
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-24-2008

A Behavior Based Approach to Virus Detection
Jose Andre Morales
Florida International University, jose@josemorales.org

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Morales, Jose Andre, "A Behavior Based Approach to Virus Detection" (2008). FIU Electronic Theses and Dissertations. Paper 41.
http://digitalcommons.fiu.edu/etd/41

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/41?utm_source=digitalcommons.fiu.edu%2Fetd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A BEHAVIOR BASED APPROACH TO VIRUS DETECTION

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Jose Andre Morales

2008

To: Interim Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Jose Andre Morales, and entitled A Behavior Based
Approach to Virus Detection, having been approved in respect to style and intellectual
content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Xudong He

Geoffrey Smith

B.M. Golam Kibria

Peter J. Clarke, Co-Major Professor

Yi Deng, Co-Major Professor

Date of Defense: March 24, 2008

The dissertation of Jose Andre Morales is approved.

Interim Dean Amir Mirmiran
College of Engineering and Computing

Dean George Walker
University Graduate School

Florida International University, 2008

ii

c©Copyright 2008 by Jose Andre Morales

All rights reserved.

iii

DEDICATION

I dedicate this dissertation to my family, loved ones and friends for giving me

strength, patience, emotional balance and fortitude during the process of achieving

this milestone in my life.

iv

ACKNOWLEDGMENTS

First and foremost I wish to thank Dr. Yi Deng for taking the risk of believing in

me and supporting me throughout my time as a graduate student. Special thanks to

Dr. Peter J. Clarke for giving endless hours of time to my work providing invaluable

feedback, comments, support and most importantly balance, strength and several

cups of coffee. An oversees thanks to Dr. Eric Filiol for his countless reviews of my

work and support of my research. A huge thanks and deep appreciation to Mario

Consuegra for giving selflessly of his busy schedule to take the lead role in creating

my implementation prototypes. A great thanks to the CIS faculty, especially Dr.

Xudong He, Dr. Geoffrey Smith, Dr. Masoud Milani, and Dr. B.M. Golam Kibria

from the statistics department for their tremendous help, feedback and advice. A big

thanks to Tariq, Gonzalo, Irene, Rafael, Selim, Andrew, Yingbo, David and the rest

of the ECS 2nd floor crew for helping me surpass the numerous barriers I encountered

on the road to my PhD. My deepest appreciation to Martha, Haydee, Donaley, Olga

and the rest of the CIS staff for putting up with all my questions and requests, never

failing to help me when I needed it.

v

ABSTRACT OF THE DISSERTATION

A BEHAVIOR BASED APPROACH TO VIRUS DETECTION

by

Jose Andre Morales

Florida International University, 2008

Miami, Florida

Professor Peter J. Clarke, Co-Major Professor

Professor Yi Deng, Co-Major Professor

Fast spreading unknown viruses have caused major damage on computer sys-

tems upon their initial release. Current detection methods have lacked capabilities

to detect unknown viruses quickly enough to avoid mass spreading and damage.

This dissertation has presented a behavior based approach to detecting known and

unknown viruses based on their attempt to replicate. Replication is the qualify-

ing fundamental characteristic of a virus and is consistently present in all viruses

making this approach applicable to viruses belonging to many classes and executing

under several conditions. A form of replication called self-reference replication, (SR-

replication), has been formalized as one main type of replication which specifically

replicates by modifying or creating other files on a system to include the virus itself.

This replication type was used to detect viruses attempting replication by referencing

themselves which is a necessary step to successfully replicate files. The approach does

not require a priori knowledge about known viruses. Detection was accomplished at

runtime by monitoring currently executing processes attempting to replicate. Two

implementation prototypes of the detection approach called SRRAT were created

and tested on the Microsoft Windows operating systems focusing on the tracking of

user mode Win32 API system calls and Kernel mode system services. The research

results showed SR-replication capable of distinguishing between file infecting viruses

and benign processes with little or no false positives and false negatives.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivation . 4
1.2 Research Problem . 6
1.3 Proposed Solution . 6
1.4 Novel Contributions . 7
1.5 Scope and Limitations . 9
1.6 Outline of the Dissertation . 10

2 LITERATURE REVIEW . 12
2.1 Background . 12
2.1.1 Basic Definitions . 12
2.1.2 Computer Viruses . 13
2.1.3 Virus Detection . 22
2.1.4 Windows API System Calls . 26
2.1.5 File System Operations . 27
2.2 Related Work . 28

3 SELF-REFERENCE VIRUS REPLICATION 33
3.1 Formal Model . 36
3.2 Detection Algorithms . 39
3.3 Example . 41
3.4 Limitations . 42

4 SELF-REFERENCE DETECTION PROTOTYPE 45
4.1 User Mode Prototype . 50
4.1.1 Implementation . 53
4.1.2 Limitations . 55
4.2 Kernel Mode Prototype . 56
4.2.1 Implementation . 58
4.2.2 Limitations . 60

5 SELF-REFERENCE DETECTION EXPERIMENTS 62
5.1 Theory Validation . 63
5.2 User Mode Prototype . 63
5.3 Kernel Mode Prototype . 64

6 TEST RESULTS: ANALYSIS AND EVALUATION 72
6.1 Theory Validation . 72
6.2 User Mode Prototype . 80
6.3 Kernel Mode Prototype . 85
6.4 Evaluation of Proposed Solution . 89

vii

7 CONCLUSIONS AND FUTURE WORK 96
7.1 Conclusions . 96
7.2 Future Work . 97

BIBLIOGRAPHY . 99

VITA . 103

viii

LIST OF FIGURES

FIGURE PAGE

3.1 56 Viruses with Replication Attempts . 35

3.2 56 Benign processes with Replication attempts 36

3.3 Formal definition of SR property . 37

3.4 Transitive relation of SR . 38

3.5 Formal definition of SR− replication . 39

3.6 Sample Abstract Graph for vx1 . 40

3.7 Reorganized abstract graph for vx1 after removal of node M 2 41

3.8 SR− replication of Cassidy Peer-to-Peer Worm 43

3.9 Win32 API calls with equivalent read/write operation 44

4.1 SRRAT Architecture . 46

4.2 Mapping of Read Win32 API calls in user version SRRAT 51

4.3 Mapping of Write Win32 API calls used in user version SRRAT 52

4.4 List of Win32 API calls needed to implement user version of SRRAT . . . 53

4.5 Mapping of System Services used in Kernel Version SRRAT 58

5.1 Virus Classification with Total Samples amount 62

5.2 Theory Validation Test Benign Processes - 1 64

5.3 Theory Validation Test Benign Processes - 2 65

5.4 Theory Validation Test Viruses - 1 . 66

5.5 Theory Validation Test Viruses - 2 . 67

5.6 Test Viruses for User implementation of SRRAT 68

5.7 Test Viruses for Kernel implementation of SRRAT - 1 68

ix

5.8 Test Viruses for Kernel implementation of SRRAT - 2 69

5.9 Test Viruses for Kernel implementation of SRRAT - 3 70

5.10 Test Viruses for Kernel implementation of SRRAT - 4 71

6.1 Theory Validation Test Results Benign Processes 74

6.2 Summary Results Theory Validation Virus Test 75

6.3 Theory Validation Test Results Viruses - 1 76

6.4 Theory Validation Test Results Viruses - 2 77

6.5 Theory Validation Test Results Viruses - 3 78

6.6 Theory Validation Test Results Viruses - 4 79

6.7 EW-Win32.Alanis SR-replication graph 81

6.8 Virus Test Results User implementation of SRRAT 82

6.9 Viruses not hooked by User implementation of SRRAT 83

6.10 Viruses not Exhibiting SR-replication in User Mode SRRAT Testing . . . 83

6.11 Summary Results Kernel Implementation SRRAT Virus Test 86

6.12 SRRAT Kernel Mode Log File Amus Virus 87

6.13 SRRAT Kernel Mode Log File Borzella Virus 87

6.14 Virus Test Results Kernel implementation of SRRAT - 1 91

6.15 Virus Test Results Kernel implementation of SRRAT - 2 92

6.16 Virus Test Results Kernel implementation of SRRAT - 3 93

6.17 Virus Test Results Kernel implementation of SRRAT - 4 94

6.18 Virus Test Results Kernel implementation of SRRAT - 5 95

x

LIST OF ACRONYMS

ISR indirect self reference

SR self reference

SRR self reference replication

SRRAT self reference replication analysis tool

VX viruses

xi

CHAPTER 1

INTRODUCTION

The dominance of networked computers and wide spread use of wireless devices has

created a new fertile ground for novel creation and release of destructive, highly infec-

tious, fast spreading computer viruses. Robust virus detection is essential to protect

against these new unknown threats. Current virus detection technology though very

effective in detecting previously discovered viruses, falls short of providing effective

detection against just released unknown viruses. The main reason of this ineffec-

tiveness against unknown viruses is the high dependence of a signature database as

the centerpiece of detection for current virus detectors. Using a signature database

only allows for detection of previously discovered viruses but fails in the detection of

unknown viruses. A previously discovered virus has been isolated and examined by

virus researches. A signature which is a unique string of bytes uniquely identifying a

particular virus is extracted from the executable version of the virus and added to the

database. If the virus evolves in some form that alters the portion of its executable

form pertaining to the signature, detection of the evolved version of the virus may fail.

Behavior based virus detection is a promising approach capable of detecting un-

known viruses. This form of virus detection does not use a signature database. Instead

executing processes are monitored and their behavior is analyzed. If the execution

behavior of a process exhibits virus behavior then the process can be flagged as be-

ing a possible virus. Virus behavior is predefined by the behavior based detection

approach that is being implemented and is usually done by a knowledge expert in

computer viruses. The main problem of behavior based virus detection is defining a

virus behavior that assures the detection of both known and unknown viruses while

not incorrectly detect benign processes as being a virus. The result of this diffi-

1

culty is several behavior based virus detection approaches define virus behavior that

successfully detect viruses and not benign processes only under stringent execution

conditions. Other behavior based detection approaches define virus behavior that suc-

cessfully detect only a specific class of virus. All of these behavior based approaches

are built upon some characteristic of a virus that is identifiable only under specific

execution conditions or in a specific class of virus. To be more effective, these behav-

ior based detectors should be based upon a virus characteristic that is consistently

present in all viruses. This can facilitate successful detection of both known and

unknown viruses belonging to several classes and under several execution conditions.

One goal of this research is to identify a characteristic of computer viruses that is

consistently present in all viruses and create an effective and robust behavior based

virus detection approach that is based on that characteristic.

The seminal research formally defining a computer virus show the qualifying fun-

damental characteristic of a virus to be replication. When a malicious code is classified

as a virus, it is done so only after assuring the malicious code has the ability to repli-

cate. Replication is the main characteristic that differentiates a computer virus form

other forms of malicious code. This makes replication the fundamental qualifying

characteristic of a virus, thus every virus is guaranteed to have the ability to repli-

cate. The implication of this is that replication is the one characteristic of a virus

that is consistently present in all viruses regardless of what class the virus belongs

to and regardless of under what execution conditions the virus will run. This makes

replication an excellent virus characteristic that can be used to build an effective and

robust virus detection approach. The virus detection approach presented in this re-

search is based on virus replication.

2

A virus will execute a series of operations during its replication process. Having

the ability to replicate does not guarantee a virus will successfully replicate every time

it executes. A virus may not even attempt replication for several different reasons.

When a virus does attempt replication, there is one property of this process that is

almost always present. This property is implied in the following observation: “When

a virus replicates, what is it replicating?”, the answer is “itself”. This observation

implies an essential part of the replication process which is when a virus attempts to

replicate itself it must refer to itself as the source of the replication. The act of a virus

referring to itself in order to replicate is an essential property of virus replication. In

this research we define this property to be the self-reference property (SR). When

a virus attempts a replication where SR is present, we define that specific form of

replication as self-reference replication (SR-replication).

In this research the term “itself” refers to the static image of the virus file saved

on a storage device such as a hard drive. When a virus replicates it may do so in one

of three general ways: it may copy itself into an already existing file, it may create a

new file containing a copy of itself or it may copy itself into a memory location and

continue execution from there. The first two types are part of a general class of viruses

titled file infector viruses, the last type belongs to a virus class titled memory resident

viruses. There are many known viruses that are strictly memory resident viruses, but

they are outnumbered by the far larger class of file infector viruses. There are also

several hybrid viruses that replicate as both file infector and memory resident. The

vast majority of known viruses are either strictly or partially file infector viruses.

