊥ ∨ True = True ∨ ⊥ = True

• ⊥ ∨ False = False ∨ ⊥ = ⊥

• ¬⊥ = ⊥

• ⊥ → ⊥ = ⊥

• False → ⊥ = True

• True → ⊥ = ⊥

• ⊥ → False = ⊥

• ⊥ → True = True

Note that these definitions are non-strict.

Now we are ready to define partials formally.

Definition 4.1.3 A partial P (over Σ) is a function from Σ∗ to Bool⊥.
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Note that a language L can be viewed as a function from Σ∗ to {True,False};

thus a language is simply a partial that maps no strings to ⊥.

An equivalent, and sometimes convenient, way of defining a partial P is as a pair

(A, R) of disjoint languages, where

A = {w ∈ Σ∗ | P (w) = True}

and

R = {w ∈ Σ∗ | P (w) = False}.

Here we refer to A as the accept set of P and to R as the reject set of P . We also

refer to the set D = A ∪ R as the defined set of P , and to the set U = D as the

undefined set of P . Note that we have A ∪ R ∪ U = Σ∗.

An important special case is when the defined set of a partial is finite:

Definition 4.1.4 We say that a partial is finite when its defined set A∪R is finite.

The main point of using partials is to have a finite representation of regular

languages, a representation that can be extended by incorporating the specification

of new strings. Our plan is to generate automata that recognize finite partials of the

desired language; we keep extending the partials until these automata recognize the

desired language. In fact we will use a restricted kind of finite partial, namely one

in which all the specified strings come lexicographically before all the unspecified

strings; we refer to these as initial partials.

Definition 4.1.5 A finite partial P is an initial partial if there exists k ≥ 0 such

that, for every w ∈ Σ∗, P (w) 6= ⊥ iff indexΣ(w) < k. In this case we say that k is

the width of P .

(Recall that indexΣ(w) is the 0-based index of w within Σ∗.) We sometimes use the

notation P (k) to denote an initial partial of width k.
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An initial partial of width k can be conveniently represented by a (0,1) property

vector of length k. For example, recall that {a, b}∗ is lexicographically ordered as

follows:

ǫ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .

Consider the initial partial of width 10 whose accept set is {a, aa, ab, aaa, aab, aba}

and whose reject set is {ǫ, b, ba, bb}. This partial is represented by a property vector

of length 10 that uses 1’s to indicate strings in the accept set and 0’s to indicate

strings in the reject set: (0101100111).

Now we turn to the fundamentally important extends relation on partials.

Definition 4.1.6 Partial P2 extends partial P1, denoted P1 ⊑ P2 if for all w ∈ Σ∗,

P1(w) ⊑ P2(w).

If P maps some string w to ⊥, then we can form a proper extension P ′ by

mapping w to either True or False, and mapping all other strings to the same value

that P does. More generally, it is easy to see that P1 ⊑ P2 iff P2’s accept and reject

sets are supersets of P1’s accept and reject sets, respectively.

4.2 Simple Properties of Partials and Extension

The extends relation is a partial order:

Theorem 4.2.1 The extends relation ⊑ is reflexive, transitive, and antisymmetric:

• For all P , P ⊑ P .

• For all P1, P2, and P3, if P1 ⊑ P2 and P2 ⊑ P3, then P1 ⊑ P3.

• For all P1 and P2, if P1 ⊑ P2 and P2 ⊑ P1, then P1 = P2.
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Proof. These are direct consequences of the definition of extends and the fact that

Bool⊥ is a partial order.

Next we consider maximal and minimal partials. As mentioned earlier, a lan-

guage L can be viewed as a partial that maps every string to True or False, or as a

partial whose defined set is Σ∗. Notice that every language is maximal with respect

to ⊑, since the only partial that extends a language is the language itself. (Also

notice that a language is never a finite partial or an initial partial. Especially note

that a finite language is not a finite partial, because a finite language has a finite

accept set but an infinite reject set.)

Next we consider minimal partials.

Definition 4.2.2 The bottom partial P⊥ is given by P⊥(w) = ⊥, for all w ∈ Σ∗.

Notice that the bottom partial is the unique initial partial of width 0; it can be

represented with an empty property vector: (). It is immediate that every partial

extends the bottom partial P⊥, so it is the unique minimal partial.

In fact partials form a complete partial order (CPO), because every chain

P0 ⊑ P1 ⊑ P2 ⊑ · · ·

has a least upper bound U given by

U(w) =






True, if, for some i, Pi(w) = True

False, if, for some i, Pi(w) = False

⊥, otherwise.

(The fact that U is well defined follows from the fact that the Pi’s form a chain.)

Now we consider extensions of initial partials. Consider a width-k initial partial

P (k); it maps the first k strings of Σ∗ (ordered lexicographically) to either True or

False, and all other strings of Σ∗ to ⊥. Notice that there are exactly two initial
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partials of width-(k + 1) that extend P (k)—both are identical to P (k) except that

one maps the string whose index is k to True, while the other maps it to False.

With respect to the property vector representation, we can form the representations

of the two width-(k + 1) extensions by simply appending either a 0 or a 1. For

example, the partial (011) can be extended either to (0110) or to (0111). Thus we

see that the extensions of initial partials can be described precisely using an infinite

binary tree.

We next observe that any language L extends a unique initial partial of width

k, for any k ≥ 0:

Definition 4.2.3 Given a language L ⊆ Σ∗, we define Init (k)(L), the width-k initial

partial of L, by

Init (k)(L)(w) =






L(w), if indexΣ(w) < k

⊥, otherwise.

Thus the Init (k) function maps languages into width-k initial partials. It is easy to

see that this gives us an infinite chain of partials, all extended by L:

Init (0)(L) ⊑ Init (1)(L) ⊑ Init (2)(L) ⊑ Init (3)(L) ⊑ · · · ⊑ L

Furthermore, Init (k) can be used to define an equivalence relation on languages:

we define L1 ≡k L2 if Init (k)(L1) = Init (k)(L2). Note that ≡k has 2k equivalence

classes, since there are 2k initial partials of width k. There are infinitely many

regular languages in each of these equivalent classes.

We can also define a notion of separator:

Definition 4.2.4 Given distinct languages L1 and L2 over Σ, separator(L1, L2) is

the least k such that Init (k)(L1) 6= Init (k)(L2).

34



It is easy to see that separator(L1, L2) is the smallest position at which L1 and L2

differ.

It is convenient to extend Init (k) from languages to partials:

Definition 4.2.5 Given a partial P over Σ, we define Init (k)(P ) by

Init (k)(P )(w) =






P (w), if indexΣ(w) < k

⊥, otherwise.

Notice here that Init (k)(P ) need not be an initial partial of width k; indeed it need

not be an initial partial at all. But if P is an initial partial of width at least k, then

Init (k)(P ) will be an initial partial of width k.

We now develop some results relating ⊑ and ⊆.

Definition 4.2.6 Given a partial P over Σ, let L(P ) denote the family of languages

extending P :

L(P ) = {L ⊆ Σ∗ | P ⊑ L}.

Note that extended partials have smaller families: if P1 ⊑ P2, then L(P2) ⊆

L(P1).

Also, L(P ) contains minimum and maximum elements with respect to ⊆:

Definition 4.2.7 Let minL(P ) be defined by

minL(P )(w) =






False, if P (w) = ⊥

P (w), otherwise

and maxL(P ) by

maxL(P )(w) =






True, if P (w) = ⊥

P (w), otherwise
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Then, for every L ∈ L(P ), we have minL(P ) ⊆ L ⊆ maxL(P ).

In fact, L(P ) is an interval:

L(P ) = {L | minL(P ) ⊆ L ⊆ maxL(P )}.

Finally, we note that incomparable partials have disjoint families: if P1 6⊑ P2

and P2 6⊑ P1, then L(P1) ∩ L(P2) = ∅.

4.3 Operations on Partials

Because partials are a generalization of languages, it is natural to want to extend

operations on languages, such as union and intersection, to partials. We define these

extended operations in this section.

There are several properties that our extended operations will satisfy. For ex-

ample, suppose that we generalize a binary operation � to partials. Then we want

the following properties:

• Generalization: if P1 and P2 are languages, then P1�P2 should coincide with� on languages.

• Monotonicity : if P1 ⊑ P ′
1 and P2 ⊑ P ′

2, then P1�P2 ⊑ P ′
1�P ′

2.

• Maximality : � leaves unspecified as little as possible. More precisely, if

P1�P2 � P , then there exist languages L1 and L2 such that P1 ⊑ L1, P2 ⊑ L2,

but P 6⊑ L1�L2.

• Algebraic properties like associativity and commutativity are preserved.

We prove some of these properties for some of our extended operations; the omitted

proofs are routine.

The operations we define are union, intersection, complement, reverse, concate-

nation, and left quotient by a letter. This is not just a theoretical exercise; many of
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these operations are used in our ibas algorithm and are fundamental to its correct-

ness. In our definitions, we sometimes use the functional characterization of partials

and sometimes the set characterization, depending on the clarity of the definition.

Definition 4.3.1 (Union) Given partials P1 and P2, P1 ∪ P2 is given by

(P1 ∪ P2)(w) = P1(w) ∨ P2(w).

Alternatively, we could have used the set characterization. If P1 = (A1, R1) and

P2 = (A2, R2), then P1 ∪ P2 = (A1 ∪ A2, R1 ∩ R2).

Here is the proof that our extended ∪ satisfies monotonicity:

Theorem 4.3.2 If P1 ⊑ P ′
1 and P2 ⊑ P ′

2, then P1 ∪ P2 ⊑ P ′
1 ∪ P ′

2.

Proof. For any w ∈ Σ∗ we have P1(w) ⊑ P ′
1(w) and P2(w) ⊑ P ′

2(w). Hence, because

∨ is monotone, we have (P1∪P2)(w) = P1(w)∨P2(w) ⊑ P ′
1(w)∨P ′

2(w) = (P ′
1∪P ′

2)(w).

It is also easy to see that union satisfies generalization and maximality. Also,

union is associative, justifying more general unions like
⋃

i Pi.

Also, Init (k) commutes with union:

Theorem 4.3.3 Init (k)(P1 ∪ P2) = Init (k)(P1) ∪ Init (k)(P2).

Proof. Given w ∈ Σ∗, we distinguish two cases. If indexΣ(w) < k, then

Init (k)(P1 ∪ P2)(w) = (P1 ∪ P2)(w)

= P1(w) ∨ P2(w)

= Init (k)(P1)(w) ∨ Init (k)(P2)(w)

= (Init (k)(P1) ∪ Init (k)(P2))(w).
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And if indexΣ(w) ≥ k, then

Init (k)(P1 ∪ P2)(w) = ⊥ = (Init (k)(P1) ∪ Init (k)(P2))(w).

Notice that the union of initial partials need not be an initial partial. But the

union of initial partials of the same width k is an initial partial of width k. Notice

that if initial partials of width k are represented as property vectors of length k,

then union is just bitwise logical or. We use this implementation in ibas.

Definition 4.3.4 (Intersection) Given partials P1 and P2, P1 ∩ P2 is given by

(P1 ∩ P2)(w) = P1(w) ∧ P2(w).

On initial partials of width k, this is just bitwise logical and.

Definition 4.3.5 (Complement) Given partial P , P is given by P (w) = ¬(P (w)).

On initial partials, this is just bitwise logical not.

The complement operation satisfies monotonicity: if P ⊑ P ′, then P ⊑ P ′.

Definition 4.3.6 (Reverse) Given partial P , P R is given by P R(w) = P (wR).

Definition 4.3.7 (Concatenation) Given partials P1 and P2, P1P2 is given by

(P1P2)(w) =
∨

x,y s.t. w=xy

(P1(x) ∧ P2(y)).

Finally, we turn to left quotients of partials. This operation turns out to be very

important for ibas, which is based on a generalization of inductive bases to partials.

Definition 4.3.8 (Left Quotient) Given partial P and a ∈ Σ, a\P is defined by

(a\P )(w) = P (aw).
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Alternatively, we can use the set characterization: if P = (A, R), then a\P =

(a\A, a\R). It is easy to check that both forms are equivalent since w ∈ (a\A) iff

aw ∈ A iff P (aw) = True, and similarly for R.

Here we show that our extended left quotient operation satisfies monotonicity:

Theorem 4.3.9 If P ⊑ P ′, then a\P ⊑ a\P ′.

Proof. We have (a\P )(w) = P (aw) ⊑ P ′(aw) = (a\P ′)(w).

We next explore the left quotients of initial partials in more detail.

Theorem 4.3.10 If P is an initial partial, then a\P is an initial partial.

Proof. An initial partial P is a finite partial such that for all x, y ∈ Σ∗, if x is less

than y lexicographically, then P (x) ⊒ P (y).

First, note that a\P is a finite partial, because (a\P )(w) 6= ⊥ iff P (aw) 6=

⊥, which holds for only finitely many choices of aw, and hence for only finitely

many choices of w. Next, suppose that x is less than y lexicographically. Then

(a\P )(x) = P (ax) ⊒ P (ay) = (a\P )(y), since P is an initial partial and ax is less

than ay lexicographically.