Another important aspect of virus replication is the desired destination, normally

this is one of two places: the local computer where the virus is saved or executing

from, or another computer across a network, where the network can be wired or wire-

3

less. A subtype of the virus called a worm is designed to replicate across networks,

many classes exist for worms such as peer-to-peer worms, network worms and email

worms. One of the goals of a worm is to replicate from one computer to another, but

in many cases they will first replicate on the local computer to then attempt replica-

tion across a network to another computer. Most of the known worms replicate both

on a local computer and across networks with a smaller number strictly replicating

across networks. Viruses can spread via replication across computers and networks

either slowly or very fast. Many new viruses have been termed fast spreading, these

types of viruses such as Warhol worms and Fast worms can spread to over 90% of

vulnerable computers in as little as 15 seconds. It is difficult to determine how many

times a virus will attempt to replicate on a local computer. Static analysis of a virus

could provide evidence hinting toward high or low frequency of replication attempts.

Unfortunately in the case of fast spreading viruses, static analysis is not an option

when immediate detection is of utmost importance.

This research is to develop a detection approach for file infector viruses attempting

SR-replication on a local computer. An assumption is made that SR-replication is a

behavior belonging to computer viruses and is unlikely to occur in benign processes.

The goal of the detection approach is to stop the proliferation of known and unknown

fast and slow spreading viruses on a local machine by terminating them upon identi-

fying their first attempt to replicate using SR-replication where the virus can belong

to one of many classes and can execute under several different conditions.

1.1 Motivation

Effective detection of unknown viruses upon first release is one of the biggest chal-

lenges facing computer virus researchers today. A study from 2006 showed that virus

4

companies required on average 6 hours to analyze and extract a signature from a

newly discovered virus and add it to their signature database [56]. This was the

same amount of time needed by these companies two years earlier in 2004 [8]. Dur-

ing the same two year period several fast spreading destructive viruses most notably

the Witty worm [49] have emerged in the wild causing several millions of dollars in

damages. In 2006, an FBI survey reported computer viruses as the number one cause

of financial loss for American companies [28]. At over $67 billion dollars, viruses

accounted for over 70% of all financial losses for the corporations surveyed. For the

same year Kaspersky Labs reported a strong rise in the number of new viruses and

more momentum in the second half of the year with email worms topping the list

[4]. Kaspersky also forecasts that viruses will increasingly appear, helping to spread

other forms of malware and use more sophisticated techniques to avoid detection.

Virus writers are also being well funded by rogue governments and organzied crime,

allowing the development of cutting edge detection avoidance and fast distribution

techniques.

Despite this growing problem antivirus companies continue to use signature databases

as their primary tool for virus detection. In 2006 Kaspersky labs averaged 10,000 new

record updates to its signature database per month and 200 new malware samples

per day [16]. Even after solutions have been released it is unknown how much time

passes until all end user signature databases are updated. It is clear that antivirus

companies will continue to improperly and slowly handle the ever growing virus prob-

lem using signature databases as the centerpiece of detection. The future outlook and

forecast trends show viruses to be increasing and working closely with other forms of

malware continuing to injure and infect computers world wide [3, 2]. In early 2008,

the assistant secretary for cyber security and telecommunications at the Department

of Homeland Security Gregory Garcia renewed the department’s determination to

5

create a secure cyberspace citing the exponential growth of connected devices as a

breeding ground of future attacks [32]. The history and future outlook of computer

viruses on the global community along with the inadequate performance of current

virus detection technologies serves has motivation for this research.

1.2 Research Problem

The research presented in [38, 5] demonstrated the inability of current signature based

virus detectors to detect obfuscated versions of known viruses. This inability leaves

computers susceptible to infection by unknown viruses. Currently, very few behavior

based detection approaches are available and widely used as a main form of virus

detection by companies and consumers. The central problem investigated by this

research is the ability to find a characteristic of viruses that can be used to detect file

infecting computer viruses when they first attempt replication in a local computer and

can a differentiation be established between viruses and benign processes based on this

characteristic. A second problem investigated by this research is the effectiveness of

a behavior based virus detector using this characteristic as its main form of detection

in stopping or minimizing the replication of both known and unknown file infecting

viruses executing in a local computer with minimal false positives and false negatives.

1.3 Proposed Solution

In an attempt to solution the first research problem, SR-replication will be used as the

main point of distinguishing between viruses and benign processes. By establishing

this distinction the rate of false positives and false negatives between viruses and

benign processes can be kept to a minimum. The second research problem will be

addressed through the creation of an SR-replication based virus detector prototype

that can be executed on a local computer to monitor processes as a real-time monitor.

6

When a process exhibits SR-replication behavior, that process is flagged as exhibiting

possible virus behavior. The following assumptions are made for this solution:

1. SR-replication is a characteristic unique to virus and not observed in benign

processes.

2. The prototype will only detect file infecting viruses which replicate using SR

on a local computer.

To test the proposed solution, static analysis of known viruses will be conducted to

analyze the presence of SR-replication. This analysis will also be conducted on benign

processes to confirm our assumption by verifying the absence of of SR-replication in

these non-viral processes. The prototype will be executed on a virtual machine and

a real computer for several days to test for false positive production. The prototype

will also be tested against a set of SR-replicating file infecting viruses to test for

accurate detection and virus process termination plus the absence of false negative

production. The effectiveness and resource usage of the prototype will be determined

based on a several day test on a real computer with the goal being an establishment

of non-overwhelming usage of system resources allowing the system to function in a

normal manner while the detector is in use.

1.4 Novel Contributions

This research establishes three novel contributions in the area of computer virus

detection, they are as follows:

1. Creation of a new virus detection approach using SR-replication.

2. Identification of known and unknown file infecting viruses with no a priori

knowledge of known viruses using this approach that produces minimal false

positives and false negatives.

7

3. A behavior based virus detector implementing the approach that is effectively

used in a real time environment without significant system slowdown.

Up to this point there have been several behavior based approaches to virus de-

tection. Many of these detection approaches use a specific characteristic of viruses

for their detection methodology that is not consistently found in all viruses [39].

The result is detection limited to specific classes of viruses or under specific con-

ditions. In this research I characterize a specific form of virus replication which is

the fundamental virus characteristic present in all viruses. Establishing replication

as a characteristic that is fundamental and present in all viruses makes it a perfect

research area for new detection approaches. The benefit of a consistent characteristic

is the the ability to rely upon it when creating detection algorithms. The reliability

allows for the algorithms to possibly be very effective in detecting viruses belonging

to several different classes and under many different execution conditions.

The ability of having one characteristic that identifies both known and unknown

viruses with no a priori knowledge is a powerful step forward in the field of virus

detection. The fact that this one characteristic also produces minimal false positives

and false negatives makes it very appealing as a standalone implementation for detec-

tion in real time or as a component working with other establish detection methods

resulting in in a more robust virus detection solution. A standalone implementation

can consume minimal resources of the system and perform silently in the background

this is ideal for home users. As one component of a bigger solution it is key for enter-

prises with a wealth of computer resources and are inclined to protect every vector

of their system from a possible computer virus attack.

The principle benefit of a virus detector based on SR-replication is its ability to

detect a virus replication upon its initial replication attempt in a computer system.

8

Many of the viruses released in recent history have been fast spreading viruses. These

infect and injure a vast majority of susceptible computers in under 3 hours from

initial release. A detector using SR-replication may be able to thwart some of this

fast spreading by identifying the virus’s replication behavior in a local computer and

terminate it. Thus stopping that virus’s proliferation into other computers across a

system.

1.5 Scope and Limitations

There are two main forms of virus replication, the first is by infecting already existing

files and creating new files containing a copy of the virus and the second is by creating

a copy of the virus in memory. In its current form SR-replication will only detect

viruses replicating by infecting existing files or creating new files which contain a copy

of the virus. Viruses that replicate by creating a copy strictly in memory will not be

detected. Besides replication, a virus also injures a computer in one or several dif-

ferent ways. SR-replication is designed to only detect the replication aspect of a virus.

If a virus injures and causes damage to a computer and never replicates it will not

be detected by my approach in its current form. Also if a virus injures and causes

damage to a computer before replicating it will not be detected until the replication

commences, therefore any damaged incurred on a computer by a virus before repli-

cation can not be stopped or minimized by my approach. SR-replication is most

effective in stopping or minimizing replication and damage from viruses that attempt

replication when first executed or very early on in their execution.

9

In its current form SR-replication is designed to detect viruses replicating in a

local computer and does not detect replication across a network from one computer

to another. It will not detect viruses that strictly replicate across a network without

ever attempting replication on a local computer at some point during its execution.

Viruses that replicate without SR will not be detected by my approach in its

current form. It is possible for a virus to replicate itself by copying itself from some

other location that already contains a copy of the virus. I define this form of replica-

tion as indirect self-reference replication (ISR-replication). This form of replication

has been identified as part of the replication process of some viruses, for example the

Anarch email worm and the Rega network worm [6, 46], but it is not commonly used

by the vast majority of known viruses.

A prototype of SR-replication will have different levels of effectiveness depending

on the specific layer of the operating system that is chosen as the target of the

implementation. If a prototype is created at a user level it may have a smaller

detection rate than a prototype implemented at a lower level, for example the kernel

level. This results from the fact that viruses are designed to avoid detection as

much as possible and very few may actually run at user level. The vast majority of

viruses attempt to run at the kernel level or lower in an attempt to subvert higher

level security measures that do not have privileged access to the lower levels of the

operating system.

1.6 Outline of the Dissertation

The balance of this dissertation is as follows: Chapter 2 will provide background

and related work, Chapter 3 presents the theoretical foundation for SR-replication,

Chapter 4 is a description of the implementation prototypes used in this research,

10

Chapter 5 details the prototype experiments, Chapter 6 gives an analysis of testing

results and Chapter 7 consists of conclusion and future work.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Background

Society has been dealing with computer viruses since the early 1980’s [44]. During this

time over 70,000 viruses have been discovered in the wild and the number continues

to grow. Understanding computer viruses is a never ending task that is necessarily

part of being a computer virus researcher in order to keep up with detection of

the latest virus writer techniques. The evolution of viruses in this time period has

been extraordinary with the development of almost foolproof detection avoidance

techniques, fast spreading distributions, innovative injure and infection strategies and

novel approaches of attacking vulnerable computers. In this chapter I will start with

some basic definitions then present background information on computer viruses and

detection focusing on theoretical foundations along with different classifications of

virus types, different forms of file infection strategies and virus evolution techniques.

An overview of file system operations and Windows API system calls, which are used

in the implementation prototypes will also be given. Related work to this research

will also be presented along with the betterments of this research in comparison to

these noted works.

2.1.1 Basic Definitions

1. Malware: a portmanteau of the words Malicious and Software, is defined as

software that is created to injure and/or infect a computer system without the

express consent of the computer’s owner. Malware has several subcategories

including: viruses, worms, trojan horses, logic bombs, mass-mailers, germs,

exploits, downloaders, dialers, droppers, flooders, rootkits, adware and spyware

amongst others.

12

2. Virus: a program that infects other programs by modifying them to include a

possibly evolved version of itself.

3. Worm: a specific form of a virus designed to replicate across networks.

4. Trojan Horse: a program attempting to appear as a legitimate benign program

that once executed performs benign actions while covertly performing malicious

actions.

5. False Positive: A condition that arises when a benign object is classified as a

malware.

6. False Negative: A condition that arises when a malware is not identified and

classified as benign.

2.1.2 Computer Viruses

One of the early works on computer security threats is presented in [31]. Anderson

presents a definition for a threat as being a potential possibility of a deliberate and

unauthorized attempt to access or manipulate information or render a system unre-

liable or unusable. He defines vulnerability as a hardware or software flaw that can

lead to accidental disclosure of information. An attack is a planned execution of a

threat and a penetration is a successful attack. Anderson describes how surveillance

of users activity, via log records, on a system can identify computer threats. He de-

fines external and internal penetrations giving different levels or rings or security to

protect data from being penetrated. Three types of users are defined for detecting

internal penetration: 1. the masquerader, 2. the legitimate user, 3. the clandestine

user.

The masquerader is seen as the easiest to detect by identifying abnormalities in

time of computer use, frequency of use, amount of data access and which data was

13

attempted to be accessed. Since the legitimate user is authorized to use the system,

abnormal usage patterns become harder to detect. Anderson claims that abnormal-

ities in totals of time of computer use, data access, attempts to access unauthorized

data would need to be analyzed to detect the misfeasance of a legitimate user. The

clandestine user is argued as the most difficult to detect assuming that administrative

rights have been acquired. This allows for activities that may not be recorded by log

records. Also the ability to erase/overwrite/deactivate log records may be available

within the privileges. Anderson presents a surveillance system that includes file mon-

itoring, user monitoring and device monitoring all based on analysis of log records

and analyzing for abnormalities in time, frequency, access and other parameters. The

definitions of threat, vulnerability, attack and penetration given by Anderson is em-

bodied in the currently accepted definition for malware [62]. His methods of detecting

attacks and penetrations by analyzing log records is seen in the publications of others

including those dealing with intrusion detection [47, 12, 45]

A computer virus is defined as a program that can infect other programs by mod-

ifying them to include a possibly evolved version of itself [22]. The key characteristic

of a virus is its ability to replicate. A virus must replicate either by infecting other

files or producing possibly evolved copies of itself. A mailicious program that does

not replicate can not be classified as a virus. Computer viruses have become very

sophisticated in detection avoidance, fast spreading and causing damage. A highly

populated taxonomy of viruses exists with each classification having its own chal-

lenges for successful detection and removal [14, 44]. Today viruses are regarded as

a real global threat and viewed as a weapon usable by those bent on creating large

scale interruption of everyday life [11, 48].

14

The concept of self-replication was considered by John Von Neumann and Arthur

Burks [29, 61]. Their works based on cellular automata essentially proved the replica-

tion property can be realized. Though virus replication was not explicitly addressed

in their work it laid foundation for future seminal papers on viruses. The automata

produced were very complex, others produced less complex self reproducing automata

and can be found in [18, 10, 27, 40]. In 1938, Kleen published the Recursion Theorem

[50]. This is considered the very first formalism of a self reproducing program. The

theory proves the existence of viral programs through the use of recursive functions.

The theorem also describes what is later to be called polymorphic viruses.

Thompson presents in [57] a method of showing how a trusted program can in

fact abuse that trust by creating self reproducing programs that are deemed to be

benign along with creating other trusted programs that are in reality Trojan Horses.

Thompson creates a C compiler that is modified to purposely create malicious ver-

sions of itself. This is accomplished by knowing when it is compiling a new version

of itself at which point the malicious code is implanted. This new version of the C

compiler will forever create malicious versions of itself and other C compilers every

time they are compiled using the malicious compiler. Thompson also shows how the

compiler can implant a Trojan horse in other programs by identifying them at com-

pilation time. The point is illustrated with the Unix login program that is implanted

with malicious code allowing another person to log into any Unix system using that

login program. The moral of this Turing Award winning paper is no program that

was not fully written by you can never be fully trusted. Interestingly enough the form

in which the C compiler functions with the malicous code makes it a form of a self

replicating program.

15

In 1986 Fred Cohen defended his PhD dissertation at the University of Southern

California entitled Computer Viruses [20]. This dissertation is considered one of the

seminal papers researching computer viruses. It was the first time the term virus was

used to represent self replicating programs. Using Turing machines, Cohen describes

a virus as being a sequence of symbols which is able, when interpreted in a suitable

environment, to modify other sequences of symbols in that environment by including

a possibly evolved copy of itself. He also provides the first formal definition of a

computer virus using Turing machines.

A virus is presented as being a viral set, where membership is acquired if and

only if a sequence of symbols on an input tape causes a Turing machine to copy a

sequence of symbols to some new location further down on the tape. This captures

the fundamental meaning of virus replication. Cohen also gives a formal definition

for viral evolution, showing that a virus can change its appearance during replication.

This was the fundamental definition for the class of polymorphic and metamorphic

viruses [44]. Many properties of viral sets are formally shown. He proved that it is

undecidable to determine if a virus is an evolved version of some other virus.

In [21], Cohen conducts various experiments running computer viruses on com-

puter systems. The results showed that systems protected by the Bell-LaPadula [13]

system were insufficient to prevent viral attack and determines integrity control [34]

to be essential to securing a system. Cohen states in [21] that absolute protection

from viruses is attainable by absolute isolation of a computer but notes that this is

impractical. He further states that to be secure from viruses a system must protect

against outgoing information flow and to be secure from information leakage a sys-

tem must protect against incoming information flow. To allow sharing there must

be information flow between computers in a system. Thus Cohen’s main conclu-

16

sion in [21] is sharing in a general purpose multilevel security system is in such direct

contrast to virus security that they are not reconcilable and coexistence is impossible.

A second seminal paper in the area of computer viruses was presented by Adleman

[36]. Adleman built from the work of Cohen’s PhD dissertation, Adleman was his

adviser at USC [14]. Adleman considered the more general class of malware instead

of focusing on viruses. He gave classifications for malware and formal definitions and

proofs based on recursive functions. He states for every program there is an infected

form of the program. A virus can be viewed as a mapping from non-infected to in-

fected programs. An infected program on every input will do one of three things:

injure by damaging the computer, infect by replicating itself into other programs or

imitate where it neither infects nor injures. Imitate is considered a special case of

injure when no files are found suitable to infect.

The two basic types of malware defined are pathogenic and contagious. Where

pathogenic will injure and not infect or imitate. Contagious will infect or imitate but

not injure. The following four basic types are defined: benignant is not pathogenic or

contagious, Trojan horse is pathogenic and is not contagious, carrier is not pathogenic

and is contagious, and virulent is pathogenic and is contagious. This classification

considers the behavior of an infected program compared to its non infected form. A

second classification is given, here only the behavior of an infected program alone

is considered. Four types are defined as follows: benign is not pathogenic and not

contagious, Epeian is pathogenic and not contagious, disseminating is not pathogenic

and is contagious, and malicious is pathogenic and contagious.

Three final observations are made with members of the second class and those of

the first class as follows: if an object is benign then it is benignant, if an object is

17

Epeian then it is benignant and a Trojan horse, and finally if an object disseminating

then it is benignant and a carrier. The second classification included all current forms

of malware with Epeian includes non-replicating malware such as Trojan horses and

logic bombs [15, 44] and disseminating and malicious encapsulate replicating malware

such as viruses and worms. The classifications are built to map every classification

back to a logical connection of the three basic behaviors of an infected program: in-

jure, infect and imitate. Today classification of malware is still performed using these

same basic characteristics.

Viruses have several subcategories of which the most prevalent are email worms,

peer to peer worms, network worms and Win32 viruses [44]. Email worms attempt

to spread primarily by covertly sending out emails attaching the virus or a copy of

the virus to the email. The addresses are usually harvested from the victim computer

and the victim’s email address is used as the sender, this is done to add a layer of

legitimacy to the virus and give confidence to the recipient in opening the attachment

thus causing the virus to enter a new computer and continue on its path.

Peer to peer worms are designed to spread through networks via peer to peer file

sharing software such as Limewire, Emule, Morphius and others. Often these worms

will replicate in known shared directories of a computer by creating new copies of it-

self several times. Each new copy will have a filename reflective of a currently popular

song, video game, celebrity or movie in the hopes of enticing other users to download

and execute the file on their computer.

Network worms replicate primarily by exploiting a vulnerability in a computer

system allowing them to spread from one computer to another across several sys-

tems. Win32 viruses represent those viruses that employ the Microsoft Windows

18

32bit Application Program Interface (Win32 API) of the Windows operating system

as part of their execution. Viruses using the Win32 API at some point during their

execution are the most prevalent amongst all viruses [63].

There is a wide array of methods in which a virus can infect a file. Each of these

is a specific form of either modifying an already existing file are creating a new file

which is simply a copy of the virus itself. What follows is a list of the better known

infection strategies along with a brief description of each.

• Overwriting Viruses: a primitive technique that simply overwrites existing files

with a copy of the virus. Files that fall victim to this infection cannot be

disinfected. They must be erased and restored from an existing uninfected

backup copy, an example of this virus is the Loveletter mass mailing email worm.

This virus spread across network via attachments to emails, once executed on

a computer the virus would overwrite with itself all files ending in one of a

predefined set of file extensions.

• Appending Viruses: infect existing files by inserting a copy of the virus at the

end of the file. To successfully execute, the virus will modify the header portion

of the infected file by inserting a jump command to the memory location of the

virus within the file. The result of this is the virus executing first each time

the infected file is accessed. These files can be disinfected. The Vienna virus

implements this infection technique.

• Prepending Viruses: A very successful technique, this infection works by the

virus inserting itself into the beginning of a already existing file. The result is

instant execution of the virus each time the infected file is accessed. The file

can be disinfected, a good example of this technique is the virus Polimer.512.A

19

which inserts itself with a size of 512 bytes long to the beginning of executable

(.EXE) files.

• Parasitic Viruses: Similar to the prepending virus, this type of infection inserts

the virus to the beginning of an already existing file and appends the original

beginning of the file to the end of it. In some cases the entire original file will

be save as a newly created file in some other location of the computer. A file

infected in this way is difficult to disinfect, normally the correct order of the file

cannot be restored. Viruses using this technique are Virdem, Jerusalem, Qpa

and Klez.

• Cavity Viruses: This technique does not increase the size of the file it is infecting.

It works by inserting the virus into useless areas of an existing file, for example

a file may contain an area full of zero’s, the virus will target this area to insert

itself. At the beginning of the file the virus inserts a jump command to the

memory location of the beginning of the virus. At the end of the virus is

a second jump command back to the original start point of the file. Some

examples of this technique are Lehigh and W2K.Installer.

• Entry Point Obfuscation (EPO) Viruses: This infection technique inserts the

virus within some area of an already existing file. A jump command to the

virus location is not placed at the beginning of the file, instead it is placed at

some other location within the body of the file. This leads to the virus being

executed at random. It is also a form of avoiding certain detection techniques

that analyze the beginning of files for possible modifications like the insertion of

a jump command. Some viruses using this technique are Olivia and Nexiv-Der.

Among the many different classifications in which viruses can be placed, one im-

portant category is code evolution techniques. Virus evolution occurs during the

20

replication process of a virus. The purpose of evolution is to avoid detection by creat-

ing new versions of the virus that appear differently is some form when compared to

the parent virus that created it. There are three basic categories of virus evolution:

Non-evolving viruses, Polymorphic viruses and Metamorphic viruses.

Non-Evolving viruses do not modify their appearance in any way when they en-

ter the replication process. Every time the virus replicates, the newly created virus

appears exactly the same as the parent virus. The impact of this is facilitation of

identifying the virus on a computer system. A signature based virus detector only

needs one signature to detect all copies of the virus in a given system.

Polymorphic viruses mutate in some form while keeping the original virus code

intact. This is usually achieved through encryption, where a virus creates an encryp-

tion shell around itself hiding the virus from detectors. Many of these viruses carry

with them a decryption engine which is usually not encrypted and can be used for

detection. More advanced viruses also encrypt the decryption engine to further avoid

detection. In every case of polymorphic viruses there is always a small portion that

is not encrypted and is the target of detection. Some known polymorphic viruses are

1260, HPS and Marburg.

Metamorphic viruses mutate their appearance by actually changing the virus code

itself. Encryption is not used to hide the virus code, instead the virus code itself is

modified to produce a different appearing virus that performs the same as the parent.

This type of virus is normally a single piece of code that carries data in the form

of variables within it. When executed the virus uses this data in a decision process

to created evolved versions that have some its code replaced or augmented with

the data. The result is the same virus in a new body. There is great difficulty in

21

detecting this type of virus since with every evolution the signature used for detection

can potentially be completely replaced with new code.

2.1.3 Virus Detection

Virus detection can be defined as the ability to identify the presence of a virus in

an object [22, 44]. The single most important aspect of Cohen’s work in [22] is his

analysis of virus detection. He proves the problem of viral detection to be undecidable

via a reduction from the Halting problem [22, 21]. The implication of this result is

no viral detection algorithm is capable of detecting all known and unknown viruses.

This leads to the production of false positives which are non viral objects being iden-

tified as viral and false negatives being those viral objects not being identified as such.

Many virus detection algorithms have been presented [43], each with its advan-

tages and disadvantages. Virus detection can be classified as one of two forms: signa-

ture based and behavior based [44, 14]. Signature based detectors work by searching

through an object for a specific sequence of bytes that uniquely identify a specific

version of a virus. This form of detection is also known as string scanning, it is the

simplest form of scanning and is quite effective. This type of detection relies on a

virus signature database [15, 44].

Each time a new virus is discovered in the wild, the binary form of the virus is

analyzed by a virus researcher. One of the goals of the analysis is to find a sequence of

bytes in the binary that can be used to specifically and uniquely identify the specific

virus being analyzed. The sequence of bytes is copied from the binary and added to

the virus database. The sequence of bytes used to identify a virus is called the virus

signature. Virus detectors using these databases must be updated frequently to get

the latest database with the most recently added virus signatures. Currently signa-

22

ture based virus detection is the predominant detection method used in computers

around the world.