Theorem 4.3.11 Let L be a language over Σ. For every a ∈ Σ and k ≥ 0, we have

a\Init (k)(L) � Init (k)(a\L).

Proof. By definition of Init (k) and left quotient, for every w ∈ Σ∗ we have

(a\Init (k)(L))(w) = Init (k)(L)(aw) =






L(aw), if indexΣ(aw) < k

⊥, otherwise.

And we have

Init (k)(a\L))(w) =






L(aw), if indexΣ(w) < k

⊥, otherwise.
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The desired result follows from the fact that indexΣ(w) < indexΣ(aw), which holds

because w comes before aw lexicographically.

Finally, we discuss the computation of the left quotient of an initial partial in

more detail:

Unary Alphabet

A particularly easy case is the left quotient of an initial partial over a unary alphabet:

if P is an initial partial of width k over a unary alphabet, then a\P is an initial

partial of width k − 1, whose property vector is formed by deleting the first bit of

the property vector for P . This can be implemented using a left shift bit operation.

For example, if P = Init (7)({ai | i mod 3 = 0}), whose property vector is

(1001001), then a\P has property vector (001001).

Binary Alphabet

To take the left quotient language of an initial partial over alphabet {a, b}, we need

to take pieces of the partial and put them together into a new property vector.

We first eliminate the ǫ and then take half of the elements of length 1, half of the

elements of length 2, half of the element of length 3, and so on. Assuming that the

width of P is of the form 2k − 1, the resulting quotient partials will be of width

2k−1 − 1. For example,

ǫ a b aa ab ba bb aaa aab aba abb baa bab bba bbb

P 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1

a\P 0 1 1 1 1 1 0

b\P 1 0 1 1 0 0 1
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CHAPTER 5

PARTIALS AND NFAS

In this chapter, we explore the relationship between partials and NFAs. We will

say that an NFA M recognizes a partial P if L(M) is an extension of P . This implies

that lower bounds on the size of NFAs recognizing a partial P are also lower bounds

on the size of NFAs recognizing any language that extends P . We also show that

every regular language L has a canonical partial, which has the property that every

minimal NFA recognizing the canonical partial also recognizes L.

5.1 Recognition of Partials

First, we extend the concept of recognition from languages to partials:

Definition 5.1.1 NFA M recognizes partial P iff P ⊑ L(M).

Under this definition, M must accept all strings in P ’s accept set, must reject all

strings in P ’s reject set, but is unconstrained on strings in P ’s undefined set.

It is important to see that an NFA M recognizes only one language, L(M),

but recognizes many different partials. However, for each k, an NFA M recognizes

exactly one initial partial of width k, namely Init (k)(L(M)).

This leads us to a notion of regular partials.

Definition 5.1.2 A partial is regular iff it is recognized by some NFA.

Equivalently, a partial is regular iff some regular language extends it. Note that all

finite partials (and hence all initial partials) are regular.

5.2 Partials and Minimal NFAs

Here we study the relationship between NFAs and the partials they recognize.
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If an NFA M recognizes a partial P , then all we know is that L(M) is a regular

language that extends P . This does not tell us very much about L(M). But suppose

we know that M is a minimal machine recognizing P , in that no NFA with fewer

states recognizes P . Then we can get more interesting conclusions. First, we show

that a minimal NFA for a partial is minimal for its language:

Theorem 5.2.1 If NFA M is minimal for partial P , then M is also minimal for

its language L(M).

Proof. By contradiction. Since M recognizes P , we have by definition that P ⊑

L(M). So any NFA that recognizes L(M) also recognizes P . Hence if M is not

minimal for L(M), it cannot be minimal for P either.

However the converse is not true; minimal NFAs for languages need not be

minimal for some of the partials they recognize. For example, every NFA recognizes

the bottom partial P⊥, so the minimal machine for P⊥ has 0 states.

The set of all minimal NFAs that recognize an initial partial can be found by

ibas. The set of all the languages recognized by any of these minimal machines is

finite, and many times very small. Indeed, some partials are such that all of their

minimal machines recognize the same language:

Definition 5.2.2 A partial P is unambiguous if all minimal NFAs that recognize

it recognize the same language.

For example, over the unary alphabet {a} we have that Init (2)({a}∗) and Init (2)({ǫ})

are unambiguous partials recognized by 1-state NFAs. (Their property vectors are

(11) and (10), respectively.) On the other hand, Init (1)({a}∗), whose property vector

is (1), is ambiguous; as shown in Figure 5.1 there are two minimal 1-state NFAs

recognizing this partial but recognizing different languages.
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Figure 5.1: Two minimal NFAs for ambiguous partial (1)

Definition 5.2.3 An unambiguous partial P is complete for L if all the minimal

NFAs that recognize P recognize L. The initial partial of minimum width that is

complete for L is called the canonical partial for L, denoted Canon(L).

Of course, it is not obvious that canonical partials necessarily exist. But we

will show later that every regular language has a canonical partial, thereby giving

a one-to-one correspondence between regular languages and canonical partials. The

practical result will be that partials and complete partials can be used to study the

characteristics of of minimal NFAs recognizing a given language.

5.3 Theorems on Partials and NFAs

Theorem 5.3.1 If an NFA does not recognize Init (k)(L), for some k ≥ 0, then it

does not recognizes L.

Proof. Immediate from the fact that Init (k)(L) ⊑ L.

In searches, this theorem allows us to discard any NFA that does not recognize an

initial partial P of the language we want to recognize, since it cannot recognize the

language. (Indeed, such an NFA cannot recognize any extension of P .) Of course,

discarding just one NFA is not very powerful. But, in principle, we could discard
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many NFAs. For if NFA M wrongly accepts w, then all NFAs formed by adding

arrows to M will also wrongly accept w. Similarly, if M wrongly rejects w, then

all NFAs formed by deleting arrows from M will also wrongly reject w. The search

techniques that we develop later use similar ideas to prune the depth-first-search

tree. But our search does not work directly with NFAs, but rather with inductive

bases, which are built incrementally. We develop this approach in Chapter 6.

We can strengthen the above theorem:

Theorem 5.3.2 An NFA recognizes Init (k)(L), for all k, iff it recognizes L.

Proof. The “if” direction was shown above.

For the “only if” direction, consider any string w ∈ Σ∗ and suppose that the index

of w is m. By assumption, M recognizes Init (m+1)(L), but Init (m+1)(L)(w) = L(w),

so M must correctly accept or reject w, depending on L. Since w was arbitrary, we

see that M recognizes L.

These results give us interesting conclusions about minimality. For instance, to

know that NFA M is minimal for its language, we do not even need to know what

L(M) is; it suffices to know that M is minimal for some partial P . Moreover M is

then guaranteed to be minimal for any partial extending P that it recognizes.

Theorem 5.3.3 The size of a minimal machine for a partial P is a lower bound

on the size of a minimal machine for any partial P ′ such that P ⊑ P ′.

Proof. If NFA M recognizes P ′, then (by the transitivity of ⊑) also M recognizes

P . Hence if P cannot be recognized with fewer than n states, then also P ′ cannot

be recognized with fewer than n states.

Hence expanding to wider partials of L will give a nondecreasing sequence of

lower bounds on the size of a minimal NFA recognizing L.
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Theorem 5.3.4 Let ni be the minimum number of states in any NFA that recognizes

Init (i)(L). Then n0 ≤ n1 ≤ n2 ≤ . . ., and the sequence is bounded iff L is regular.

Proof. The “if” direction is obvious. For the “only if” direction, notice that there is

some maximum value n in the sequence. Hence, for all i, Init (i)(L) can be recognized

by some n-state NFA Mi. But there are only finitely many n-state NFAs, so some

Mk must occur on the list infinitely often. Hence Mk must recognizes L.

As we will show, we are able to generate all minimal machines for initial partials

in an efficient way; a machine for Init (k+1)(L) can be made from some machine

for Init (k)(L). Just as partials form a lattice-like structure induced by the extends

relation, we will see in Chapter 6 that when NFAs are represented using partial

inductive bases, they too inherit a lattice-like structure from the extends relation.

5.4 Existence of Canonical Partials

Now we show the key result that every regular language has a canonical partial.

Theorem 5.4.1 For any regular language L over alphabet Σ, there is an integer k

such that all minimal NFAs that recognize Init (k)(L) also recognize L.

Proof. Let s be the minimum number of states required to recognize L. Now consider

the set of all s-state NFAs over Σ that do not recognize L; this set is typically huge,

but it is finite, because there are only finitely many s-state NFAs over Σ. For each

NFA M in this set, note that there is a smallest index at which L(M) differs from

L. Now choose k to be one more than the maximum of these indices. It follows that

none of the NFAs in the set can recognize Init (k)(L). Hence any s-state NFA that

does recognize Init (k)(L) also recognizes L.
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Corollary 5.4.2 Every regular language L has a canonical partial Canon(L).

Proof. We just proved that every regular language has a complete initial partial,

hence there must be one of minimum width. (In fact the k we constructed is mini-

mal.)

Corollary 5.4.3 There is a one-to-one correspondence between regular languages

and canonical partials.

Proof. We just showed that each regular language has a canonical partial. And two

distinct languages cannot have the same canonical partial.

5.5 Bounds on the Width of the Canonical Partial

An important question is whether there are good bounds on the width of the canon-

ical partial for a regular language L. One might hope to achieve bounds in terms of

the size of the minimal NFA or DFA recognizing L.

Here are a couple of rather negative results:

Theorem 5.5.1 There can be no polynomial bound on the width of the canonical

partial for L in terms of the size of a minimal NFA recognizing L.

Proof. If p1, p2, . . . , pn are distinct primes, n ≥ 1, then the canonical partial for the

language

L = {ai | i mod p1p2 · · · pn 6= 0}

has width greater than p1p2 · · · pn. (The reason is that if k ≤ p1p2 · · · pn, then

Init (k)(L) = Init (k)(aa∗).) But L can be recognized by an NFA with p1+p2+ · · ·+pn

states. And p1p2 · · · pn is exponentially bigger than p1 + p2 + · · ·+ pn.
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Theorem 5.5.2 The width of the canonical partial for L may need to be twice the

size of the minimal DFA recognizing L.

Proof. For m ≥ 1, the canonical partial for the singleton language {am} has width

greater than 2m + 1. (The reason is that if k ≤ 2m + 1, then Init (k)({am}) =

Init (k)((am)+).) But the language can be recognized by a DFA with m + 1 states.
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CHAPTER 6

PARTIAL INDUCTIVE BASES

In Chapter 5, we showed that if we want to find all the minimal NFAs recognizing

a language L, it is useful to search for the minimal NFAs recognizing partials of

L. Specifically, we may choose a k ≥ 0 and search for minimal NFAs recognizing

the partial Init (k)(L). Such NFAs may not recognize L, of course, but as we saw

in Chapter 5 this approach is useful in several ways. First, if n is the minimum

number of states needed to recognize Init (k)(L), then n is a lower bound on the

number of states needed to recognize L. This follows that the fact that any NFA

that recognizes L also recognizes Init (k)(L), for every k. Second, if k is large enough,

then any minimal NFA recognizing Init (k)(L) must in fact recognize L. (However,

it does not seem easy to know how large k must be.) Finally, even if k is not large

enough, we may find that the set of all minimal NFAs recognizing Init (k)(L) is small

enough that we can feasibly check each such NFA to see whether it accepts L.

In this chapter, we develop techniques for finding NFAs recognizing a given

partial. The idea is to generalize inductive bases to partial inductive bases while

preserving Theorem 3.1.7. This will allow us to find NFAs recognizing a partial P

by finding partial inductive bases generating P .

6.1 Partial Bases and Partial Inductive Bases

We first generalize from bases to partial bases:

Definition 6.1.1 A partial basis B is a finite multiset of partials over some alphabet

Σ. We say that a partial basis B generates a partial P if there is some subcollection

of B whose union extends P .
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Notice that this definition does not require that the union of the subcollection

equals P , but only that it extends P . (This will be important when we generalize

to partial inductive bases, because a\P is less wide than P .) Also notice that we

have defined a partial basis to be a multiset , rather than a set.

We will usually work with a restricted kind of partial basis:

Definition 6.1.2 We say that B is a partial basis of width k if each element of B

is an initial partial of width k.

A natural way to create a partial basis of width k is by applying Init (k) to each

language in a basis. More generally, we can define Init (k)(B) for any partial basis:

Definition 6.1.3 Given a partial basis B, we define Init (k)(B) to be the multiset

{Init (k)(P ) | P ∈ B}.

Of course, if B is a partial basis, then in general Init (k)(B) need not be a partial

basis of width k. But it will be whenever the elements of B are wide enough.

Notice that even if the elements of B are distinct, the elements of Init (k)(B) need

not be, since initial partials of distinct partials could be equal. For example, for any

P1, P2, and P3, Init (0)(B) = {P⊥, P⊥, P⊥}. This is the main reason why we have

chosen to define partial bases to be multisets.

Also notice that if the elements of a basis B are in nondecreasing order lexico-

graphically, then the same will be true of the elements of Init (k)(B).

It is natural to generalize the notion of extension to partial bases:

Definition 6.1.4 If B and B′ are partial bases with the same number of elements,

then we say that B′ extends B, denoted B ⊑ B′, if B and B′ can be ordered as

B = {P1, . . . , Pn} and B′ = {P ′
1, . . . , P

′
n} such that Pi ⊑ P ′

i , for all i.

For example, we have for any basis B that Init (k)(B) ⊑ Init (l)(B), if k ≤ l.
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The definition of “extends” on partial bases satisfies two key properties: it pre-

serves the “generates” relation and (with some restrictions) it preserves the “does

not generate” relation as well:

Theorem 6.1.5 If partial basis B generates partial P , and B ⊑ B′, then B′ also

generates P .

Proof. By definition, there is a subcollection of B whose union U extends P . Each

element of that subcollection is extended by an element of B′. Hence the union of

those elements of B′ extends U , and therefore extends P , by the transitivity of ⊒.

Theorem 6.1.6 Let B be a partial basis of width k and let P be an initial partial

of width less than or equal to k. If B does not generate P , then no extension of B

generates any extension of P .

Proof. Suppose to the contrary that B ⊑ B′, P ⊑ P ′, and B′ generates P ′. Then

there is a subcollection P ′
1, P ′

2, . . . , P ′
n of B′ whose union U ′ extends P ′. Because

B ⊑ B′, we know that each P ′
i extends some element of B. But this implies that

each Init (k)(P ′
i ) is an element of B, since B has width k. And the union of these

elements is Init (k)(U ′), which must extend P , giving a contradiction.

Theorem 6.1.6 is useful in allowing us to search incrementally for partial bases.

For if we are searching for partial bases generating an initial partial P , and we find

that a partial basis B of width i does not generate Init (i)(P ), then we know that B

cannot possibly be extended to a partial basis generating P .
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ǫ a a2 a3 a4 a5 a6 a7

1 0 0 1 1 0 1 1 1
2 0 1 0 0 1 1 0 1
3 0 1 1 0 1 1 1 1
4 1 0 0 1 1 0 1 1

Figure 6.1: A matrix representation of a partial inductive basis

Now we are ready to generalize from inductive bases to partial inductive bases:

Definition 6.1.7 A partial basis B over alphabet Σ is a partial inductive basis if

for each B ∈ B and a ∈ Σ, B generates a\B.

If a partial basis B (inductive or not) is of width k, then B is conveniently

represented as a (0, 1) matrix of size n× k, each row of which is the property vector

of one of the partials. For example, over the unary alphabet {a}, the 4 × 8 matrix

shown in Figure 6.1 represents a 4-element partial inductive basis of width 8. To see

that this is a partial inductive basis, note for instance that the left quotient of the

third row with a is the width-7 initial partial (1101111); this is generated by taking

the union of the second and fourth rows:

(01001101) ∪ (10011011) = (11011111).

Notice that the union properly extends the left quotient; this is why we defined

“generates” as we did in Definition 6.1.1.

Next we show that any inductive basis gives rise to partial inductive bases of

every width:

Theorem 6.1.8 If B is an inductive basis, then Init (k)(B) is a partial inductive

basis, for every k ≥ 0.

Proof. Let B ∈ B. Since B is an inductive basis, we know that B generates a\B for

every a. And we must show that Init (k)(B) generates a\Init (k)(B). Suppose that
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B1, B2, . . . , Bn is the subcollection of B whose union is a\B. So we have

B1 ∪ B2 ∪ · · · ∪ Bn = a\B

Now we have

Init (k)(B1) ∪ Init (k)(B2) ∪ · · · ∪ Init (k)(Bn) = Init (k)(B1 ∪ B2 ∪ · · · ∪ Bn)

= Init (k)(a\B)

⊒ a\Init (k)(B)

where the first and last steps follow from Theorems 4.3.3 and 4.3.11, respectively.

6.2 Partial Inductive Bases and NFAs

In this section we show that the results from Chapter 3 can be generalized from

inductive bases to partial inductive bases.

First, we observe that any NFA gives rise to partial inductive bases of every

width:

Theorem 6.2.1 If M is an NFA, then for every k ≥ 0, Init (k)(Prophecies(M)) is

a partial inductive basis.

Proof. By Theorem 3.1.5, Prophecies(M) is an inductive basis. So by Theorem 6.1.8,

Init (k)(Prophecies(M)) is a partial inductive basis.

Conversely, we can generalize Theorem 3.1.7 by showing that any partial induc-

tive basis B gives rise to an NFA whose prophecies extend B.

Definition 6.2.2 We say that NFA M realizes partial inductive basis B if B ⊑

Prophecies(M).
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Theorem 6.2.3 For every partial inductive basis B over Σ, there exists an NFA M

that realizes B.

Proof. Given partial inductive basis B over alphabet Σ, let the elements of B be

enumerated in some order:

B = {P1, P2, . . . , Pn}

where n ≥ 0. (Note that the Pi’s need not be distinct.)

Let Nn denote the set of natural numbers from 1 to n. Define NFA M =

(Nn , Σ, δ, I, F ), where

• δ(i, a) is any subset of Nn such that
⋃

j∈δ(i,a) Pj ⊒ a\Pi,

• I is arbitrary, and

• F = {i ∈ Nn | Pi(ǫ) = True}.

The fact that B is a partial inductive basis exactly ensures that δ can be constructed.

Now we show that B ⊑ Prophecies(M) by proving that for each i, Pi is extended

by Proph(i):

Lemma 6.2.4 For all i ∈ Nn , Pi ⊑ Proph(i).

Proof. We must show that for every w ∈ Σ∗ and every i ∈ Nn , Pi(w) ⊑

Proph(i)(w). We do this by induction on the length of w.

Basis:

If Pi(ǫ) = True, then Pi ∈ F , so ǫ ∈ Proph(i), so Proph(i)(ǫ) = True. If

Pi(ǫ) = False or Pi(ǫ) = ⊥, then i 6∈ F , so ǫ 6∈ Proph(i), so Proph(i)(ǫ) =

False.

Induction:

Let k ≥ 0. The induction hypothesis is that for all strings u such that
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Figure 6.2: An NFA that realizes a partial inductive basis

|u| ≤ k and all j ∈ Nn , Pj(u) ⊑ Proph(j)(u). Now consider the string

au, where a ∈ Σ.

If Pi(au) = True then, by the definition of left quotient, we have that

(a\Pi)(u) = True. So, by the definition of δ, we have that there exists

j ∈ δ(i, a) such that Pj(u) = True. By the induction hypothesis, this

gives Proph(j)(u) = True. Hence u ∈ Proph(j) and (since j ∈ δ(i, a))

therefore au ∈ Proph(i), which implies that Proph(i)(au) = True.

If Pi(au) = False, then (a\Pi)(u) = False. Hence, by the definition of δ,

we have (
⋃

j∈δ(i,a) Pj)(u) = False. Hence for every j ∈ δ(i, a), we have

Pj(u) = False, which (by the induction hypothesis) gives u 6∈ Proph(j).

Hence au 6∈ Proph(i), which gives Proph(i)(au) = False.

Finally, if Pi(au) = ⊥, then trivially Pi(au) ⊑ Proph(i)(au).

As an illustration of this theorem, Figure 6.2 shows an NFA realizing the partial

inductive basis from Figure 6.1. Notice that the NFA is shown with no initial states.

But because I is arbitrary in the construction, any or all of its states can freely be

made initial.
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Now we turn our attention to the main goal of this chapter: to develop techniques

for finding NFAs recognizing a given partial. So far we have shown that NFAs are,

in some sense, equivalent to partial inductive bases. We now show that if P is an

initial partial, then NFAs recognizing P are, in some sense, equivalent to partial

inductive bases generating P . This equivalence is made precise in the following two

theorems.

Theorem 6.2.5 Let P be an initial partial of width k ≥ 0. If NFA M recognizes

P , then Init (k)(Prophecies(M)) is a partial inductive basis that generates P .

Proof. By Theorem 6.2.1, Init (k)(Prophecies(M)) is a partial inductive basis. And

if P is an initial partial of width k and NFA M = (Q, Σ, δ, I, F ) recognizes P , then

P = Init (k)(L(M))

= Init (k)(
⋃

q∈I

Proph(q))

=
⋃

q∈I

Init (k)(Proph(q))

Theorem 6.2.6 If B is an n-element partial inductive basis that generates a partial

P , then there exists an n-state NFA M that recognizes P .

Proof. If B = {P1, P2, . . . , Pn}, then by Theorem 6.2.3, there exists an NFA M with

state set Nn such that for all i, Pi ⊑ Proph(i). Since B generates P , there is a

subcollection of B whose union extends P . Choose I to be the set of indices of that

subcollection. Then we have

L(M) =
⋃

i∈I

Proph(i) ⊒
⋃

i∈I

Pi ⊒ P.

Hence the problem of finding NFAs recognizing an initial partial P is essentially

equivalent to the problem of finding partial inductive bases generating P .
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6.3 Extending Partial Inductive Bases

Let P be an initial partial of width k ≥ 0. If we wish to find partial inductive bases

generating P , it is natural to try to proceed iteratively. For note that if B is a partial

inductive basis of width k that generates P , then for any i with 0 ≤ i < k we have

that Init (i)(B) is a partial inductive basis of width i that generates Init (i)(P ). Thus

any of the bases that we seek can be built by “growing” narrower ones.

This leads us to consider the problem of widening a partial inductive basis of

width i to one of width i + 1. We have the following corollary that says that this

can always be done:

Corollary 6.3.1 Let B be a partial inductive basis of width i, for some i ≥ 0. There

exists a partial inductive basis B′ of width i + 1 such that B ⊑ B′.

Proof. If B is a partial inductive basis of width i, then by Theorem 6.2.3 there exists

an NFA M such that B ⊑ Prophecies(M). So Init (i+1)(Prophecies(M)) is a partial

inductive basis of width i + 1, by Theorem 6.1.8. And this basis is easily seen to

extend B.

When B is a partial inductive basis of size n and width i, recall that B can be

represented as an n × i matrix. We can then understand “widening” B concretely

as a matter of adding a new column to this matrix. The question is whether we can

do this efficiently, given that there are 2n possible columns.

Must we try all 2n possibilities for the new column? This was what we did in

our first version of the ibas program (described in [Smi06]), but fortunately we can

do much better. The key idea is that we can consider the extension of each element

of B independently of how we extend the other elements. Since we know that some

new column is possible, this means that for each position in the new column there

are exactly three possibilities: a fixed 0, a fixed 1, or a free choice.
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Let’s look at an example before developing this idea formally. Consider the

following partial inductive basis over a 1-symbol alphabet:

a 0010

b 0011

c 0100

d 1001

When we try to widen to a partial inductive basis of width 5, we must be sure that

the widened basis can generate the left quotient of each newly-widened row. But

notice that these left quotients have width 4, which means that the new column is

irrelevant in determining whether or not they can be generated. For example, if

we extend row a with 0, its left quotient will be 0100; this is generated by row c,

regardless of how we extend row c. If we extend row a with 1, its left quotient will

be 0101, which cannot be generated, regardless of how the other rows are extended.

Thus we see that to widen this inductive basis, we must extend row a with 0. Now

consider row b. If we extend it with 0, its left quotient will be 0110, which is

generated as a ∪ c. And if we extend it with 1, its left quotient will be 0111, which

is generated as b∪ c. Hence we can extend row b with either 0 or 1, and we will still

have a partial inductive basis. The reader can similarly verify that row c must be

extended with 1, and row d can be extended with either 0 or 1. We can therefore

exactly characterize the possible width-5 extensions of our partial inductive basis as

follows:

a 00100

b 0011?

c 01001

d 1001?
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The two “?”s can be independently replaced by either 0 or 1, giving a total of 4

width-5 extensions.

The general situation is that we have a partial inductive basis B of width i, over

some alphabet, which we are trying to extend to a partial inductive basis B′ of width

i + 1. For each P ∈ B, we want to determine how P can be extended from width

i to width i + 1 while preserving the property that each of the left quotients can

be generated. Now the key is to notice that, by Theorem 4.3.11, the left quotient

of an initial partial of width i + 1 has width at most i. This means that B′ will be

able to generate the left quotient of the extension of P iff B can. Hence, as in the

example above, we can determine for each P ∈ B one of three possibilities: P must

be extended with 0, P must be extended with 1, or P can be extended freely with

either 0 or 1.

We now make some remarks about implementing these calculations efficiently.