Behavior based detectors identify an object as being viral or not by scrutinizing

the execution behavior of a program [23, 47, 44, 15]. These detectors do not use

signatures to identify a specific virus. Instead they use measures of normal or abnor-

mal behavior to detect a running processes’s behavior as viral. Abnormal behavior is

flagged as viral and is either terminated or suspended from executing further. Behav-

ior based detection is able to detect unknown viruses [1, 17, 9]. Since the behavior of a

viral process can be similar to that of benign processes, behavior based detection can

cause false positives and false negatives. The overhead of dealing with production of

false positives keeps behavior based detection currently out of wide spread computer

use [1, 17].

In [19], Ellis presented a detection method for worms in a network using behavioral

signatures. Ellis defines a behavioral signature as having aspects of any particular

worms behavior common across the manifestations of a specific worm and with nodes

that spread in temporal order. Three characteristic patterns of worm behavior in

a network were identified as: passing similar data between two machines, Identi-

fication of the tree-like structure created by the intercommunication patterns that

emerge from infected nodes and changing a server into a client. These behaviors were

developed from the definition of a worm. Ellis also introduces network application

architecture (NAA) as a method for distributing network applications. NAA impacts

the sensitivity of this behavioral approach. This is done by placing constraints on

traffic patterns, which are violated by the patterns of worm traffic. These constraint

violations are shown to be straightforward to detect. The abstract communications

network model (ACN)is a network theoretical model of computer networks and their

23

data flow presented in this paper. It is a realistic network including representations

of hosts, routers, sensors, hardware, routing, data flow, spans, user workstations and

servers. The behavioral signatures, NAA’s and worm propagation are all implemented

within the ACN framework. A worm propagation model, consisting of a set of span-

ning trees that extends the ACN to include worm spread across a network is given. A

descendant relation between nodes in the spanning trees captures communication pat-

terns that appear as a result of worm spread, this gives the foundation for detection.

The paper identifies architectural designs that improve worm detection sensitivity.

The detection approach was shown capable of detecting classes of worms without a

priori knowledge of any specific worm.

Schneider presents in [23] a characterization of security policies that are enforce-

able using execution monitoring which is an implementation of behavior based virus

detection. A security policy specifies execution that is deemed undesirable. Execution

monitoring can only enforce security policies that are a safety property. A policy that

is a safety property will not allow any bad thing to happen. This means that when a

bad thing is about to happen the enforcement mechanism terminates the execution.

A security violation is to occur at the start of some execution. This approach does

not know what may happen at some future point in the execution, it only knows what

has happened. This could lead to false positive production by terminating an execu-

tion that violated a security policy and is a part of some bigger execution that does

not violate any security policy. This condition greatly limits the type of monitoring

performed. A security automata is characterized as the enforcement implementation

of execution monitoring. When an execution starts an automata is initialized incor-

porating the security policy being enforced. For every step of execution the automata

attempts a transition to an acceptable state using an input symbol coming from the

executing object. If this succeeds the execution continues one more step. This back

24

and forth process continues until execution terminates or the automata enters and

unacceptable state. This indicates a security violation and the execution should be

terminated.

Bergeron presents [26] a method of detecting malicious code in commercial off the

shelf components (COTS) using binary executable static slicing and statistical anal-

ysis. Static slicing is used to extract security critical code fragments. The fragments

are then verified against behavioral specifications to statically decide if they include

malicious behavior. The approach taken consists of three main steps: first, disassem-

ble the binary code; second, create a high level abstract view of the disassembled code

and use program slicing to remove parts of the code that are security critical; third,

detect malicious behavior in the slices based on program checking. The disassembly is

performed with commercial disassemblers. High level representation is achieved using

transformations representing idioms. An idiom is defined as a sequence of instruc-

tions holding logical meaning not derivable from the individual instructions. Slicing

the high level representation of the program is meant to retain only relevant instruc-

tions, particularly API calls that influence the value of registers. This is achieved

by using a slicing criterion. The criterion specifies a node of a control flow graph

of the disassembled code and a subset of program variables. The result is a set of

instructions used in the computation of the variables subset, this is called a slice. By

examining the variables modified in a given slice, the authors assume the slice to be

malicious or not. A given example deals with a representation of passing information

of a file named “security.txt”. This leads to assumption of malicious behavior due to

transmission of security critical information.

25

2.1.4 Windows API System Calls

With the release of Windows 95 by Microsoft in 1995, a new set of system calls was

introduced. This set was call the Windows 32 bit Application Program Interface

(Win32 API) [63, 44]. The set consists of 32 bit system functions usable by any

Win32 application. The purpose of the API was to provide a set of optimized system

level operations allowing applications to run faster. The set is currently supported

by all Windows platforms. All the API functions are stored in the following dynamic

link libraries: Kernel32.dll, User32.dll, Gui32.dll and Advapi.dll. When an process is

labeled a Win32 process it indicates that process uses the Win32 API. When a Win32

process is first executed it is analyzed by the operating system and the memory ad-

dress of each Win32 API system functions that it may call is exported from a DLL

and placed in an import address table (IAT). Each Win32 process has its own IAT

and when the process makes an API system call, it looks up the function’s address

in the IAT and passes to that address any necessary parameters and the function

proceeds with execution. When an system call is made it is usually from a process

running in User mode, the called function is filtered through the operating system to

its equivalent function in the Kernel of the operating system. Once in the kernel a

service is usually requested to carry out the operation and the result filters back up

the the user application that originally made the call [25].

The Windows Kernel is an area of privileged access in charge of running the ma-

jority of system services. The kernel provides a set of its own Native Kernel mode

API functions a subset of which is called Zwxx routines [41]. These routines can be

called directly by any Kernel mode process. When one of these routines is called it

is filtered to a system request to fulfill the task.

26

The complete list of Kernel mode functions is stored by memory location addresses in

the System Service Dispatch Table (SSDT), this table is accessed each time a Zwxx

routine is called, the parameters are then passed to the memory location and the

function continues with its execution [25, 58].

2.1.5 File System Operations

A file can be considered as an abstract data type that has attributes and operations.

The attributes of a file include: name, identifier, type, location, size, protection, and

time, date and user identification [51]. The basic operations of a file include: creating,

writing, reading, repositioning, deleting and truncating [24, 51]. A virus is defined

as a program that can infect other programs by modifying them to include possibly

evolved version of itself [22]. From the point of view of the system a virus is a file

and therefore possesses the attributes and operations of files. I can deduce that if the

virus copies itself is must therefore invoke the read and write file operations when

it is infecting other programs. Therefore the virus must have the appropriate access

privileges in order to perform the copy [35]. In my approach it does not matter if the

copy was successful or not since I am just interested in the virus making an attempt

to replicate.

In this research I use the name, identifier and location file attributes to reference

the static image of the file on a storage device. The name (identifier - a unique tag)

of a file F is represented as F.name. The location of F is usually an argument of the

write and/or read operations that are used during file replication. Writing F involves

making a system call specifying both the name of F and the location where F will

be written. To read F a system call is invoked that states the name of F and where

in memory F or a part of F will be placed. In the event that F cannot be written or

27

read in one execution of the operation then a pointer keeps track of the next block

to be written or read.

2.2 Related Work

Skormin et al. present an approach to detect replication in self contained propagating

malware [52]. Their detection is done by monitoring at run-time the execution of nor-

mal code under regular conditions. They monitor the behavior of each process and

analyze the system calls, input and output arguments and the execution results. The

Gene of Self Replication models the replication of a process using building blocks.

Each block is a portion of the self replication process including opening, closing,

reading, writing and searching for files and directories. The approach detected sev-

eral viruses across many classes with little or no false positives. My detection method

focuses only on read and write operations that have SR. This is a simplification of

the Skormin et. al. approach which consider additional operations such as search,

open, create as essential parts of a replication process. My simplified approach re-

duces the overhead time and analysis needed to detect virus replication resulting in

faster detection.

Analysis of system call arguments to detect malicious attacks is found in [12].

Several models are presented to characterize system call arguments. These character-

izations are used to detect anomalous behavior. The research states two assumptions:

(1) malicious attacks appear in system call arguments. (2) system call arguments used

in malicious attacks substantially differ from arguments used during normal applica-

tion execution. The models detect anomalies in the arguments such as unreasonably

long string length, unusual characters and illegitimate values. The analysis of the

arguments are used to create a score that determines if the system call is part of an

attack. The models were trained with sequences of system calls giving no regard to

28

the sequence but focusing only on the arguments. The testing results showed the

models to be effective in detecting malicious attacks with low false positives. My re-

search also analyzes system call arguments without considering the sequence in which

the system calls are made. The difference in my approach is I only consider read and

write system calls used during replication of a virus. My analysis of system calls

is much faster since it only involves a simple check for SR-replication. This faster

approach results in less overhead quicker detection than what Mutz et al. propose.

A rule based approach for analyzing system call arguments and their invoking

process appear in [37]. The research proposes a threat level classification of system

calls based on their ability to penetrate a system with full system control and denial

of service attacks. This classification is used to grant invocation of security critical

system calls. The system call is invoked only if the process invoking the call and the

arguments comply with an access control database. The system call arguments are

analyzed to detect malicious intent such as rewriting a critical directory or process.

This work takes file system calls into special consideration as they can lead to pen-

etration of privileged areas of a system. My work also considers file system calls as

they are primarily used in the replication process of a virus. My approach differs in

which system call arguments are analyze. I only analyze arguments of read and write

system calls leading to less analysis and faster detection.

The host-based intrusion detection system BlueBox [53] defines system call in-

trospection. The introspection consists of rules used to analyze system calls when

they are invoked to conclude if they can be part of an intrusion or not. System call

arguments are scrutinized to prevent time-of-check-to-time-of-use attacks and proves

effective. The arguments are recorded by BlueBox for a system call at time of check.

At the time of use the arguments present in the system call are compared to the

29

recorded arguments. Any difference in the arguments concludes the system call to

be a possible attack. My approach also analyzes system call arguments, but at the

point of execution. I inspect the arguments of system calls that are a read or write

system call. My approach has the advantage of analyzing the arguments of a smaller

number of system calls leading to faster analysis and detection.

In [47], anomalous intrusion detection was performed via system call monitoring.

A database was trained to recognize the normal behavior of benign processes in a

system. The benign processes were executed multiple times and their sequence of

system calls was recorded in the database. Anomaly detection occurred by monitor-

ing process executions. The system calls made by the process were compared to the

database, if the process made system calls not matching the database, the process

was marked as anomalous. An assumption was made stating anomalous behavior

is assumed as an intrusion. Their are some key drawbacks to this approach. First,

determining exhaustive training of the database for a benign process. It is the de-

cision of a human to state when a benign program has been executed enough times

to capture all possible sequences of system calls even with short sequences. What

guarantee can be given toward a short sequence of system calls not being left out? If

this occurs the detector can create a false positive by identifying normal behavior as

anomalous. Second, frequent retraining is needed each time a new program is added

to the system. Each time a new program is installed on the system the database must

be trained to recognize its normal behavior. This adds overhead to the maintenance

of the system, if one program is left out of training the protection of the system is at

risk. Third, the paper does not address training a database for normal behavior of a

program that has an intrusion built into it. In this case the intrusion will be recog-

nized as normal behavior and a false negative will be produced. My research takes

the same approach of monitoring system calls to detect intrusions. The difference of

30

my approach is the analysis is done on sequence of system calls done by viruses. More

specifically, the subset representing the replication of the virus. The analysis is done

without a priori knowledge resulting in no need for a detection database. This is an

improvement on the approach in [47] where training must be done and a database

updated for each new program.

In [45], finite state automata (FSA) is used to train normal behavior of programs

in a system. The training results is stored in a database later used for detection of

intrusions seen as anomalous behavior. The training works by recording the sequence

of system calls of a benign process after multiple executions. During monitoring the

FSA attempts to transition from one state to the next based on the system calls made

by the executing process. If the FSA cannot perform a transition or encounters an

unknown location of a system call the process is marked as anomalous. If a transition

occurs but enters a state not in the automaton the FSA enters a sink state. This is

a temporary state that allows execution of new code. The FSA will transition out of

the sink state when able to enter a new state found in the automaton. A leaky bucket

algorithm is used to aggregate anomalies over time. Weights are given to anomalies

based on the seriousness of the specific anomaly. The weights are designed to flag

a process as an intrusion when anomalies have occurred a certain amount of times.

The more serious anomalies weights cause in intrusion detection in as little as one

occurrence. There is one critical drawback to this approach. Allowing new code to

execute while the FSA is in a sink state can allow for an intrusion to occur and not be

flagged as anomalous. The intrusion can be dynamically injected into the process at

runtime and execute freely, thus creating a false negative. Also an encrypted intru-

sion such as a polymorphic virus can bypass detection. The sink state will allow viral

code that is unencrypted at runtime to execute. Upon completing execution the viral

code returns control to the host at which point the FSA would exit the sink state

31

without detecting anything as anomalous. The research I am conducting follows the

idea of weights for detecting viruses. I similarly use metrics when analyzing system

calls of an executing process to detect viral behavior. Since I detect viral behavior

based on replication, a virus that is unencrypted or dynamically injected and exe-

cuted during runtime should be detected by my implementation. This is true since

being classified as a virus implies replication will occur at some point in the execution.

32

CHAPTER 3

SELF-REFERENCE VIRUS REPLICATION

Replication is the fundamental qualifying characteristic of all viruses [22, 14, 44].

For a specific malware to be classified as a virus it must have the ability to replicate.

This guarantees the replication characteristic is consistently present in all viruses.

Replication is therefore an excellent basis for detection algorithms to successfully de-

tect viruses under several conditions and that belong to many different classes [30].

When a virus replicates, it will execute a series of operations that will cause the virus

to be written to some other area of the target system. The virus can infect one or

more currently existing files and infect the system by copying itself to newly created

target files. Both of these infection types require a series of read and write operations

to succeed.

Self-reference is an essential property of the read and write operations executed

by a virus during replication. A virus must refer to itself in order to replicate itself

to some other area of the target system. The term “itself” refers to the static im-

age of the virus file saved on a storage device such as a hard drive. The name of

the virus file is the same as the name of the executing virus process. This name is

passed between read and write operations as the source or ”from” argument of the

replication. I named this property the self-reference property (SR) and replication

that occurs using SR I identify as SR-replication. SR is the focus of this research

and SR-replication is the centerpiece of my behavior based virus detection approach.

The basic definition of SR-replication is a running process transferring and storing

data, belonging to its source object, from one object to another object where the first

transfer is always from the source object. The object is any temporary or permanent

storage available in a computer and accessible by a running process. This includes

33

both file and memory storage. The source object is from where the process was cre-

ated. For examples a running process’s source object may be the static image file

that is executed to create the process. The process can transfer data from any object

including its source object to any other object as long as the data being transferred

belongs to the source object of the process performing the transfer. I present a detec-

tion approach for SR-replication that is based on SR which focuses on the transitive

relation between a running virus’s static image file and a target file. The transitive

relation is based on the transfer of data from the virus’s static image file to the target

file. By detecting SR-replication I may be able to detect both known and unknown

viruses belonging to different virus classes and that execute under several conditions.

I further assume SR-replication to be unique to viruses and that it is unlikely for

SR-replication to occur in benign processes. I do recognize that not all viruses will

replicate using SR-replication and these viruses may not be detected by my approach.

Static analysis of viruses and benign processes was conducted to establish pre-

liminary support on my assumptions of SR-replication. A test set of 56 viruses was

built by downloading live samples from various Internet malware repositories [60, 42].

A second test set of benign processes was built using 56 executable processes from

the Microsoft Windows System32 folder. All the viruses were randomly chosen and

belong to the classes of Win32 viruses, network worms, email worms and peer-to-peer

worms. The virtual machine software VMware Workstation with Windows XP SP2

was used to execute the the test sets. The programs Api Spy 32 and Process Monitor

[7, 55] were used to create log files documenting the system calls made by each pro-

cess in one complete execution. Each log file was examined for SR-replication. This

was determined through identification of SR by examining the arguments of read

and write system calls for a reference in the “from” argument that was the name of

the currently executing process or a temporary memory location where the currently

34

Email Replication Peer to Peer Replication
Worms Attempts Worms Attempts
Baconex 1 Agobot.a 1
Bagle.a 1 Banuris.b 217
Bagle.j 1 Bereb.a 474
Bagle.k 1 Bereb.b 481
Bagle.m 1 Blaxe 6
Bagle.n 1 Cassidy 19
Bagle.o 1 Cocker 61
Dumaru.r 3 Compux.a 36
Eyeveg.m 1 Delf.a 1
Klez.a 3 Gagse 257
Klez.e 1 Irkaz 2
Klez.i 1 Kanyak.a 1
klez.j 2 Kifie.c 2
Mimail.j 1 Mantas 233
Network Replication Win32 Replication
Worms Attempts Viruses Attempts
Afire.b 3 Apathy.5378 1
Afire.d 1 Arch.a 1
Bobic.k 1 Barcos.a 4
Bozori.b 1 BCB.a 60
Bozori.e 1 Bee 2
Bozori.j 1 Canbis.a 14
Cycle.a 1 Civut.a 1
Dabber.c 1 Cornad 1
Domwoot 1 Jlok 2
Doomjuice.b 1 Parite.a 1
Doomran 1 Parite.b 1
Incef.b 27 Tenga.a 1
Kidala.a 1 Watcher.a 1
Lebreat.a 1 Zori.a 1

Figure 3.1: 56 Viruses with Replication Attempts

executing process had copied itself earlier in the execution. The results of the testing

are in Figures 3 and 3.2.

The total number of SR-replication for each process listed in Figures 3 and 3.2 is

the count of distinct filenames that each process attempted to infect in one execution.

I did not verify if each attempt was a success or a failure. The attempt to perform

SR-replication is enough for me to label the process as a possible virus regardless if

it is successful or not. The test results all 56 viruses attempted SR-replication at

35

Benign Replication Benign Replication
Processes Attempts Processes Attempts
accevt 0 ckcnv 0
accwiz 0 cleanmgr 0
actmovie 0 clipbrd 0
ahui 0 cmd 0
append 0 cmdl32 0
blastcln 0 common32 0
bootcfg 0 control 0
bootok 0 convert 0
cacls 0 cscript 0
charmap 0 csrss 0
chkdsk 0 ctfmon 0
chkntfs 0 debug 0
cipher 0 defrag 0
cisvc 0 diskpart 0
Benign Replication Benign Replication
Processes Attempts Processes Attempts
diskperf 0 ipconfig 0
dllhost 0 ipv6 0
dmremote 0 lodctr 0
doskey 0 lpq 0
eventcreate 0 lsass 0
exe2bin 0 makecab 0
extrac32 0 mem 0
fastopen 0 netsetup 0
finger 0 notepad 0
fsutil 0 ntbackup 0
getmac 0 openfiles 0
help 0 ping 0
hostname 0 qprocess 0
iexpress 0 setup 0

Figure 3.2: 56 Benign processes with Replication attempts

least one time to as many as over 400 times in a single complete execution. None

of the benign processes attempted SR-replication. These results provided support of

my assumptions and lead me to create a formal model for SR-replication.

3.1 Formal Model

An operation o is invoked with arguments (a1 . . . an) by a currently executing pro-

cess P where P.name is the name of P . The static file image F saved on a stor-

36

age device is from where P was created. The name and path of F is held in

F.name and P.name 7→ F.name, thus P.name refers both to P and F . The la-

bel T is a temporary memory location containing a copy of F . When an oper-

ation o ∈ O = {read(s, d), write(s, d)} where the source argument s = ai and

destination argument d = aj with 1 ≤ i, j ≤ n and i 6= j is invoked by P where

s ∈ S = {P.name, T} then o is said to have the self-reference property (SR). The ar-

gument d ∈ D = {M, I.name} where M is temporary memory location and I.name

is the name of the destination static image file I saved on a storage device with

I.name 6= P.name. The formal definition for SR is given in Figure 3.3.

SR(o) = true iff o ∈ O and o.s ∈ S with

• O = {read(s, d), write(s, d)}

• s ∈ S = {P.name, T}

• d ∈ D = {M, I.name}

• P.name = name of currently executing process that is invoking o

• T = temporary memory location containing a copy of the static file image F

• M = temporary memory location

• I.name = name of the destination file

• o.s = the s argument of o

• o.d = the d argument of o

Figure 3.3: Formal definition of SR property

I restrict the set O to only read and write operations. I assume a process only

needs to execute a sequence of these two operations to attempt replication. The sets

S and D are restricted to static file images and temporary memory locations because

I am only detecting replication of one file to one or more files where one or more

temporary memory locations are used to complete the process. The basis case for

37

SR(o) = true is with o.s = P.name. In this case P refers to F in an attempt to

read or write itself to o.d. In the case where o.s = T , SR(o) = true when o(T, d) was

invoked by P at time t, o(s, M) was invoked by P at time t′, t′ < t and T = M = F .

In this case P must have previously invoked at least one o with o.d = M , placing F

into M which results in M converting to T . By uniquely enumerating all o executed

by P with 1 ≤ m ≤ n, I can define SR(om) in terms of FRom.s as shown in Figure

3.4. Testing for SR(om) is equivalent to establishing a transitive relation R between

F and om.s. When FRom.s = true → F = om.s through invocation of o1 . . . om by P .

∀om(s, d) executed by P with 1 ≤ m ≤ n, SR(om(s, d)) = true iff FRom.s = true

Figure 3.4: Transitive relation of SR

P invokes a sequence of om operations with 1 ≤ m ≤ n. If o1.s ∈ S, om.d =

I.name, o = write(s, d), I.name 6= P.name and SR(F, I) = true then P is said to

have performed self-reference replication (SR-replication). The formal definition of

SR-replication in Figure 3.5 focuses on detecting processes that read and write their

static file image to other newly created or already existing static file images. This

can be accomplished in one write operation or in several read and write operations,

also many memory locations can be used intermediately from F to I. SR(F, I) is

established by testing for SR on every o that leads from P.name to I.name, thus

SR− replication(P) = true iff a transitive relation FRI = true. I assume that static

file images can only be read from and written to. The definition does not detect a

process that overwrites or modifies its own static file image.

38

SR− replication(P) = true iff

• ∃o1 . . . om with 1 ≤ m ≤ n, where

– o = write(s, d) and

– om.s ∈ S

– om.d = I.name

– I.name 6= P.name

– SR(F, I) = true

Figure 3.5: Formal definition of SR− replication

3.2 Detection Algorithms

When P starts execution, the operations o can be traced using a directed graph G

consisting of edge = om and node = {P.name, T, M, I.name}. A graph is created

for each P in a system and is linked to a specific P by the value of the first node

of G which must always be P.name. Upon P invoking its first operation o where

om.s = P.name a new G is created and its root node = P.name. When a new edge is

added it must be of the form om.s → om.d with s ∈ S and d ∈ D and the value om.s

must already be present as a previous om.d node in G with exception of cases where

om.s = P.name which is the root node of G. A sample graph is given in Figure 3.6

for a process named vx1.

In Figure 3.6 each o is enumerated in order of execution by P . The first two oper-

ations read(M1, M3), write(M3, sys.bat) are not included in the G since neither has

om.s = P.name which is vx1. The root node of the G must always be the first o of P

where o.s = P.name. I see this in read1 where read1.s = vx1. Notice the operation

read1,6, the notation shows the operation with the same arguments occurred twice,

at the first and sixth invocation. Every operation in G is true for SR and correctly

placed in the form om.s → omd. A test for SR − replication(vx1) was done when

the operation write5(M2, services.exe) was added to G. The path vx1 rightarrow

39

• P.name = vx1

• operations =
read(M1, M3), write(M3, sys.bat), read1(vx1, M2),
read2(vx1, M4), read3(M2, M5), read4(M5, M6),
write5(M2, services.exe), read6(vx1, M2)

2

4 5 6

1,6

2

3

4

5

G

Figure 3.6: Sample Abstract Graph for vx1

services.exe shows the transitive relation FRI. This path also satisfies my definition

of SR− replication in Figure 3.5 and therefore SR− replication(vx1) = true. When

a graph G of a process P contains a path from P.name → I.name then FRI = true

which results in SR− replication(P) = true. Construction of G only continues until

SR− replication(P) = true then P can be flagged as exhibiting virus replication. If

P finish execution and SR− replication(P) = false then P is assumed benign.

If P invokes an operation om(s, d) where SR(O) = false and om.d is already a

node of G, then om.d must be removed in one of two ways: If om.d is a leaf node, it

is simply removed and G remains the same. If om.d is an internal node in G then

om.d is removed and G is reorganized by eliminating all incoming edges to om.d and

repositioning all outgoing edges from om.d to each child node to come from each

parent node of om.d to the child node. Figure 3.7 shows graph G from Figure 3.6

after removal of node M2. The incoming edge Read1,6 from the parent node vx1 was

eliminated and the outgoing edges Read4 and Write5 were each reposition to come

40

4 5 6

2

3

4

5

G

Figure 3.7: Reorganized abstract graph for vx1 after removal of node M 2

from the parent node vx1 to the child nodes M6 and services.exe.