There are two main concerns: first, how to compute the left quotients of the ex-

tensions; second, how to check whether these can be generated. We can represent

our partial inductive basis as an array of bit-vectors. As discussed in Section 4.3,

computing the left quotients is then easy in the case of a unary alphabet, since left

quotient is then just a left shift. In the case of a non-unary alphabet, computing the

left quotients is harder—in that case it seems better to store the left quotients of P

so that the left quotients of the extension P ′ can be computed incrementally from

them. Turning to the second concern, we can efficiently check whether B generates

a left quotient using bit operations. First, we can see whether an element P of B is

useful by bitwise ANDing it with the bitwise negation of the left quotient; the result

is 0 iff P is useful. Then we just union together all the useful elements of B, to see

whether the quotient is generated.
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Many other optimizations are possible. For example, the set of elements of B

that are useful in making a left quotient can only shrink as we widen the partial

inductive basis. It is therefore beneficial to remember and update this set of useful

elements as we iteratively widen B.

Also, as will be discussed in the next chapter, the iterative search for partial

inductive bases involves both widening and narrowing. It is therefore necessary to

maintain a stack-like representation of our knowledge of the 0’s, 1’s, and ?’s in each

new column.

Unique Extendibility

Sometimes it turns out that a partial inductive basis can be extended to an inductive

basis in a unique way. Here is an example, over unary alphabet {a}:

1 10000

2 11000

3 11100

4 11110

Because the last column contains only 0’s, we cannot extend any of the rows with 1

without breaking the inductive basis condition. Hence the next column must contain

only 0’s. The argument then repeats, leading to the result that all subsequent

columns must contain only 0’s. One of the NFAs that realizes this basis is shown in

Figure 6.3.

One might wonder whether a partial inductive basis is uniquely extendible when-

ever its final column has no “?”s. This turns out not to be true. In fact, experiments

show that there can be several consecutive columns with no “?”s followed by a col-

umn with a “?” in it.
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4 3 2 1
a aa

Figure 6.3: A minimal NFA for {ǫ, a, aa, aaa}

Generating the Target Partial

As we widen our partial inductive basis, we are not only concerned with keeping it

inductive; we also want it to be able to generate the target partial Init (k)(L). We

deal with this concern iteratively. During our search, we have a partial inductive

basis B of width i, where 0 ≤ i < k, which generates Init (i)(L). When we try to

widen B to width i + 1, we also widen the target partial to Init (i+1)(L) and see

whether the widened B can generate the widened target.

If not, then no extension of B can generate the desired language L, and B need

not be considered further. We then proceed to look at the “next” partial inductive

basis by the use of the increment operation, which advances to the next possible

the last column of B.

Incrementing a Partial Inductive Basis

Sometime a partial inductive basis can be extended in a unique way, but many times

it can be extended in more than one way; there are potentially 2n extensions of a

partial inductive basis. In order to consider all feasible extensions we must do it

in some order. The obvious choice is to increment the binary numerical value of

the extended column; this process may be interrupted by a further extension and

resumed later on.

But many of the 2n potential extensions are not partial inductive bases, since

fixed 0’s and fixed 1’s cannot be changed. Hence the actual number of extensions is
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2q, where q is the number of “?”s in the column. In our implementation, we use a

template to indicate which elements are fixed and cannot be incremented.

The increment operation preserves the inductive property if a template for fixed

values is used, but we run the risk of breaking the lexicographical order and therefore

generating the same partial inductive basis more than once in different permutations.

(Note that this can arise only if the width-i basis has repeated elements, which is rare

unless i is less than 10.) If the next partial inductive basis is not in lexicographical

order, we skip to the next; this guaranties that the same partial inductive basis is

not considered more than once.

Shrinking a Partial Inductive Basis

Once we have exhausted all possibilities for the new column, we need to see whether

there are any more possibilities for the previous column. We decrease the width of

the basis and reinstate the previous fixed values template (they are kept in a stack)

then continue the increment operation at the place it was left off. When we shrink

back to width 0, we know that all partial inductive bases of that size have been

considered. If any were found that generate the target partial, then we terminate

the search, since we only want minimal partial inductive bases. If none were found,

then increment the number of elements in the basis and begin the search again.

Now that we have developed the theory of partial inductive bases, we are ready

to present the ibas algorithm. We do this in the next chapter.
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CHAPTER 7

THE IBAS ALGORITHM

In this chapter, we use the theory developed in the last several chapters as the

foundation of our algorithm for finding all minimal NFAs recognizing a given initial

partial P of width k.

Our approach is to find minimal partial inductive bases generating P iteratively,

by widening the partial inductive bases generating Init (i)(P ), for 0 ≤ i < k.

The actual implementation of ibas is written in C; for maximum efficiency we

use low-level operations such as bitwise “or” (|), bitwise “and” (&), and left shift

(<<). In this chapter we describe the algorithm using object-oriented terminology

and recursion in the hopes of making it more understandable.

7.1 ibas Algorithm Description

The algorithm takes as input a 0, 1 string of length k, which represents the initial

partial P . The input is stored in an object of the class Partial, which holds an

array of 0, 1 values.

The class Partial is used to represent the input partial P , and also to represent

the elements of the partial inductive basis being constructed.

The class Basis holds an array of Partials. We can view a basis as a 0, 1 matrix

with size rows and width columns or as a collection of Partials, all with the same

width. Once an object of the class is created, it never changes its size and it also

never changes its width.

We are looking for partial inductive bases of minimum size. We have an outer

loop (main) that increments the size and creates a basis for the inner loop (DFS)

to work with, until at least one basis of width k is found.
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The inner loop does not need to check that the partial basis is inductive since

the algorithm never generates a basis that is not inductive. It only has to test two

conditions:

1. The order of the rows of the basis is non-decreasing.

2. The basis generates the first width bits of the input.

If at least one of these conditions is not satisfied—note that the efficiency of the algo-

rithm depends on which condition we check first—the inner loop calls increment()

on the basis.

increment() is the only method that changes the attributes of the basis. The

increment method will use a filter to generate the “next” inductive basis; the

filter records which bits are fixed and which are free choices. When all possibilities

are exhausted, increment() will raise an overflow flag that will terminate the loop.

On the other hand if both conditions are satisfied, the inner loop will do a

recursive call with a new basis that is an extension of its basis. The method extends

returns a new wider basis with a correct filter.

Thus our search invariant is as follows:

1. The rows form a partial inductive basis possibly containing duplicates; all the

rows have the same width width.

2. The rows are nondecreasing lexicographically.

3. The rows generate Init (width)(P ).

Note that this approach cannot miss any of the desired bases:

1. The partial basis is inductive. By Theorem 6.1.8, if a basis is not inductive

then no extension is inductive.
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2. The rows are nondecreasing lexicographically. If a basis is not in nondecreasing

order, then no extension is nondecreasing.

3. The basis generates Init (width)(P ). By Theorem 6.1.6, if a basis does not

generate a partial, then no extension will generate the partial.

The analysis of the invariant implies that all relevant bases are considered, proving

the correctness of the algorithm and that no basis is considered more than once,

proving optimality. Note however that we must allow duplicates among the rows.

We only need to reason that all bases are minimal and this is proved by the fact

that the size of the basis is increased only when all bases of the previous size have

been tried and rejected.

Notice that eventually we will overflow when we increment the very first column.

At that point we will have found all partial inductive bases of size size. If any were

found, then we are done. Otherwise we increment size and start again.

So we can describe our algorithm as a sequence of depth first searches on trees

of increasing branching, until some solution leaves are reached. The outer loop of

the algorithm keeps increasing size, starting with 0, until solutions are found by

the depth-first search. As a result, all the partial inductive bases that we output

are minimal, and we are guaranteed to find all of them.

Notice, incidentally, that we will never output a partial inductive basis with

duplicate elements. Such a basis can always be made smaller by eliminating the

duplicates, which means that the search would have succeeded already with a smaller

value of size. In terms of NFAs, as noted in Chapter 3, minimal NFAs do not have

repeated prophecies; of course the converse is not true, as there are many non-

minimal NFAs with no repeated prophecies.

What is the significance of the partial inductive bases that we find? Recalling

the results of Chapters 5 and 6, we know that these partial inductive bases are
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essentially equivalent to the set of all minimal NFAs recognizing some extension

of the input partial P . The size of these bases is thus a lower bound on the size

of the minimal NFAs recognizing any extension of P . Even more, if P is unam-

biguous (Definition 5.2.2) then all NFAs that realize any of the bases produced by

the algorithm recognize the same language. And if P is the canonical partial of L

(Definition 5.2.3) then all the NFAs recognize L.

7.2 Classes of Ibas

An object of class Basis holds an array of size objects of class Partial, each of

equal width. We now describe the classes of ibas in more detail:

1. Class ibas

Attributes:

Partial language holds a partial of the language to be recognized; Integer

basesFound counts the inductive bases that generate the partial language.

Methods:

main(String[]) creates objects of class Basis in increasing order of size,

starting at 0, and calls recursive method DFS(Basis) until a solution is found.

DFS(Basis) checks that the invariant is satisfied; if so, it makes a recursive call

with an extended basis; if not, it increments the last column. When increment

overflows, it returns the number of bases found.

2. Class Basis

Attributes:

Integer constants width and size, Boolean overflow, Array [size] of Partial,

Array [width] of bit.
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Methods:

increment() will generate the next node in the DFS tree by incrementing the

last column; if all combinations have already been generated, it sets overflow

to true. This is the only method that changes attributes of the class. It

uses the array filter to avoid generating non-inductive bases. It proceeds by

looking at the first non-filtered bit; if is 0, it will change it to 1 and return; if

it is 1, it will change it to 0 and continue to the next bit.

extend() returns a new Basis of width width+1 and generates a new filter.

nondecreasing() and makeLanguage() check that the invariant still holds.

3. Class Partial

Holds a 0, 1 array and contains all the functionalities of Partial that are used

by the algorithm.

We present pseudo-Java code for ibas. Several implementations of this algorithm

have been written in C; we do not here describe the use of low-level bit operations

and other techniques that improve running time, as our goal here is to present a

readable description of the algorithm without considering performance issues.

The code presented next works for unary and binary implementations, the only

method that must be changed is extend. Our algorithm does not deal directly with

strings in Σ∗, but indirectly by considering only their lexicographical positions.

7.3 Ibas Algorithm

public class ibas {

private Language language = new Language(args[0]);

int basesFound = 0;
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public void main(String[] args) {

Basis basis = new Basis(0); // new basis of size 0, width 0

while (basesFound == 0) {

basesFound = DFS(basis);

if (basesFound == 0)

basis = new Basis(basis.size+1);

}

print(basesFound);

}

int DFS(Basis basis) {

int basesFound = 0;

while (! basis.overflow) {

if (basis.nondecreasing() && basis.makeLanguage(language)) {

// All conditions are met

if (basis.width() == language.width()) {

basesFound++;

basis.print();

}

else basesFound += DFS(basis.extend());

}

// Next basis of the same width

basis.increment();

}

return basesFound;

}

}
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7.4 Some Methods of Class Basis

We now proceed to give a less formal discussion of the methods of the class Basis.

The nondecreasing method is just a comparison of the elements of the basis.

In our C language implementation each element of the basis is just an integer, so

the ordering of the basis reduces to a simple integer comparison.

The makeLanguage method is also easy to implement; first cut the partial of

language to the same width as basis and then select all the elements that are

subsets of the language, take their union, and compare with the language.

The increment method is little more complex. The first time it is called, all the

free choices are set to 0 and all the fixed values are set; we then look at the first free

choice and set it to 1, and are done; the second time we look at the first free choice

and since is a 1 we set it to 0 and look for the second free choice. In general we

look through the free choices in order; if we find a 1 then we set it to 0 and go on

to the next; if we find a 0 we just set it to 1 and return. When all the free choices

are back to 0 we then set overflow to true.

The extend method is implemented differently for unary and binary alphabets.

This method is actually a constructor—it uses a partial inductive basis to build a

wider partial inductive basis. It needs to generate the next column of the basis in a

way that preserves inductivity; this means that it needs to know the quotient partial

of each of the rows of the new basis. Each row will be first extended with a 0. We

check whether the quotient partial is the union of some rows; if not, we know that

this value is a fixed 1 and we set it; we also mark it fixed in the filter so that

increment will know not to change it. If so, (the row could be extended by 0) we

then try to extend it by 1; if that fails than the row is a fixed 0, so we set it and

mark it fixed in the filter. Finally, if it can be extended with both 0 and 1, we
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then know that it is a free choice; we set as 0 and we do not mark it as fixed in the

filter so that increment is free to change it.

The only difficult part is to calculate the quotient partial for binary languages.

We note that in the lexicographical order we first have ǫ, which does not begins

with a or b, and then we have 1 string that begins with a and 1 string that begins

with b, and then we have 2 with a and 2 with b, and then 4 and 4, and then 8

and 8, and so on. We use a counter twice and then we double the upper bound; in

this way we always know whether the string begins with a or with b. We keep two

auxiliary matrices; one for the left quotient a\P and another for b\P , extending

both matrices as we extend the basis and setting the filter; once the new Basis is

built with all its attributes (basis, aQuotient, bQuotient, and filter) we return

it to be used by DFS.
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CHAPTER 8

EXPERIMENTAL RESULTS WITH IBAS

In this chapter, we present some experimental results to show the effectiveness

of searching for minimal NFAs recognizing a given partial by searching for minimal

partial inductive bases generating the partial.

8.1 Limits on Exhaustive Search

In this section, we explore what we are able to achieve through exhaustive search

for unary NFAs.

The first question is how many n-state NFAs need to be enumerated in an ex-

haustive search. Given a unary alphabet, notice that we have for each state a total

of n + 2 independent yes/no choices. (Is it initial? Is it final? Does it have an

arrow to q1? To q2? . . .To qn? ) Hence there are 2n+2 possibilities for each state.

This implies that it suffices to enumerate at most (2n+2)n = 2n2+2n NFAs. But of

course this number is too large, since many of those NFAs will be isomorphic to one

another.

In fact, determining the number of non-isomorphic n-state NFAs is a long-

standing open problem. However, the answer to that question is of only incidental

interest to us here, because what we really want is a way of efficiently enumerating

the non-isomorphic NFAs. Since we do not know how to do that, we instead use an

enumeration that tries to generate as few isomorphic NFAs as possible.

The best general enumeration that we have found works by observing that three

of each state’s yes/no choices are “local” in the sense that they do not require

distinguishing among the states. The local choices for a state are: Is it initial?,

Is it final?, and Does it have a self loop?. (In contrast, the choice of whether the

state has an arrow to some state q is not local, because it requires distinguishing
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state q.) The combination of these three choices leads to 23 = 8 kinds of states, and

we can assume without loss of generality that the NFA’s states are ordered into 8

consecutive groups:

1. initial, final, self loop

2. initial, final, no self loop

3. initial, nonfinal, self loop

4. initial, nonfinal, no self loop

5. noninitial, final, self loop

6. noninitial, final, no self loop

7. noninitial, nonfinal, self loop

8. noninitial, nonfinal, no self loop

In how many ways can this “local” data be chosen? We notice that our situation can

be viewed as an “Occupancy Problem” as discussed in Section II.5 of Feller [Fel68].

We want to know how in many ways we can place n indistinguishable “balls” (the

states) into 8 “bins” (the possibilities for each state).

In general, the number of ways of putting n indistinguishable balls into k bins

turns out to be the binomial coefficient



k + n − 1

n


 .

To see this, note that each such placement can be represented as a string of n

stars (representing the balls) with k − 1 bars inserted (representing the boundaries

between the bins). For example, with n = 5 and k = 4, the string

∗ ∗ | ∗ || ∗ ∗
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represents the case when we put 2 balls in the first bin, 1 ball in the second bin,

0 balls in the third bin, and 2 balls in the fourth bin. If the symbols were all

distinguishable, then the number of such strings would be (n + k − 1)!. But since

the n stars and k − 1 bars are indistinguishable, then the total number of strings is

(n + k − 1)!

n!(k − 1)!
,

which is equal to the above binomial coefficient.

Applying this result, we see that the number of ways of choosing the “local”

data of an n-state unary NFAs is




n + 7

n


 ,

as compared with 23n, which is what pure brute force would give.

Having chosen the “local” data for the NFA, we then must add the arrows between

states; we cannot see a way to avoid doing this in all possible ways. So, since each

state may or may not have an arrow to each of the other n−1 states, we get 2n(n−1)

ways of drawing the arrows.

In total, the number of n-state unary NFAs generated is




n + 7

n


 2n(n−1).

The value of this formula for n up to 10 is given in Figure 8.1. We remark that

we have been able to compute the number of non-isomorphic NFAs of size 0, 1, 2,

and 3; the number is 1, 8, 138, and 5,728, respectively. Hence our enumeration is

quite close to optimal on these tiny cases; but it must get farther and farther from

optimal as the number of states increases.
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n NFAs enumerated
0 1
1 8
2 144
3 7,680
4 1,351,680
5 830,472,192
6 1,842,540,969,984
7 15,094,095,626,108,928
8 463,690,617,634,066,268,160
9 54,023,872,564,028,741,244,682,240

10 24,075,457,884,022,075,586,238,167,908,352

Figure 8.1: Number of n-state unary NFAs under our best enumeration

We experimented with carefully optimized C programs to search for 5-state and

6-state NFAs recognizing the (more or less arbitrarily chosen) partial

(01111111101111111101)

which corresponds to the set of strings of a’s whose length is not a multiple of

9. Running on a 2.66 GHz Pentium 4 processor, we were able to complete the

search for 5-state NFAs in 7.4 seconds, and the search for 6-state NFAs in 4.2 hours.

Referring to Figure 8.1, the 5-state search space has size 830,472,192; hence we

were able to check 112 million NFAs per second. The 6-state search space has size

1,842,540,969,984; hence that search checked 122 million NFAs per second.

Extrapolating to the case of 7-state NFAs, if we assume that we could check 122

million NFAs per second, then the search would require about 4 years. Under the

same assumptions, the search for NFAs with 8, 9, and 10 states would respectively

take 120,000 years, 14 billion years, and 6 quadrillion years.

We remark that we can actually reduce these times by a factor of 2 or so by

choosing the initial and final states prior to choosing the arrows. For if the partial

we are trying to recognize contains ǫ, then some initial state must be final. Hence if
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I and F are disjoint, then the NFA cannot possibly recognize the partial, and we can

discard it before ever choosing the arrows. Similarly, if the partial does not contain

ǫ, then we can immediately discard all NFAs in which I and F are not disjoint.

8.2 Results with ibas on Unary Languages

In this section, we report on some experimental results obtained with ibas.c, a

carefully optimized C implementation of the unary version of the ibas algorithm.

The implementation limits the width of all partials to at most 31; as a result,

operations like union and left quotient can be done in just one or two machine

instructions. Our experiments were run on a 2.66 GHz Pentium 4 processor. Note

that memory should not be an issue at all, as our implementation maintains only a

few thousand bytes of data.

Suppose we wish to find the minimal NFAs recognizing the language a(a4)∗ ∪

(a6)∗. To do this, we run ibas with a suitable partial:

ibas 110001100100110001100100

In about 37 minutes, the run terminates, producing the output shown in Figure 8.2.

Because ibas determined that the smallest partial inductive basis generating partial

(110001100100110001100100) has size 10, we know that the minimal NFAs recogniz-

ing a(a4)∗∪(a6)∗ must have at least 10 states. In addition, ibas prints a description

of the NFAs realizing each partial inductive basis that it finds. In the descrip-

tion, the notation “--> *8 | 0” indicates that state 8 is both initial and final, and

δ(8, a) = {0}. Notice that the NFA in Figure 8.2 consists of two rings of states,

one of size 6 and the other of size 4. Also notice that in this case ibas prints NFA

completely determined; this means that there is only one NFA realizing that ba-

sis. Of course, the NFAs found by ibas might not recognize the language that we
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% ibas 110001100100110001100100

No inductive bases of size 0.

No inductive bases of size 1.

No inductive bases of size 2.

No inductive bases of size 3.

No inductive bases of size 4.

No inductive bases of size 5.

No inductive bases of size 6.

No inductive bases of size 7.

No inductive bases of size 8.

No inductive bases of size 9.

Found an inductive basis of size 10:

000001000001000001000001

000010000010000010000010

000100000100000100000100

000100010001000100010001

001000001000001000001000

001000100010001000100010

010000010000010000010000

010001000100010001000100

100000100000100000100000

100010001000100010001000

Corresponding NFA:

0 | 1

1 | 2

2 | 4

3 | 5

4 | 6

5 | 7

6 | 8

--> 7 | 9

--> *8 | 0

*9 | 3

NFA completely determined.

There are 1 inductive bases of size 10.

Figure 8.2: Sample run of ibas
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want—we know only that their languages will extend the partial that we input to

ibas. In this case, however, it is easy to see that the NFA does recognize the desired

language—hence we now know that a(a4)∗∪(a6)∗ has a unique minimal NFA, which

has 10 states.

In general, of course, there could be more than one NFA realizing the partial

inductive bases that ibas finds. In such cases, ibas displays “optional” arrows with

parentheses. Here is an example:

Found an inductive basis of size 2:

0111111

1111111

Corresponding NFA:

--> 0 |(0) 1

*1 |(0) 1

Arrows not completely determined.

Notice that the left quotient of (0111111) is (111111). To generate this, row 1

is necessary, while row 0 is optional. For this reason, ibas prints “0 |(0) 1”,

indicating that state 0 must have an arrow to state 1 and can have an arrow to

state 0. Note however that “optional” arrows may not be completely optional.

Consider the following example:

Found an inductive basis of size 4:

001111

011111

100111

110011
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Corresponding NFA:

0 |(0) 1

1 |(0)(1)(2)(3)

*2 | 0

--> *3 | 2

Arrows not completely determined.

Look at the arrows out of state 1. The left quotient of (011111) is (11111), which

can be generated in many ways using rows 0, 1, 2, and 3: 0 ∪ 3, 1 ∪ 2, 0 ∪ 3, etc.

None of the rows are necessary, which is why ibas puts parentheses around each of

them. But in fact at least two are them are needed to generate the quotient (and

only certain pairs work).

Initial states can be optional in exactly the same way; ibas notes such states

with “(-->)”. For example, on ibas 1110 we get the following basis:

Found an inductive basis of size 3:

0100

0110

1000

Corresponding NFA:

(-->) 0 | 2

--> 1 | 0 2

--> *2 |

Initial states not completely determined.

Here we see that to generate the input partial (1110) we need to use rows 1 and 2,

but row 0 is optional.
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r Minimum Basis Size Number of Bases Run Time
1 0 1 0 sec
2 2 1 0 sec
3 3 2 0 sec
4 4 3 0 sec
5 5 6 0.002 sec
6 5 2 0.003 sec
7 7 18 0.5 sec
8 8 30 13 sec
9 9 56 6.5 min

10 7 6 1.1 sec
11 11 ≥ 1 > 24 hrs
12 7 6 1.5 sec
14 9 18 16 min
15 8 12 42 sec
21 10 36 15.5 hrs

Figure 8.3: Results of ibas on Lr = {ai | i mod r 6= 0}

One family of languages that we have explored rather thoroughly is

Lr = {ai | i mod r 6= 0},

the set of strings of a’s whose length is not a multiple of r, for r ≥ 1. (Note that

L1 = ∅.) Lr can of course be recognized using a ring of r states, but fewer states

are sufficient if r has at least 2 distinct prime factors; for example, Figure 2.1 shows

a 5-state NFA for L6. In general, if r = pq where p and q are relatively prime, then

Lr can be recognized by an NFA with p + q states. We ran ibas using the width-30

initial partial of Lr, for various values of r. For example, the run for L9 was

ibas 011111111011111111011111111011

The results of our experiments are shown in Figure 8.3. (The run when r = 11 did

not finish—after 24 hours, ibas had determined that there are no inductive bases

of size 10 or smaller, and it had found 1 inductive basis of size 11.) We suspect

that these languages are relatively difficult cases for ibas, because they contain so
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many more 1’s than 0’s, which may make ibas’s pruning less effective. In contrast,

the run shown in Figure 8.2, involving a more “balanced” partial, found all 10-state

inductive bases in just 37 minutes.

On (a3 ∪ a5)(a10)∗, ibas finds 2 minimal inductive bases of size 10, taking 16

minutes.

Another interesting language to try is (a5 ∪ a9)∗. The minimal DFA for this

language has 33 states, because the longest string of a’s that is not in the language

is a31. On the width-30 initial partial for this language, ibas finds 27 minimal

inductive bases of size 9, taking 58 seconds. The first of these inductive bases is

0000000010000100011000110011100

0000000100001000110001100111001

0000001000010001100011001110011

0000010000100011000110011100111

0000100001000110001100111001110

0001000000001000010001100011001

0010000000010000100011000110011

0100000000100001000110001100111

1000000001000010001100011001110

The unique NFA realizing it is shown in Figure 8.4.

On (a3 ∪a11)∗, ibas finds 2,225 minimal inductive bases of size 11, taking about

19 hours. So ibas can sometimes find minimal 11-state NFAs, if we are patient.

Curiously, on the apparently similar language (a2∪a11)∗, ibas finds that 6 states

are enough! One of the NFAs that it finds is shown in Figure 8.5.

On the finite language {a, a2, a6, a8, a9}, ibas finds 443 minimal inductive bases

of size 10, taking 22 minutes. Notice that the minimal DFA for this language

contains 10 states (if we omit the “dead” state); hence nondeterminism does not let
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0 1

2

3

4
5

6

7

8

Figure 8.4: A minimal NFA for (a5 ∪ a9)∗

5 4 3 2 1 0

Figure 8.5: A minimal NFA for (a2 ∪ a11)∗

us construct a smaller machine for this language. Looking ahead, in Section 9.8 we

will show that this holds in general—the minimal DFA for a finite unary language

is also a minimal NFA.