3.3 Example

In this section I will use portions of the log file of a virus used in the static analysis

to give an example of SR and SR − replication using a graph for testing. The log

file was created using API SPY 32 [7] which logs all the Win32 API calls invoked

by a process [41, 63]. The example in Figure 3.8 is of the Cassidy worm, a packed

Peer-to-Peer worm [54, 44] that from the static analysis testing results in Table 3

attempted replication 19 times. In the partial log file, the Cassidy worm attempted

to copy itself six times using the API call CopyFileA which is the same as the API

call CopyFile but is used when dealing with the ANSI character set [63]. From Table

3.9, CopyFileA is mapped to write(lpExistingFileName,lpNewFileName). As an

example, the fourth CopyFileA operation is mapped to:

write(“C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.EXE”,

“C:\WINDOWS\Shared Folder\kazaa hack.exe”).

41

All the other operations are mapped in similar fashion. In the graph:

rootnode = CASSIDY.EXE and SR(om) = true for each om in the graph.

Consider

write4(C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.EXE,

C:\WINDOWS\Shared Folder\kazaa hack.exe).

We can see:

P =CASSIDY.EXE,

P.name = write4.s = C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.EXE and

I.name = write4.d = C:\WINDOWS\Shared Folder\kazaa hack.exe.

Applying these values to the definition of SR in Figure 3.3, results in SR(write4) =

true and this result holds for all the other writem operations as well. When oper-

ation write1 was invoked, the graph was updated and a test for SR − replication

was conducted since a write operation occurred with write.d = I.name = diablo

2 pindlebot.exe. It is clear to see that SR − replication(CASSIDY.EXE) = true

according to the definition in Figure 3.5,. Had this been a real time detection, the

process would have been flagged as exhibiting virus replication behavior. To allow

readability, only the filenames were placed in the graph of Figure 3.8 when it should

be the complete path and filename.

3.4 Limitations

My approach is based on general read and write operations. I assume any specific

operation that performs a read, write or copy by specifying in the arguments the

source and destination can be equivalently written using the general read and write

operations used in this research. Figure 3.9 shows some Win32 API calls [63] and

42

Partial Log File for Cassidy Worm

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\diablo 2 pindlebot.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\diablo 2 pindlebot.exe",
 DWORD:00000104)

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\diablo 2 maphack.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\diablo 2 maphack.exe",
 DWORD:00000104)

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\playstation2 emulator.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\playstation2 emulator.exe",
 DWORD:00000104)

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\kazaa hack.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\kazaa hack.exe",
 DWORD:00000104)

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\cable modem utility.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\cable modem utility.exe",
 DWORD:00000104)

playstation2
emulator.exe

1

2

3 4

5

6

Figure 3.8: SR− replication of Cassidy Peer-to-Peer Worm

their conversion to an equivalent general read or write operation. Note that I am

only interested in the source and destination arguments of the operation.

My approach focuses on detecting SR−replication on a local machine, it currently

does not detect SR−replication from one local machine to another across a network.

I am aware of the ability of some viruses to replicate without using SR− replication.

This can be accomplished either by replicating from a source that is not P or invok-

ing commands in some other process that results in replicating P . These types of

43

Win32 API Read/Write operation
BOOL WINAPI CopyFile(
in LPCTSTR lpExistingFileName,
in LPCTSTR lpNewFileName,
in BOOL bFailIfExists); write(lpExistingFileName,

lpNewFileName)
BOOL WINAPI ReadFile(
in HANDLE hFile,
out LPVOID lpBuffer,
in DWORD nNumberOfBytesToRead,
out LPDWORD lpNumberOfBytesRead,
in LPOVERLAPPED lpOverlapped); read(hFile, lpBuffer)

BOOL WINAPI WriteFileEx(
in HANDLE hFile,
in LPCVOID lpBuffer,
in DWORD nNumberOfBytesToWrite,
in LPOVERLAPPED lpOverlapped,
in LPOVERLAPPED COMPLETION
ROUTINE lpCompletionRoutine); write(lpBuffer, hFile)

Figure 3.9: Win32 API calls with equivalent read/write operation

replication I refer to as indirect self-reference replication, (ISR− replication), and is

currently not detectable by my current approach.

44

CHAPTER 4

SELF-REFERENCE DETECTION PROTOTYPE

To test my SR-replication theory, a runtime monitor implementation prototype

named SRRAT (SR-Replication Analysis Tool) was created in two versions. One

version runs in user mode and the other in Kernel mode, both prototypes were built

to run on the Windows XP platform. The user mode version tracks API function calls

and the Kernel version tracks system services used by all currently running processes

using a technique known as hooking [25, 58]. Each prototype followed the design

architecture in Figure 4.1. The architecture consists of two main components: API

Call Processor and the SR-Replication Detector. The API call processor is composed

of: HookAPI, MapAPI-RW and an API Repository. The SR-Replication Detector

consists of: SR test, SR-Replication test, Update-Graph and a graph storage.

The overall idea of the prototype is to follow the execution of processes on a sys-

tem. As the process executes it will inevitably interact with the operating system

and this interaction is recorded and analyzed by SRRAT. The method of interaction

between all processes including viruses and the operating system is through the in-

vocation of API function calls and Kernel system services [25, 58, 63, 41]. SRRAT

tracks only a subset, principally those that implement file system operations: open,

close, read, write, copy and and a few other operations. When one of these is invoked

by a process, SRRAT hooks it and analyzes its parameters to determine the presence

of SR and if SR-replication has occurred. A hook is a method by which a user can

redefine a standard API call and have the operating system redirect invocations of

the standard API call to the user defined API call.

45

API Call Processor

SR-Replication Detector

Figure 4.1: SRRAT Architecture

It is very powerful in the sense that a user can modify the execution behavior of

processes without having direct access to the source code of that process. The fol-

lowing is a description of the purpose and responsibility of each component of SRRAT.

The API Call Processor’s (ACP) main purpose is to detect the invocation of an

monitored API call and pass its parameters to the SR-replication detector. The ACP

is in idle mode waiting for the operating system to send a notification that a moni-

tored API has been invoked by some process. At this point the APC takes control

of the invocation and checks to see if the API is a read or write operation according

to a predefined mapping. If the API is a read or write operation the APC passes it

46

along with its parameters to the SR-replication detector for further processing. Dur-

ing this time the process that originally invoked the API is in a wait state pending

the completion of the API. This serves to stall the execution of possible viruses while

they are being analyzed for SR-replication. The APC consists of two subcomponents

called HookAPI and MapAPI-RW plus an API repository which are explained next.

The HookAPI subcomponent of the ACP is responsible for the actual interception

of the API calls being monitored by SRRAT. The interception is done using an API

hooking mechanism that notifies the ACP of the invocation of a specific API call

which HookAPI has hooked. Once the process calls an API that has been hooked,

the operating system redirects the call from the standard API to the user defined

API where the redirection is part of HookAPI. When HookAPI completes its job the

standard API call and its parameters have been redirected to the user defined API

call and thus commences the second component of ACP which is MapAPI-RW.

The second subcomponent of the ACP is called MapAPI-RW and it serves the

singular purpose of deciding if the API call that has been passed to it is a general

read or write operation. If the API is determined to be a read or write operation

then the API is labeled as such and it is passed along with the source and destination

parameters to the SR-replication detector, which is the second component of SR-

RAT. The determination of an API being a read or write operation is accomplished

by searching for the API name in the API repository and checking if its mapping is

to a read or write operation. If it is matched to a read or write operation, the API

parameters specified in the repository as the source and destination parameters are

parsed from the API call’s parameter structure and passed along with the API and

its read/write label to the SR-replication detector.

47

The ACP has an API repository which is a list of all the hooked API functions.

The list has the API function name and the parameter names of the source and des-

tination parameter according the the specific API function’s documentation [63, 41]

along with its mapping as a read or write operation. The API repository does not

have the name of API functions that are not read or write operations even though

they may be hooked by SRRAT for various implementation reasons. Only those API

functions that represent a read or write operation require a mapping to a general read

or write operation with the appropriate parameters and therefore are the only ones

that need to be stored in the repository.

The second main component of SRRAT is the SR-replication detector (SRD).

This component will execute as a result of the ACP passing along to SRD an API

function that has been determined to be a read or write operation. The API function

is received with the function name, a read or write label and the source and destina-

tion parameters. SRD has several responsibilities, the first one is to check for SR, if

SR has occurred then a graph has to be created for the process that invoked this API

function. If a graph already exists it is updated. The second responsibility is to check

for SR-replication, this is done when a graph is updated with a write operation where

the destination is the name of a file. The third responsibility is to return a detection

confirmed message back to SRRAT so the process can be terminated and flagged as

exhibiting possible virus behavior. The read and write operations of a process are

stored in a graph using nodes and edges. SR-replication is determined by traversing

the graph to establish transitivity between the process name at the root node and a

file name located in some leaf node. SRD is composed of three subsections: SR-test,

SR-replication test and update graph plus a graph storage which are explained below.

48

The SR-test subcomponent of the SRD is responsible for testing if a process has

attempted to reference itself in the source parameter of an API function that it has

invoked. I am most interested in this case when it occurs in read or write operations.

The test is performed by comparing the process name with the source parameter of

the API function. If the process name is a substring of the source parameter then

the process has tested positive for SR. The other form of testing for SR is to search

the existing graph of the process for a node that matches the source parameter of the

API function. If a match is made on the graph then process has tested positive for

SR. When SR occurs the API function with all its parameter information is passed

along to update graph for insertion in an existing graph or creation of a new graph.

The second subcomponent of the SRD is called SR-replication test (SRT) and its

principle responsibility is to check if SR-replication has been attempted by a spe-

cific process. This test occurs every time a process’s graph has been updated with

a write operation where the destination is a file. The graph is traversed backwards

from the just inserted node, which contains the destination parameter of the API

function which is a file name and path, back to the root node of the graph. If a path

exists between these two points then the transitivity property holds true between the

process and another file and therefore SR-replication has been attempted and SRT

returns true to SRRAT.

The third subcomponent of SRD is Update-Graph which is in charge of adding

new nodes to the graph as they are passed in from the SR-test. When an API func-

tion with its source and destination parameter are passed in, one of several actions

can be taken. If there is no existing graph for the process that invoked this API

function and the source parameter is the file name and path of the process, then a

new graph is created with the source parameter as the root. If a graph already exists

49

for the process, the graph is traversed to find a node that matches the API functions

source parameter. When a match is made if the node has no outgoing edges or none

of its outgoing edges point to a node that matches the destination parameter then

a new edge is created from the existing node to a new node with the file name and

path stored in the destination parameter. If an edge already exists with the same

source and destination parameters but a different API function name on the edge, the

new edge is created. If an edge already exists with the same source and destination

parameters and the same API function name on the edge then only its enumeration

is modified to show the order of execution for multiple attempts of the same API

function by the same process with the same source and destination parameters. Once

the update to the graph is done, a notification is sent to SRT if and only if the

just inserted edge contains an API function that is a write operation. The last opera-

tion done by this subcomponent before exiting is to save the graph in the Graph Store.

The SRD has a Graph Store which is a temporary memory storage of all the

graphs currently being used by SRRAT to track processes. Each graph is accessed by

the root node which holds the name of the process currently running on the system.

When a process with a graph in the store finishes execution or is terminated by

SRRAT, its graph is destroyed to release memory and reduce resource usage on the

system.

4.1 User Mode Prototype

The first version of SRRAT was implemented as a user mode process running in Win-

dows XP. In this version, SRRAT traced the Win32 API function calls invoked by

all currently running user mode processes. The prototype was a terminate and stay

resident runtime monitor, meaning it would be quietly running in the background

monitoring the execution behavior of all user mode processes currently running on

50

Win32 API Read operation
void CopyMemory(
PVOID Destination,
const VOID* Source,
SIZE T Length); read(Source, Destination)

BOOL WINAPI ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped); read(hFile, lpBuffer)

BOOL WINAPI ReadFileEx(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED COMPLETION ROUTINE

lpCompletionRoutine); read(hFile, lpBuffer)

Figure 4.2: Mapping of Read Win32 API calls in user version SRRAT

the system while conveniently placed as an icon in the windows task bar for simple

start and stop functionality. The API functions that were traced for read and write

operations are listed in Figures 4.2 and tableofmappedwriteapis along with their read-

/write mapping and the source and destination parameters. All the API functions

that were monitored by SRRAT are located in the kernel32.dll dynamic link library.

SRRAT implemented API hooking on the functions that were being monitored. To

successfully perform hooking SRRAT was implemented as a dynamic link library.

Aside from the API functions monitored in Figures 4.2 and 4.3 for their read and

write operations necessary to establish SR and SR-replication, there were other API

functions, listed in Figure 4.4 that had to be hooked and monitored to correctly im-

plement this version of SRRAT. The following is a description of the implementation

of the components of SRRAT in user mode.