As a final topic, it is interesting to compare the size of ibas’s search space with

that of the exhaustive search considered in Section 8.1. On the language

L8 = {ai | i mod 8 6= 0},

profiling reveals that in 13 seconds ibas considers about 50 million partial inductive

bases of size 8, checking about 4 million bases per second. In contrast, exhaustive

search can check about 120 million NFAs per second. But the search space of 8-

state NFAs (using the enumeration in Section 8.1) has size about 4.6 · 1020, which

is 9 trillion times as large.
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width 5 10 15 20 30
size
0 1 1 1 1 1
1 3 3 3 3 3
2 12 12 12 12 12
3 65 65 65 65 65
4 472 483 483 483 483
5 3,914 4,745 4,745 4,745 4,745
6 31,913 58,788 58,791 58,791 58,791
7 237,128 896,526 896,999 896,999 896,999
8 1,566,659 16,784,652 16,827,226 16,827,241 16,827,241
9 9,200,281 388,630,823 391,949,222 391,952,601 391,952,607

Figure 8.6: Number of Unary Partial Inductive Bases of Various Sizes and Widths

More systematically, we can modify ibas so that it generates partial inductive

bases without checking that they generate a specified partial; in this way, we can get

a count of how many unary partial inductive bases of each size and width there are

in total. Some experimental results are shown in Figure 8.6; it is striking how small

these numbers are as compared with the numbers in Figure 8.1. It is also interesting

to note how little the number of bases grows as the width increases beyond 10—even

on bases of size 9, increasing the width from 10 to 30 increases the count by less

than one percent. This suggests that almost all partial inductive bases of size 9 and

width 10 are uniquely extendible.
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CHAPTER 9

THE CHARACTERISTIC MATRIX AND LOWER BOUNDS

In this chapter, we discuss some work that we did prior to the development of

inductive bases. We explore minimal NFAs from an algebraic standpoint, using a

variant of the characteristic matrix CL of a language L, considered earlier by Con-

don, Hellerstein, Pottle, and Wigderson [CHPW98]. It turns out that the structure

of CL reveals interesting bounds on finite automata recognizing L. For example, we

can recast the Myhill-Nerode Theorem to this setting, showing that the number of

states in the minimal DFA recognizing L is given by the number of distinct nonzero

rows in CL. More interestingly, we show that any NFA recognizing L gives rise to a

factorization of CL; as a result we are able to deduce lower bounds on the size of any

NFA recognizing L. For instance, the number of states in any UFA (unambiguous

finite automaton) recognizing L must be at least the rank of CL.

It should be noted that most of the results in this chapter have appeared previ-

ously in the literature, in works such as [Sch78, GS96, CHPW98, HS01, HSK+02].

In particular, Condon, Hellerstein, Pottle, and Wigderson [CHPW98] seem to use

the factorization of CL implicitly in some of their arguments, although they do not

state it explicitly. Hromkovic̆ et al. [HS01, HSK+02] also consider the same charac-

teristic matrix; they use methods from communication complexity to obtain bounds

similar to those described here. We believe, however, that our factorization-based

approach has the advantage of giving simpler and more self-contained derivations of

the lower bounds. We will discuss related work more fully as we proceed.

The chapter is organized as follows. Section 9.1 develops the characteristic ma-

trix and its factorization. The following sections develop a number of applications,

including a proof of the Myhill-Nerode theorem, lower bounds based on the rank of

the computational matrix, and theorems about bideterminism.
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9.1 The Characteristic Matrix and its Factorization

In this section, we define the characteristic matrix CL and explore its properties.

Definition 9.1.1 Given a language L over alphabet Σ, the characteristic matrix of

L is an ∞×∞ binary matrix CL, indexed by Σ∗, such that

CL[x, y] =






1 if xyR ∈ L

0 otherwise.

Let us begin with some examples. Figure 9.1 shows the upper left-hand portion

of the characteristic matrix for {ai | i mod 6 6= 0}, the language recognized by

the NFA in Figure 2.1. And Figure 9.2 shows the upper left-hand portion of the

characteristic matrix for

{w ∈ {a, b}∗ | the 3rd-from-last symbol of w is b},

the language recognized by the UFA in Figure 2.2.

Note that the characteristic matrix has a very restricted structure:

Theorem 9.1.2 For all x, y ∈ Σ∗ and a ∈ Σ, CL[xa, y] = CL[x, ya].

Proof. CL[xa, y] = 1 iff xayR ∈ L iff x(ya)R ∈ L iff CL[x, ya] = 1.

Our characteristic matrix is a variant of the one considered by Condon et al.

[CHPW98] and Hromkovic̆ et al. [HS01, HSK+02], who define ML[x, y] = 1 iff xy ∈

L. In contrast, we use xyR instead, which just permutes the columns. An advantage

of our definition of CL is that the characteristic matrix for the reverse of L is just

the transpose of the characteristic matrix for L:

Theorem 9.1.3 For any L, (CL)T = CLR.
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ǫ a a2 a3 a4 a5 a6 a7 a8 a9

ǫ 0 1 1 1 1 1 0 1 1 1
a 1 1 1 1 1 0 1 1 1 1
a2 1 1 1 1 0 1 1 1 1 1
a3 1 1 1 0 1 1 1 1 1 0
a4 1 1 0 1 1 1 1 1 0 1
a5 1 0 1 1 1 1 1 0 1 1
a6 0 1 1 1 1 1 0 1 1 1
a7 1 1 1 1 1 0 1 1 1 1
a8 1 1 1 1 0 1 1 1 1 1
a9 1 1 1 0 1 1 1 1 1 0

Figure 9.1: Characteristic matrix for {ai | i mod 6 6= 0}

ǫ a b aa ab ba bb aaa aab aba abb baa bab bba bbb
ǫ 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
a 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
b 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1
aa 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
ab 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1
ba 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1
bb 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1

aaa 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
aab 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1
aba 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1
abb 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1
baa 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1
bab 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1
bba 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1
bbb 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1

Figure 9.2: Characteristic matrix for the “third from last” language
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Proof. We have (CL)T [x, y] = 1 iff CL[y, x] = 1 iff yxR ∈ L iff (yxR)R ∈ LR iff

xyR ∈ LR.

Before we can prove our factorization theorem, we first need an auxiliary result.

Intuitively, it says that running an NFA M on a string w gives the same result as

splitting w into two pieces arbitrarily, running M on the first piece, running MR

on the reverse of the second piece, and seeing whether any common states can be

reached:

Theorem 9.1.4 (Split Computation) For any NFA M and strings x, y ∈ Σ∗,

we have that M accepts xyR iff δ̂(I, x) ∩ δ̂R(F, y) 6= ∅. Moreover, if M is a UFA,

then the intersection contains at most one state.

Proof. By Corollary 2.1.4, NFA M accepts xyR iff M has a path labeled xyR from

some state in I to some state in F . This holds iff M has a path labeled x from some

state in I to some intermediate state q and a path labeled yR from q to some state

in F . Equivalently, M has a path labeled x from some state in I to some state q and

MR has a path labeled y from some state in F to q. Equivalently (by Lemma 2.1.3),

there is a q such that q ∈ δ̂(I, x) ∩ δ̂R(F, y). Finally, note that if M is a UFA, then

the intersection contains at most one state, because xyR has at most one accepting

path.

Now we are ready to show that an NFA recognizing L gives rise to a factorization

of CL.

Definition 9.1.5 Given an NFA M = (Q, Σ, δ, I, F ), where |Q| = n, define ∆M to

be an ∞× n matrix, indexed by Σ∗ and Q, as follows:

∆M [x, q] =






1 if q ∈ δ̂(I, x)

0 otherwise.
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Also, define ∆R
M to be an n ×∞ matrix, indexed by Q and Σ∗, as follows:

∆R
M [q, y] =






1 if q ∈ δ̂R(F, y)

0 otherwise.

For example, Figure 9.3 gives the upper portion of ∆M for the UFA of Figure 2.2,

which recognizes {w ∈ {a, b}∗ | the 3rd-from-last symbol of w is b}. And Figure 9.4

gives the left-hand portion of ∆R
M for the same UFA.

Notice that the rows and columns of ∆M and ∆R
M are the property vectors of a

number of interesting sets:

• Row w of ∆M , which we denote by ∆M [w,−], is the property vector of δ̂(I, w).

• Column q of ∆M , denoted ∆M [−, q], is the property vector of Hist(q).

• Column w of ∆R
M , denoted ∆R

M [−, w], is the property vector of δ̂R(F, w).

• Row q of ∆R
M , denoted ∆R

M [q,−], is the property vector of Proph(q)R.

For example, referring to Figure 9.3, ∆M [bab,−] = (1, 1, 0, 1), which represents

the set {0, 1, 3}, indicating that after scanning bab, the UFA in Figure 2.2 can be in

states 0, 1, or 3. And ∆M [−, 2] = (0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, . . .), indicating

that Hist(2) = {ba, bb, aba, abb, bba, bbb, . . .}.

More interestingly, if we compute the matrix product of ∆M and ∆R
M in Fig-

ures 9.3 and 9.4, we find that the result is precisely the characteristic matrix for

L(M), which is given in Figure 9.2. This is the subject of our main theorem. But

first we need a definition:

Definition 9.1.6 Nonnegative integer matrices U and V are congruent, written

U ∼= V , if U [x, y] = 0 iff V [x, y] = 0.

It is easy to see that congruence is an equivalence relation. Now we present our

factorization theorem.
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0 1 2 3
ǫ 1 0 0 0
a 1 0 0 0
b 1 1 0 0
aa 1 0 0 0
ab 1 1 0 0
ba 1 0 1 0
bb 1 1 1 0

aaa 1 0 0 0
aab 1 1 0 0
aba 1 0 1 0
abb 1 1 1 0
baa 1 0 0 1
bab 1 1 0 1
bba 1 0 1 1
bbb 1 1 1 1

Figure 9.3: ∆M for the UFA of Figure 2.2

ǫ a b aa ab ba bb aaa aab aba abb baa bab bba bbb
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9.4: ∆R
M for the UFA of Figure 2.2
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Theorem 9.1.7 (Factorization) For any NFA M , ∆M×∆R
M

∼= CL(M). Moreover,

∆M × ∆R
M = CL(M) iff M is a UFA.

Proof. Let M = (Q, Σ, δ, I, F ) be an NFA. By the definition of matrix multiplication,

(∆M × ∆R
M)[x, y] is the inner product of ∆M [x,−] and ∆R

M [−, y].

As observed above, ∆M [x,−] is the property vector of δ̂(I, x), and ∆R
M [−, y] is

the property vector δ̂R(F, y). Hence the inner product of ∆M [x,−] and ∆R
M [−, y]

gives the cardinality of δ̂(I, x) ∩ δ̂R(F, y).

And by Theorem 9.1.4 (Split Computation), δ̂(I, x) ∩ δ̂R(F, y) 6= ∅ iff xyR ∈

L(M). Hence (∆M ×∆R
M )[x, y] 6= 0 iff xyR ∈ L(M), which implies that ∆M ×∆R

M
∼=

CL(M).

Moreover, if M is a UFA then the cardinality of the intersection is at most 1,

and therefore ∆M ×∆R
M = CL(M). And if M is not a UFA then there exists a string

w ∈ L(M) with at least two accepting paths. Then there must exist distinct states

q and q′ and a splitting of w into xyR such that there is a path from some state in I

to q labeled x, a path from q to some state in F labeled yR, a path from some state

in I to q′ labeled x, and a path from q′ to some state in F labeled yR. Hence both

q and q′ are elements of δ̂(I, x)∩ δ̂R(F, y), which implies that (∆M ×∆R
M)[x, y] ≥ 2.

As far as we know, the Factorization theorem has not appeared explicitly in prior

work. However, it seems to be used implicitly in some of the arguments in Condon

et al.—see for example the discussion after Theorem 4.2 [CHPW98, p. 750].

Many results in automata theory can be expressed in a uniform and concise form

in terms of the characteristic matrix and its factorization. In the following sections,

we develop some of these.
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9.2 A Proof of the Myhill-Nerode Theorem

The Myhill-Nerode Theorem [HU79, Theorem 3.9] is based on an equivalence re-

lation RL on Σ∗, defined by xRLy iff for all z, (xz ∈ L ↔ yz ∈ L). It is easy to

see that xRLy iff rows x and y of CL are the same. It follows that the number

of states in the minimal DFA recognizing L is the number of distinct rows in CL.

This concrete reformulation of the Myhill-Nerode Theorem was previously noted by

Hromkovic̆ and Schnitger [HS01], but here we observe that Theorem 9.1.7 can be

applied to give a nice proof of the theorem:

Theorem 9.2.1 For any language L over alphabet Σ, let r be the number of distinct

nonzero rows in CL. If r is infinite, then L is not regular. And if r is finite, then L

is regular and r is the number of states in the minimal DFA recognizing L; moreover,

this minimal DFA is unique up to isomorphism.

Proof. Suppose that L is recognized by some DFA M . By Theorem 9.1.7, ∆M ×

∆R
M = CL. Now, because M is deterministic, each row of ∆M contains at most one

1. Hence each row of the product matrix ∆M × ∆R
M is either all zero or else it is

simply one of the rows of ∆R
M . Therefore, every nonzero row of CL must appear at

least once as a row of ∆R
M . This implies that M must have at least r states. In

particular, if r is infinite then no such M can exist.

But if r is finite, then we can construct an r-state DFA M0 = (Q0, Σ, δ0, I0, F0)

that recognizes L, where

• Q0 is the set of distinct nonzero rows of CL

• δ0(CL[w,−], a) =






{CL[wa,−]} if CL[wa,−] is nonzero

∅ otherwise
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• I0 =






{CL[ǫ,−]} if CL[ǫ,−] is nonzero

∅ otherwise

• F0 = {CL[w,−] | CL[w, ǫ] = 1}.

Notice that δ0 is well defined: if CL[w,−] = CL[w′,−], then it follows from Theo-

rem 9.1.2 that CL[wa,−] = CL[w′a,−]. Also notice that an all-zero row of CL would

be a “dead” state; our construction of M0 takes care to eliminate such states. It is

easy to see that M0 is a DFA and that for all w,

δ̂0(I0, w) =






{CL[w,−]} if CL[w,−] is nonzero

∅ otherwise.

Hence M0 accepts w iff CL[w,−] is nonzero and CL[w,−] ∈ F0 iff CL[w, ǫ] = 1 iff

wǫR ∈ L iff w ∈ L. Hence L(M0) = L.

Finally, we can argue that any r-state DFA M = (Q, Σ, δ, I, F ) recognizing L

must be isomorphic to M0. By the reasoning above, the r rows of ∆R
M must simply

be the r nonzero rows of CL; hence an isomorphism can map state q of M to state

∆R
M [q,−] of M0. This mapping preserves the set of final states, because q ∈ F iff

∆R
M [q, ǫ] = 1 iff ∆R

M [q,−] ∈ F0. To see that it also preserves the set of initial states

and the transitions, first note that for any w ∈ Σ∗,

CL[w,−] =
∑

s∈Q

∆M [w, s] · ∆R
M [s,−]

but this sum contains at most one term, because each row of ∆M contains at most

one 1. Hence for any w ∈ Σ∗ and for any s ∈ Q, we have

CL[w,−] = ∆R
M [s,−] iff ∆M [w, s] = 1.

Hence the set of initial states is preserved: q ∈ I iff ∆M [ǫ, q] = 1 iff CL[ǫ,−] =

∆R
M [q,−] iff ∆R

M [q,−] ∈ I0. To argue that the set of transitions is preserved, let q ∈ Q
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be arbitrary. We know that ∆R
M [q,−] = CL[w,−] for some w ∈ Σ∗, which implies

that ∆M [w, q] = 1. Hence we have q′ ∈ δ(q, a) iff ∆M [wa, q′] = 1 iff CL[wa,−] =

∆R
M [q′,−] iff ∆R

M [q′,−] ∈ δ0(∆
R
M [q,−], a).

As an application, consider the characteristic matrix for {ai | i mod 6 6= 0} in

Figure 9.1. It has 6 distinct nonzero rows, which implies that this language requires

a 6-state DFA. And the characteristic matrix for

{w ∈ {a, b}∗ | the 3rd-from-last symbol of w is b},

given in Figure 9.2, has 8 distinct nonzero rows, implying that this language requires

an 8-state DFA. Interestingly, it has only 4 distinct nonzero columns, implying that

the reverse language requires a 4-state DFA; indeed, the reverse of the UFA in

Figure 2.2 is a DFA.

9.3 Lower Bounds Based on the Rank of CL

While minimal DFAs are well understood, minimal UFAs and NFAs are more elusive.

Here we show lower bounds on the number of states in UFAs and NFAs recognizing a

language; our bounds are based on the rank of the characteristic matrix. (The rank

of a matrix is the maximum number of linearly independent rows; see [CLRS01,

Chapter 28] for further discussion.)

Theorem 9.3.1 For any L, rank(CL) is a lower bound on the number of states in

any UFA recognizing L.

Proof. If M = (Q, Σ, δ, I, F ) is a UFA recognizing L, then by Theorem 9.1.7, ∆M ×

∆R
M = CL. It follows that the rows of CL are linear combinations of the rows of
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a

a a a

a

a

Figure 9.5: The minimal DFA for {ai | i mod 6 6= 0}

∆R
M , and the columns of CL are linear combinations of the columns of ∆M . More

precisely,

CL[w,−] =
∑

q∈Q

∆M [w, q] · ∆R
M [q,−]

and

CL[−, w] =
∑

q∈Q

∆R
M [q, w] · ∆M [−, q].

Hence rank(CL), the maximum number of linearly independent rows (or columns)

of CL, is at most |Q|.

The above bound was shown previously in [HSK+02] using results from commu-

nication complexity; here we get it as an immediate corollary to the factorization

theorem. We can apply Theorem 9.3.1 to {ai | i mod 6 6= 0}, whose characteristic

matrix is given in Figure 9.1. The rank of this matrix can be calculated to be 6.

(Note that it suffices to consider the 6×6 submatrix in the upper left-hand corner.)

This implies that the obvious 6-state DFA shown in Figure 9.5 is a minimal UFA for

this language. (Note that the 5-state NFA in Figure 2.1 is not a UFA.) Interestingly,

the reverse of the DFA in Figure 9.5 gives another minimal UFA for the language;

it has five initial states and just one final state. This shows that minimal UFAs need

not be unique.
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Long ago, Schmidt used a similar technique to argue that, for each n, the minimal

UFA recognizing the language

L(n) = {xy | x, y ∈ {0, 1}n, x 6= y}

requires at least 2n states [Sch78, Theorem 3.9]. Restated in our framework, his

argument is based on the observation that the submatrix of CL(n) indexed by strings

of length n has rank 2n, since it consists of 2n distinct rows, each of which has the

form (1, 1, . . . , 1, 0, 1, . . . , 1).

As another application, the characteristic matrix in Figure 9.2 can be calculated

to have rank 4. Therefore the UFA in Figure 2.2 is minimal.

Now let us consider general NFAs, rather than UFAs. If M is an NFA recognizing

a language L, then by Theorem 9.1.7 we have ∆M × ∆R
M

∼= CL. Because we have

congruence rather than equality, the number of states in M can be smaller than

rank(CL), because there may be a matrix congruent to CL with lower rank. For

example, the matrix consisting of repetitions of

0 2 1 1 1 2

2 1 1 1 2 0

1 1 1 2 0 2

1 1 2 0 2 1

1 2 0 2 1 1

2 0 2 1 1 1

is congruent to the characteristic matrix in Figure 9.1, but its rank is at most 5,

since it factors as ∆M × ∆R
M for the 5-state NFA given in Figure 2.1. (Actually, its

rank turns out to be 4.)

Definition 9.3.2 The structural rank of a matrix C is the smallest rank of any

matrix congruent to C.
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Using the notion of structural rank, we can get a lower bound on NFAs:

Theorem 9.3.3 For any L, the structural rank of CL is a lower bound on the

number of states in any NFA recognizing L.

Proof. Similar to the proof of Theorem 9.3.1.

Unfortunately, the structural rank of CL is usually difficult to calculate. But

sometimes it can be determined easily, or at least bounded from below. In these

cases we can get bounds on minimal NFAs. Here are some examples.

Consider first the language {ai | i mod 6 = 0}. Its characteristic matrix is the

boolean complement of the matrix in Figure 9.1; it consists of repetitions of

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

Clearly the structural rank of this matrix is 6. Hence nondeterminism is useless in

recognizing this language; the obvious 6-state DFA is a minimal NFA.

A special case of Theorem 9.3.3 has been previously noted. Glaister and Shallit

[GS96] show that for any language L, if there exist strings x1, . . . , xn and w1, . . . , wn

such that for all i, j, xiwj ∈ L iff i = j, then any NFA recognizing L must have a

least n states. Notice that under the hypotheses, we can permute the columns of

CL to form an n × n identity submatrix. This implies that the structural rank of

CL is at least n.

Here is a more general bound. Recall that a matrix is unit lower triangular if it

has 1’s on the main diagonal and 0’s above.
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Corollary 9.3.4 Suppose that by permuting the rows and columns of CL we can

form an n×n unit lower triangular submatrix. Then any NFA recognizing L has at

least n states.

Proof. An n × n unit lower triangular matrix has structural rank n.

As an application, consider the characteristic matrix in Figure 9.2. Form the

4 × 4 submatrix consisting of rows ǫ, b, ba, and bbb, and columns aab, aa, a, and ǫ:

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

It follows that any NFA for {w ∈ {a, b}∗ | the 3rd-from-last symbol of w is b} re-

quires at least 4 states. Hence the UFA in Figure 2.2 is not just a minimal UFA for

this language; it is also a minimal NFA.

We can also easily derive as corollaries Goldstine’s quotient language theorems

for minimal NFAs [GLW92]. Recall that the quotient of L by L′, written L/L′, is

{x | there exists y ∈ L′ such that xy ∈ L}.

Corollary 9.3.5 If a language L has n pairwise-disjoint, nonempty quotients L/L1,

L/L2, . . . , L/Ln, then the minimal NFA recognizing L must have at least n states.

Proof. First observe that L/L′ =
⋃

w∈L′ L/{w}. Note also that column w of the

characteristic matrix, CL[−, w], is a bit-vector representation of L/{wR}. Hence,

under the hypotheses, it is easy to see that there must be n pairwise-disjoint, nonzero

columns in CL. Hence the structural rank of CL is at least n.

Corollary 9.3.6 If a language L has n nonempty quotients L/L1, L/L2, . . . , L/Ln

satisfying L/L1 ⊂ L/L2 ⊂ . . . ⊂ L/Ln, then the minimal NFA recognizing L must

have at least n states.
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ǫ a a2 a3 a4 a5 a6 a7

ǫ 1 0 0 1 1 0 0 1
a 0 0 1 1 0 0 1 1
a2 0 1 1 0 0 1 1 0
a3 1 1 0 0 1 1 0 0
a4 1 0 0 1 1 0 0 1
a5 0 0 1 1 0 0 1 1
a6 0 1 1 0 0 1 1 0
a7 1 1 0 0 1 1 0 0

Figure 9.6: Characteristic matrix for {ai | i mod 4 = 0 or i mod 4 = 3}

Proof. By similar reasoning, we can form an n × n unit lower triangular submatrix

of CL. (Interestingly, in the case when each Li is a singleton, we can also form an

(n − 1) × (n − 1) unit lower triangular submatrix of CL, which implies that the

minimal NFA for L must have at least n − 1 states.)

9.4 Lower Bounds Based on Set Bases

The rank-based lower bounds developed in Section 9.3 are not always tight. For

example, consider {ai | i mod 4 = 0 or i mod 4 = 3}, whose characteristic matrix

is shown in Figure 9.6. It turns out that the rank of this matrix is 3. (Note

that row 1 = row 2 + row 4 − row 3.) But an exhaustive search shows that the

minimal UFA for this language requires 4 states. We can explain this discrepancy by

observing that a UFA M expresses each row of the characteristic matrix as a linear

combination of the rows of ∆R
M using only nonnegative coefficients. In contrast,

matrix rank allows negative coefficients (as in the example above). We can improve

our lower bounds by considering set bases instead.

Definition 9.4.1 Given a collection C of target sets, a set basis for C is a collection

of sets such that each set in C can be expressed as a union of sets from B. If each
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set in C can be expressed as a union of pairwise disjoint sets from B, then B is said

to be a normal set basis for C.

We explain the relevance of set bases by observing that if a language L is rec-

ognized by a UFA M , then the rows of CL are linear combinations of the rows of

∆R
M , and each coefficient is either 0 or 1. Hence, viewing the rows of CL and ∆R

M

as property vectors, we see that the rows of ∆R
M are a normal set basis for the rows

of CL. Similarly, if L is recognized by an NFA M , then the rows of ∆R
M are a set

basis for the rows of CL. Thus we have the following theorems:

Theorem 9.4.2 For any L, the number of states in any UFA recognizing L is at

least the size of the smallest normal set basis for the rows of CL.

Theorem 9.4.3 For any L, the number of states in any NFA recognizing L is at

least the size of the smallest set basis for the rows of CL.