51

Win32 API Write operation
BOOL WINAPI CopyFile(
LPCTSTR lpExistingFileName,
LPCTSTR lpNewFileName,
BOOL bFailIfExists); write(lpExistingFileName,

lpNewFileName)
BOOL WINAPI CopyFileA(
LPCTSTR lpExistingFileName,
LPCTSTR lpNewFileName,
BOOL bFailIfExists); map(lpExistingFileName,

lpNewFileName)
static BOOL WINAPI CopyFileW(
LPCWSTR lpExistingFileName,
LPCWSTR lpNewFileName,
BOOL bFailIfExists); map(lpExistingFileName,

lpNewFileName)
BOOL WINAPI ReplaceFile(
LPCTSTR lpReplacedFileName,
LPCTSTR lpReplacementFileName,
LPCTSTR lpBackupFileName,
DWORD dwReplaceFlags,
LPVOID lpExclude,
LPVOID lpReserved); write(lpReplacementFileName,

lpReplacedFileName)
BOOL WINAPI WriteFile(
HANDLE hFile,
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped); write(lpBuffer, hFile)
BOOL WINAPI WriteFileEx(
HANDLE hFile,
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED COMPLETION
lpCompletionRoutine); write(lpBuffer, hFile)

Figure 4.3: Mapping of Write Win32 API calls used in user version SRRAT

52

Win32 API Read/Write operation
void CreateFileW(
LPCWSTR lpFileName); update list with new file/handle:

lpFileName and HANDLE
HANDLE WINAPI CreateFileA(
LPCSTR lpFileName); update list with new file/handle:

lpFileName and HANDLE
HFILE WINAPI OpenFile(
LPCSTR lpFileName); update list with new file/handle:

lpFileName and HFILE
BOOL WINAPI CloseHandle(
HANDLE hObject); read(hFile, lpBuffer)
BOOL WINAPI DeleteFile(
LPCTSTR lpFileName); remove from list existing file/handle:

lpFileName

Figure 4.4: List of Win32 API calls needed to implement user version of SRRAT

4.1.1 Implementation

The HookAPI was implemented using hooking techniques for Win32 user mode API

function calls. This is accomplished with the invocation by HookAPI of an API func-

tion called SetWindowsHookEX [63, 41]. Invoking this function allowed SRRAT to

hook API functions by rewriting the IAT of all currently running processes. SRRAT

reads from the API repository all the API function names that needed to be moni-

tored which are listed in Figures 4.2 and 4.4. These names are loaded into memory

and HookAPI invokes SetWindowsHookEX. For each API functions that needs to be

hooked, SRRAT has a new version of the API which implemented my SR-replication

detection code. Each running process has in its IAT table the memory address of all

the Win32 API functions that it may invoke during its execution. When the hooks

are placed for SRRAT, Windows overwrites these memory locations with memory

locations of my redefined API functions. This change of memory addresses allowed

Windows to redirect invocations of the monitored API functions from the standard

API function to my version of the function. Hooking the API functions in HookAPI

was the critical step needed for SRRAT to function.

53

The MapAPI-RW subcomponent was automated as a result of API hooking tech-

niques. My redefined API functions are executed only when the API is invoked by

some process. As a result when the body of my API function executed I already pre-

determined the function to be a read or write. In the body of the function I inserted

code to read the correct parameters that represented the source and destination and

continued to the SRD component of SRRAT.

One key piece of information needed for the SRD to work was acquiring the name

of the process invoking the API function currently being processed through SRRAT.

In Windows, process names are represented in two forms, the first is as a string

containing the full process name and path, the second is with a process id (PID).

When a process starts execution, Windows assigns it an integer value which is the

process’s PID, this value is used for various tasks throughout the life cycle of the

process, especially when it interacts with the Windows operating system. When a

process invokes a hooked API, Windows provided SRRAT a field of the hooked API

structure containing the full process name and path as a string. This was used to

implement the SRD.

A second key piece of information used by SRD is names of files that are read or

written by a process. in similar fashion to processes, files in Windows are represented

in two forms, the first is a string with the file name and path, the second is with a file

handle. The file handle is an integer value assigned to a file when it is first opened by

a process and destroyed when the file is closed. Some API functions such as ReadFile

and WriteFile, use handles to represent the file that is being accessed but other API

functions such as OpenFile use a string to represent the filename. Thus one file can

have two ways of representation and this required the SRD to keep a list of file names

and their associated handle. Each time the API functions OpenFile and CreateFile

54

was invoked, SRD would make a new entry in the list of the newly opened or created

file and the associated file handle. This entry would later be removed from the list

when CloseFile was invoked. Each time ReadFile, WriteFile functions were in-

voked SRD would look up the file handle and return the associated file name and path.

Once all the needed information became accessible to the SRD, performing SR

tests was straightforward, every time a read operation occurred the filename and

path in the source parameter would be compared to the process name. If the process

name was a substring of the source parameter then SR was indeed present. Each

time SR was found the graph for the process would be updated in Update-Graph.

The graph store was a set of graphs each one with a different process name as the

root node which identified the graph uniquely. A test for SR-replication occurred

each time the WriteFile or CopyFile API function was hooked. The graph for the

process was retrieved from the storage and traversed backwards from the newly added

destination node from the WriteFile or CopyFile API to the root node checking for

transitivity. When SR-replication was established for a specific process, that process

was terminated by SRD using the TerminateProcess API function [63, 41].

4.1.2 Limitations

Several viruses do not interact with the operating system at the user mode level.

Instead, they deal directly with the kernel and its function calls thus completely

avoiding SRRAT. These viruses cannot be detected by the user mode version of

SRRAT. Also this version ran in user mode and can be infected by the very same

virus it is trying to detect if the virus injured before infecting, thus rendering SRRAT

useless. Some viruses purposely encrypt the parameters when calling an API, SRRAT

would process these parameters correctly but can produce a false negative since the

encrypted parameters do not match the actual files being manipulated by the virus.

55

Other viruses call the API functions directly by loading the dynamic link library

and acquiring the memory addresses of the API functions needed for the virus to

run. Later in execution the virus passes the parameters to the memory location, this

approach completely avoids the hooks placed by SRRAT and are never detected.

4.2 Kernel Mode Prototype

The second version of SRRAT was created to run in Windows Kernel mode. This

version traced the Zwxx system services provided by the ntdll.dll dynamic link library

which are exported from the Kernel process named ntoskrnl.exe. These are all Kernel

system services and can be called directly by a Kernel process or indirectly by a

user mode process. When a user mode process invokes a user mode API such as

OpenFilethe API function sends the request from user mode to a system service in

Kernel mode, in this case ZwOpenFile. Tracing Kernel mode system services has

three main advantages over tracing user mode API function calls:

• This version allows high probability of identifying SR-replication that may have

been missed by the user mode version. This results from the higher level of

difficulty any process, including viruses, faces in trying to execute and avoid

using Kernel mode system services. It is very difficult to avoid interacting with

the Kernel in some form, thus the probability of detecting SR-replication.

• SRRAT itself has a higher level of protection from virus infection by running

in the Kernel. The Kernel is considered to be privileged access and not every

process including other Kernel processes can have direct access to this privileged

space. This give SRRAT a higher rate of survivability from virus attack and

therefore increases the chances of running longer and detecting SR-replication.

• The form in which Zwxx system services are structured requires two parameters

to be included that represent the file name with path and the file handle. This

56

requirements eliminates the need to hook and open or close system services and

also eliminates the need of SRRAT to keep a list of file names and handles. This

reduction in processing allows SRRAT to run faster and with less consumption

of processing time.

To run a process in Kernel mode it must be executed by loading it as a system

service. Two separate programs were created for this purpose, one to load and the

other to unload the service from the operating system. Normally, services do not have

user mode start and stop functions, these were added for convenience. Also SRRAT

in this version was purposely created as a rootkit [58, 25] to include some techniques

allowing SRRAT to hide from the system and therefore avoid being attacked or in-

fected by a virus. The two techniques used for this purpose was: 1. the system service

was hidden from the operating system, the name of the service would not show as

currently running by any application in Windows and 2. the configuration file used

by the service was redirected to a different part of the operating system thus hiding

it as well. These are only basic hiding techniques but in fact are very useful. They

allow SRRAT to run on the system as an invisible process which puts SRRAT on

the same level playing field as some advance viruses which is necessary for any virus

detector to run effectively and successfully.

Hooking system services has a different implementation than hooking Win32 API

function calls but the underlying theory is the same. In the Kernel all the system

services including the Zwxx services are exported by their memory location to a ta-

ble called the System Service Dispatch Table (SSDT). When a request for a service

comes in from user mode, the specific request is located in the SSDT and the operat-

ing system carries out the service. Similarly to hooking Win32 API function calls, this

version of SRRAT had a list of redefined system services, when SRRAT was loaded

it would overwrite in the SSDT the memory location of the standard system services

57

Kernel System Service Read/Write operation
NTSTATUS ZwCreateSection()
OUT PHANDLE SectionHandle,
IN ACCESS MASK DesiredAccess,
IN HANDLE FileHandle OPTIONAL); read(FileHandle, SectionHandle)
NTSTATUS ZwReadFile(
IN HANDLE FileHandle,
OUT PVOID Buffer,
IN ULONG Length,
IN PULONG Key OPTIONAL); read(FileHandle, Buffer)
NTSTATUS ZwMapViewOfSection()
IN HANDLE SectionHandle,
IN HANDLE ProcessHandle,
IN OUT PVOID BaseAddress,
IN ULONG AllocationType,
IN ULONG Win32Protect); write(SectionHandle, BaseAddress)
NTSTATUS ZwWriteFile(
IN HANDLE FileHandle,
IN PVOID Buffer,
IN ULONG Length,
IN PULONG Key OPTIONAL); write(Buffer, FileHandle)

Figure 4.5: Mapping of System Services used in Kernel Version SRRAT

with my redefined versions and thus the requests would be redirected to SRRAT and

its redefined versions, this is how SRRAT hooked the needed Zwxx system services,

which are listed in Figure 4.5. The following is a description of the implementation

of the components of SRRAT in Kernel mode.

4.2.1 Implementation

Overall implementation in this version of SRRAT was much easier than the user

mode version for both the ACP and the SRD. HookAPI was implemented by modi-

fying the memory address of standard system services with my redefined versions in

the SSDT. Since there is only one SSDT for the entire operating system, the actual

hooking only had to occur by SRRAT once as opposed to the user mode version where

hooking occurred once for each process. The number of system services hooked were

less than those in the user mode version, they primarily were only the Zwxx system

58

services that represented a read or write operation. In Kernel mode system services

decompose user mode file operations to basic read and write operations. Most no-

tably the Win32 API function call CopyFile is translated to a call to ZwReadFile

and ZwWriteFile in Kernel mode. This decomposition to simplified services greatly

reduced the implementation of HookAPI.

As was the case in the user mode version of SRRAT, the MapAPI-RW subcompo-

nent was automated as a result of system services hooking techniques. My redefined

system services are executed only when the Kernel receives a request for a specific

system service. As a result when the body of my system service executed I had al-

ready predetermined the service to be a read or write. The services’s body had code

inserted to read the necessary parameters that represented the source and destination

parameters of the service and SRRAT continued to the SRD component of SRRAT.

In this version of the ACP, the API repository had a much smaller list of system

service functions needed to be hooked. This was a key advantage allowing for slightly

less memory usage when SRRAT was operating.

The SRD was implemented in principally the same fashion as in the user mode

of SRRAT. Both the test for SR and the SRT subcomponent has the same basic

code as their user mode version. One difference was the removal of the list of file

names and handles which was needed in the user mode version for the SRD to work

properly. In Kernel mode the system services already provide all the file information

that had to be found by SRD in user mode. This slight reduction in code creates

a faster implementation which is key when dealing with aggressive fast spreading

viruses. The graph store was kept in Kernel memory and the individual graphs were

created, destroyed and accessed in the same manner as the user mode version. When

59

a process was found to have exhibited SR-replication it was terminated using the

Kernel system service ZwTerminateProcess.

4.2.2 Limitations

The main limitation with this approach was in its implementation. Kernel mode pro-

gramming is a very complex form of programming with little available documentation

to aide the programmer. Many of the types, structures, functions found in the Kernel

are not documented and using them with some confidence is only based on feedback

from other programmers that have walked the path before. Implementing most of the

code took some researching before being successful. Only with experience can a pro-

grammer become skilled in working with the Kernel. Most of the implementation was

built using already established code heavily modified and questions posted on various

forums provided some answers and partial solutions, the rest was done through trial

and error. Many of the undocumented code used in this version had to be modified

or rewritten to please the build environment into successfully compiling and building

the executable version of SRRAT.