A similar bound is shown by Condon et al. [CHPW98]. They define a 1-tile of

CL to be a submatrix (specified by a nonempty set of rows and a nonempty set of

columns) all of whose entries are 1. Next, they say that a set of 1-tiles is a 1-tiling

of CL if every 1 entry of CL is covered by at least one tile in the set. Finally, they let

T 1(CL) denote the minimum size of a 1-tiling of CL, and T 1
L(n) denote the minimum

size of a 1-tiling of the finite submatrix of CL whose rows and columns are indexed

by the strings of length at most n. They then show [CHPW98, p. 750] that T 1
L(n)

is a lower bound on the number of states in any NFA N that recognizes L “up to

length 2n”, which means that N recognizes a language that agrees with L on strings

of length at most 2n. This result is, in fact, closely related to ours, because 1-tilings

are really the same thing as set bases! Indeed, it is easy to see that CL has a 1-tiling

of size k iff it has a set basis of size k.
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ǫ a a2 a3 a4 a5 a6

ǫ 1 0 0 1 1 0 1
a 0 0 1 1 0 1 1
a2 0 1 1 0 1 1 1
a3 1 1 0 1 1 1 1
a4 1 0 1 1 1 1 1
a5 0 1 1 1 1 1 1
a6 1 1 1 1 1 1 1

Figure 9.7: Characteristic matrix for (a3 ∪ a4)∗

3

aa a

2
a

10

a

Figure 9.8: A Minimal NFA for (a3 ∪ a4)∗

Unfortunately, determining the size of the smallest set basis or normal set basis

is known to be NP-complete [JR93]. But in some cases these sizes can be determined

by exhaustive search. For example, it can be checked that the characteristic matrix

of {ai | i mod 4 = 0 or i mod 4 = 3} (see Figure 9.6) requires a set basis of size 4.

Hence the obvious 4-state DFA is a minimal NFA for this language.

As another example, consider the language generated by the regular expression

(a3∪a4)∗. A portion of its characteristic matrix is shown in Figure 9.7; the remaining

entries are all 1. The characteristic matrix has 7 distinct nonzero rows and its rank is

7. Hence the minimal DFA has 7 states, and it is also a minimal UFA. An exhaustive

search reveals that the smallest set basis has size 4. In fact there is a 4-state NFA

for this language; one is shown in Figure 9.8.
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Unfortunately, the lower bounds based on set bases are not tight. For example,

the characteristic matrix in Figure 9.1 turns out to have set bases of size 4, as can

be seen from the following:




1 1 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0




×




0 0 0 1 1 1

0 1 1 0 0 1

1 0 1 0 1 0

1 1 0 1 0 0




=




0 1 1 1 1 2

2 1 1 1 1 0

1 2 1 1 0 1

1 1 2 0 1 1

1 1 0 2 1 1

1 0 1 1 2 1




But an exhaustive search shows that this language actually requires a 5-state NFA.

The problem is that some factorizations of the characteristic matrix that do not

correspond to any NFA. Of course, the theory of inductive bases explains this—note

that the second matrix in the above factorization is not an inductive basis, since it

cannot generate the left quotient of its first row.

9.5 Factoring the Subset DFA of an NFA

Given an n-state NFA N , the well-known subset construction [HU79] gives an equiv-

alent DFA M with at most 2n states. Here we observe that the histories and prophe-

cies of the states of M can be expressed in terms of the histories and prophecies of

the states of N . Each state A of the subset DFA M is a set of states of the NFA N .

We have

HistM(A) =
⋂

q∈A

HistN(q) −
⋃

q 6∈A

HistN(q)

and

ProphM(A) =
⋃

q∈A

ProphN (q).
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a a
a

a

a a
a

Figure 9.9: Two strongly equivalent NFAs

(It is interesting to note the asymmetry between these two equations.)

Recall that the columns of ∆ represent histories while the rows of ∆R represent

prophecies (in reverse). As a consequence, ∆M and ∆R
M can be computed directly

from ∆N and ∆R
N by using these equations.

9.6 A Notion of Strong Equivalence on NFAs

Let us say that two NFAs are strongly equivalent if they give the same factorization

of the characteristic matrix. Of course this implies that they recognize the same

language and have the same set of states, but some of the arrows may be different.

For example, the two NFAs shown in Figure 9.9 are strongly equivalent.

9.7 Bideterminism

Before discussing bidetermism, we first recall the notion of a trim NFA, as defined

in [ADN92]:

Definition 9.7.1 NFA M is trim if for every state q, Hist(q) and Proph(q) are

both nonempty.

A state whose history is empty can never be reached, and a state whose prophecy

is empty is a “dead” state; such states may as well be deleted.
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Definition 9.7.2 An NFA M is said to be a bideterministic DFA (BDFA) if both

M and MR are DFAs. A language L is said to be bideterministic if it is recognized

by some BDFA.

In [TU03], it is shown that any trim BDFA M is a minimal NFA recognizing

L(M). Here we explore bideterministic languages in terms of their characteristic

matrices.

Theorem 9.7.3 A language L is bideterministic iff the distinct rows of CL are

pairwise disjoint.

Proof. If L is recognized by a BDFA M then CL = ∆M × ∆R
M and, since M is a

DFA, each nonzero row of CL appears as one of the rows of ∆R
M . Also, since MR

is a DFA, each column of ∆R
M contains at most one 1. Now, we want to prove that

if two rows of CL have a 1 in the same column, then they are equal. So suppose

that CL[v, x] = 1 and CL[w, x] = 1. Then CL[v,−] and CL[w,−] are nonzero rows,

which implies by the above discussion that there exist states p and q such that

CL[v,−] = ∆R
M [p,−] and CL[w,−] = ∆R

M [q,−]. Hence ∆R
M [p, x] = ∆R

M [q, x] = 1.

But since each column of ∆R
M contains at most one 1, it follows that p = q. Hence

CL[v,−] = CL[w,−].

Conversely, suppose that the distinct rows of CL are pairwise disjoint. Recall

from the proof of the Myhill-Nerode Theorem that if M is the minimal DFA recog-

nizing L, then the rows of ∆R
M are the distinct nonzero rows of CL. Since these are

pairwise disjoint, it follows that each column of ∆R
M contains at most one 1. Hence

MR is a DFA, which implies that L is bideterministic.

Corollary 9.7.4 If M is a trim BDFA, then M is a minimal NFA recognizing

L(M).
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Proof. Suppose that M is a trim BDFA recognizing a language L. Because CL =

∆M × ∆R
M and M is a BDFA, each nonzero row of CL appears exactly once as a

row in ∆R
M . Furthermore, because M is trim, each row of ∆R

M is nonzero. Also,

each column of ∆M is nonzero, which implies that each row of ∆R
M appears at least

once as a row in CL. We conclude that that the rows of ∆R
M are exactly the distinct

nonzero rows of CL. It follows that M is the minimal DFA recognizing L.

Also, by the above theorem, the distinct rows of CL are pairwise disjoint. Hence

if CL contains r distinct nonzero rows, then its structural rank is clearly r. So any

NFA recognizing L must have at least r states. Thus M is also a minimal NFA

recognizing L.

9.8 Finite Languages and One-Character Alphabets

In this section, we explore the usefulness of nondeterminism in recognizing some

restricted kinds of languages.

First we show that nondeterminism can be useful in recognizing finite languages.

Consider the set of non-palindromes of length 2n, for some n ≥ 1:

Ln = {w ∈ {a, b}∗ | w 6= wR and |w| = 2n}

It is easy to see that a DFA recognizing Ln requires at least 2n states, since the first

n symbols of the input string need to be remembered. But an NFA can recognize

Ln using only about 4n2 states; for each k, 1 ≤ k ≤ n, two chains of 2n + 1 states

each can verify that positions k and 2n− k + 1 of the input string differ; and hence

n pairs of chains can verify that the input is not a palindrome. Schmidt [Sch78] has

similar observations.
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Next consider languages over a one-character alphabet. Generalizing the NFA

of Figure 2.1, let p and q be relatively prime and consider

{ai | i mod pq 6= 0}.

The characteristic matrix has pq distinct nonzero rows, so a DFA requires pq states.

But an NFA can recognize this language using using a ring of size p and a ring of

size q, for a total of p + q states.

Of course this NFA is not a UFA, since it has two accepting paths for any

string whose length is a multiple of neither p nor q. So we may wonder whether

unambiguous nondeterminism is useful over a one-character alphabet. It turns out

that it can be. Let p and q be not relatively prime and consider

{ai | i mod p = 0 or i mod q = 1}.

The number of states in the minimal DFA is the least common multiple of p and q.

As above, an NFA can be built using a ring of p states and a ring of q states. And

this NFA turns out to be a UFA. For if d is the greatest common divisor of p and

q, then the first ring accepts only strings whose length is a multiple of d, while the

second ring accepts only strings whose length is not a multiple of d.

Finally consider finite languages over a one-character alphabet. Here we can

argue that nondeterminism is not useful. For if L ⊆ {a}∗ and an is the longest string

in L, then CL has n+1 distinct nonzero rows, and the (n+1)× (n+1) submatrix in

the upper left-hand corner is (if its rows are reversed) unit lower triangular. Hence

it has structural rank n + 1, and the minimal DFA (which has n + 1 states) is also

a minimal NFA.

To conclude this chapter, we have seen that the structure of the computation

matrix of a language allows us to establish interesting lower bounds on the size of

any NFA or UFA recognizing the language. In some cases, these lower bounds are
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precise enough to show the minimality of an NFA or UFA; in other cases, the lower

bounds are not tight.
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CHAPTER 10

CONCLUSION

The theoretical nature of this work and the originality of its methods should

provide a wide range of future developments. Even though we have been working

for many years, most of the good results are very recent and it is not easy to foresee

practical applications at such an early stage. It seems to us that the theory is very

complete and elegant; therefore it does not seem to need theoretical extensions. We

think that the use of the inductive basis representation as a tool to solve specific

instances is probably a natural continuation to our study.

We now discuss a few specific future directions:

Enumeration of Non-isomorphic NFAs

Enumerating non-isomorphic NFAs or minimal NFAs is a problem of some difficulty.

The brute-force approach is feasible only for a very small number of states; this is

due to the size of the search space and the fact that isomorphic NFAs are costly to

detect in the traditional directed graph representation.

Our inductive basis characterization is better ordered and avoids the problem

of generating the “same” NFA in multiple forms. It seems very possible that an

inductive basis algorithm, similar to ibas but aimed at enumerating non-isomorphic

NFAs, could enumerate non-isomorphic NFAs whose size is several states larger than

what can be handled with pure combinatorial graph-based algorithms.

Pattern Recognition

The way ibas works—by transforming a nonprocedural representation into a proce-

dural representation in a incremental, exhaustive, yet efficient way—makes us think

that it could be used to recognize patterns whose nature and structure is unknown.
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An application of greater size (ours only works for very small sequences) involv-

ing longer strings and maybe clusters of NFAs might be able to decipher complex

patterns, when fed with enough examples.

Complexity

The problem of good lower or upper bounds has been a major concern of our study

from the beginning. Upper bounds for worst-case complexity are theoretically im-

portant, and also in order to assess time and space resources for open-ended search-

ing algorithms like the ones we have presented. Questions that require future study

include:

• How can we know that some of the NFAs obtained recognize the language that

we initially wanted?

• How long should we wait until giving up in an unsuccessful search?

Algorithms

We have implemented and tested many variations to ibas with encouraging re-

sults; the optimized implementations and new theoretical insights have resulted in

significant improvements in speed.

We have wondered whether looking at only one side of the factorization (namely

the prophecy) was not a symmetrical approach, and might lead to extra work in

some particular cases. But the idea of working simultaneously with histories and

prophecies was not implemented due to the complexity of the interaction among the

sets of elements used to build the quotient languages in the process of extending

partial inductive bases.

A double ibas algorithm might be developed and implemented to work simulta-

neously with two inductive basis (the histories and the prophecies) that should be
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related by the use of an auxiliary matrix in order to control the interaction between

the two bases. Such an algorithm could have some advantages, but it is clear that

it presents many implementation challenges.

Combinatorial Models

One of the most promising directions that we foresee is associated with the use of

non-linear optimization algorithms, like gradient-based feasible direction algorithms.

The algebraic nature of the inductive basis representation seems ideal for producing

a box-based restriction 0, 1 model that could be solved using a relaxation to the real

numbers.

Starting from a feasible solution given by a non-minimal NFA represented in a

matrix form, the model could force one of the rows to take all zero values, doing a

de facto elimination of the row by means of a cost function.

It seems that the proximity of the minimal solution to the non-minimal initial

solution could avoid local minima and obtain a global minimum when a return to

a 0, 1 matrix is forced by a penalty, most probably a quadratic function that will

increase value in each iteration.

The model will consist of

• a fixed target vector, the partial of the language;

• an inductive basis that will be relaxed, allowing it to take values on the (0,1)

interval;

• a set of restrictions of equality with a penalty that will prevent the basis from

distancing too far from the inductive property; and

• a set of inequality restrictions, that will be implemented by the use of a test of

ratio where all negative components of the direction will be limited to a step
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that does not make them negative and all positive components of the direction

will be limited to a value less than or equal to 1.

The “box” type inequality restrictions are relatively easy to implement and the

model could be solved using any of the many non-linear optimization techniques.

We think that such a development could actually for the first time succeed in

minimizing NFAs in many practical contexts, remembering of course that the theo-

retical problem is NP-hard.
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