Two main limitations encountered during implementation was: 1. obtaining the

name of the process requesting the system service, which is critical to test for SR,

graph creation and identification and 2. Acquiring enough memory for SRRAT to

effectively run. It was very difficult at first to obtain working code that would produce

a string representing the name of the process. After 4 days of trial and error the name

was finally obtained. The Windows Kernel seemingly runs within a limited memory

space called pools and all kernel processes use this memory pool for their specific

purposes. Allocating and using Kernel memory is a difficult science to understand and

implement. Several setbacks were suffered by SRRAT using too much memory causing

Windows to display a blue error screen, also known as the Blue Screen of Death

60

(BSOD), which led to the system crashing and requiring a restart. The main memory

problems came with building the graphs in the SRD which works by implementing a

linked list, each pointer was created with a chunk of kernel memory, it seemed this

process repeated several times caused the system to produce the BSOD. The memory

problem was not solved and this resulted in the implementation creating log files

displaying all of the needed information to detect SR-replication in a given process.

61

CHAPTER 5

SELF-REFERENCE DETECTION EXPERIMENTS

A suite of experiments were created to test the theory of SR-replication and

the user and Kernel mode implementation prototypes of SRRAT. The tests were

conducted with viruses drawn from a collection of 445 virus samples. The collection

was built from malware repositories on the Internet [60, 42]. The viruses in the

collection were chosen to be representative of all the major categories of virus types.

The amount of virus samples for each category is listed in Figure 5.1. All the sample

viruses in the collection were scanned using Kaspersky Anti-Virus software [33] to

validate their authenticity, name and classification. The focus of these tests was to

count the total number of correct identifications of viruses plus the total amount of

false negatives and false positives produced by the prototypes. All the tests were

conducted on a desktop computer running Microsoft Windows XP with no anti-virus

software installed. The testing involving viruses were done using Vmware Virtual

Workstation [59], which allows for safe isolation of the viruses from infecting an

actual machine while providing a rich real computer emulation environment.

Figure 5.1: Virus Classification with Total Samples amount

Virus Types Total Samples
Email Worms 110
Network Worms 99
Peer-to-Peer Worms 79
Instant Messaging Worms 6
Win32 Viruses 151

62

5.1 Theory Validation

Testing the theory of SR-replication entails inquiring if this is a characteristic that

occurs in multiple viruses across several different virus classifications and can further

be identified in some manner. More importantly, it is pivotal to establish if SR-

replication is a characteristic that does not occur in benign processes, this is one of

my assumptions. Establishing these two points will indicate if SR-replication can

be used to distinguish between viruses and benign processes and at the same time

produce little or no false negatives and false positives.

My approach to test the theory of SR-replication was to execute several viruses

and commonly used applications and operating system processes and have their

Win32 API function calls and Kernel system service requests with source and desti-

nation arguments recorded and analyzed. The program used for this was API SPY 32

[7] which records Win32 API function calls and Process Monitor [55] which records

Kernel system service requests. The benign processes used for testing are listed in

Figures 5.1 and 5.2, these were chosen by logging all processes running on two com-

puters on a 5 day span, the processes executed the most were chosen for testing. The

viruses chosen for this test were randomly selected from the collection of 500 assuring

that each category was represented in this test set. The 284 viruses used for testing

are listed in Figure 5.2 and 5.2.

5.2 User Mode Prototype

In testing the user mode implementation prototype of SRRAT three criteria need

to be analyzed, they are: false positive production, false negative production and

usability as a real time monitor and detector. To test for false negative production

a test set of viruses were executed one by one in the virtual machine software with

63

AcroRd32.exe netbeans.exe
AcroRd32Info.exe OUTLOOK.EXE
Ad-Aware.exe pa.exe
AlbumDB2.exe palaunch.exe
AsusProb.exe pastatus.exe
bibtex.exe pdflatex.exe
CFD.exe PHOTOED.EXE
csrss.exe POWERPNT.EXE
Deskup.exe procexp.exe
devenv.exe Procmon.exe
emule.exe rundll32.exe
ErrorKiller.exe services.exe
EXCEL.EXE Skype.exe
Explorer.EXE sol.exe
firefox.exe sqlservr.exe

Figure 5.2: Theory Validation Test Benign Processes - 1

SRRAT running. False positive production was tested together with usability as a

real time monitor and detector by running SRRAT on two actual computer desktops

for three days under normal computer use. Both computers had full Internet access

and carry heavy use of several popular desktop applications plus Internet programs.

Installations of new software and updates to already existing software were purposely

done during the testing period as well. Anti-virus software was present and running on

both computers during testing. The viruses were chosen by using those that showed

use of Win32 API function calls during their execution as recorded by the API SPY

32 log files. This resulted in a set of 66 viruses listed in Figure 5.3.

5.3 Kernel Mode Prototype

The Kernel Mode Prototype of SRRAT was tested using the same three criteria as that

used for the user mode prototype: false positive production, false negative production

and usability as a real time monitor and detector. Testing false positive production

was conducted jointly with usability as a real time monitor and detector by executing

SRRAT on two actual computer desktops for three days under normal computer use.

The two computers had full Internet access and experience heavy daily use of many

64

FrameworkService.exe svchost.exe
gbk2uni.exe symlcsvc.exe
GoogleEarth.exe SyncBackSE.exe
HWN.exe System
IEXPLORE.EXE TEXCNTR.EXE
iexplore.exe TexFriend.exe
java.exe tomcat5.exe
LimeWire.exe verclsid.exe
MATLAB.exe WCESCOMM.EXE
Mcshield.exe WinEdt.exe
MemoryManagement.vshost.exe winlogon.exe
MSACCESS.EXE winmine.exe
mscorsvw.exe WinRAR.exe
msnmsgr.exe WINWORD.EXE
naPrdMgr.exe wmiprvse.exe
nbexec.exe wuauclt.exe

Figure 5.3: Theory Validation Test Benign Processes - 2

popular Internet and desktop applications. New software installations and updates

to already existing software were purposely done during the testing period as well.

Anti-virus software was running on both computers during testing. Testing for false

negative production was done by executing a test set of viruses one at a time in the

virtual machine software with SRRAT running. The viruses were chosen by using

those that showed use of Kernel system services during their execution as recorded

by the Process Monitor log files. This resulted in a set of 367 viruses listed in Figures

5.3, 5.3, 5.3 and 5.3.

65

Email Peer to Peer Network Win32
Worms Worms Worms Viruses
Abotus Abuva 3DStars Aidlot
Actem Adil CodeGreen.a Andras.7300
Agist.a Alcan.a Cycle.a Apathy.5378
Alanis AntiFizz Ezio.a Apoc.a
Aliz Aplich Francette.a Arch.a
Altice Apsiv Francette.b Aris
Amus.a Aritim Francette.c Artelad.2173
Anarch Ariver Francette.d Bacros.a
Android Blaxe Francette.e Banaw.2157
Anel Cabby Francette.g Barum.1536
Animan Cake Hiberium.b Basket.a
Anpir.a Carfin Maslan.a Bayan.a
Antiax Cassidy Maslan.b BCB.a
Antites Cayen.a Mytob.q Bee
Aplore Cocker Protoride.aa Beef.2110
Apost Compatex Protoride.ai Bender.1363
Assarm Compux.a Protoride.al Bika.1906
Atirus Cozit Protoride.ar Blateroz
Avoner Dafly.b Protoride.b Bluback.1376
Babuin Dani Protoride.bk Blueballs.4117
BabyBear Delf.a Protoride.e Bogus.4096
Badass Druagz Protoride.f Bondage.968.a
Badtrans.a Agobot.a Afire.b Cabanas.e
Bagle.a Agobot.b Afire.c DarkSide.1371
Bagle.j Agobot.c Afire.d Elkern.a
Bagle.k Agobot.d Bozori.b Enumiacs-6656
Bagle.m Backterra.a Bozori.e Levi-2961
Bagle.n Banuris.a Bozori.j Mental
Bagle.o Bereb.a Dabber.a Mental-10000
Bandet.a Erdam Protoride.g Butter
Banza Flocker Raleka.b CabInfector
Bater.a Franvir Rega.a Cecile
Benny Furby Salie.a Civut.a
Bimoco.a Gagse SdBoter.a Cloz.a
Black Gotorm SdBoter.b Cmay.1222
Blare Grompo SdBoter.c Cornad
Blitzy Halfint SdBoter.g Crosser
Bonorm Huntox SdBoter.k Delfer.a

Figure 5.4: Theory Validation Test Viruses - 1

66

Email Peer to Peer Network Win32
Worms Worms Worms Viruses
Bormex Ident Shelp.a Devir
Borzella Insta.a Spoder.a Dictator.2304
Botter.a Inter Stap.b Dislex
Bumper Irkaz Stap.e Gipiras.a
Burnox Kabak.a Stap.f Hezhi
Calil Kamadina Syner.a Jlok
Calposa Kamafe Webdav.a Kenfa.a
Carfrin Kanyak.a Welchia.a Netlip
Cervivec Kapucen.b Welchia.b Niya.a
CWS.a Kazeus Welchia.c Porad.a
Dumaru.r Bereb.b Dabber.b Neshta.a
Eyeveg.m Gedza.b Dabber.c Parite.a
Happy Kenfo Welchia.e Sinco
Klez.a Gedza.c Domwoot.c Parite-b
Klez.e Habaku.b Doomjuice.b Seppuku.6834
Klez.i Kifie.a Kidala.a Small.a
Merkur.b Kifie.c Kidala.b Small.b
Mimail.j Kifie.f Lebreat.a Tapan-3882
Mydoom.ax Niklas.b Muma.b Thorin.11932
Mydoom.b Niklas.c Muma.c Thorin.b
Plexus.a Opex.a Opasoft.a Thorin.c
Sircam.a Polip.a Padobot.m Xorala
Sircam.d Zaka.a Sasser.b Younga.4434
Sober.a Zaka.f Theals.c ZMist
Sober.f Zaka.m Vesser.a ZPerm.b
Yoxec Kevor Xatch.a Spreder
Zar.a Kovirz Zan Sugin
Zhangpo Krepper Zusha.a TeddyBear
Zircon Lamerx Zusha.b VChain
Zoek Lemb.b Zusha.c Watcher.a
Zoher Vagas.a Zusha.e Zevity
Zush Walrain Zusha.f Zorg.a
Zwur.a Weakas Zusha.h Zori.a

Figure 5.5: Theory Validation Test Viruses - 2

67

Email-Worm.Win32.Alanis Net-Worm.Win32.Webdav.a

Email-Worm.Win32.Android Net-Worm.Win32.Zusha.a

Email-Worm.Win32.Anpir.a Net-Worm.Win32.Zusha.b

Email-Worm.Win32.Antiax Net-Worm.Win32.Zusha.c

Email-Worm.Win32.Apost Net-Worm.Win32.Zusha.e

Email-Worm.Win32.Asid.a Net-Worm.Win32.Zusha.f

Email-Worm.Win32.Bandet.a P2P-Worm.Win32.Agobot.a

Email-Worm.Win32.Bater.a P2P-Worm.Win32.Agobot.b

Email-Worm.Win32.Benny P2P-Worm.Win32.Agobot.c

Email-Worm.Win32.Bimoco.a P2P-Worm.Win32.Agobot.d

Email-Worm.Win32.Bormex P2P-Worm.Win32.Aplich

Email-Worm.Win32.Borzella P2P-Worm.Win32.Blaxe

Email-Worm.Win32.Botter.a P2P-Worm.Win32.Cassidy

Email-Worm.Win32.Burnox P2P-Worm.Win32.Compux.a

Email-Worm.Win32.Calposa P2P-Worm.Win32.Delf.a

Email-Worm.Win32.Canbis.a P2P-Worm.Win32.Erdam

Email-Worm.Win32.Happy P2P-Worm.Win32.Flocker.01

Email-Worm.Win32.Klez.b P2P-Worm.Win32.Gagse

Email-Worm.Win32.Klez.c P2P-Worm.Win32.Gedza.c

Email-Worm.Win32.Klez.d P2P-Worm.Win32.Irkaz

Email-Worm.Win32.Klez.e P2P-Worm.Win32.Kanyak.a

Email-Worm.Win32.Klez.f P2P-Worm.Win32.Kapucen.b

Email-Worm.Win32.Klez.g P2P-Worm.Win32.Weakas

Email-Worm.Win32.Klez.i Virus.Win32.Arch.a

Email-Worm.Win32.Klez.j Virus.Win32.BCB.a

Email-Worm.Win32.Sircam.d Virus.Win32.Bee

Net-Worm.Win32.Doomran Virus.Win32.Canbis.a

Net-Worm.Win32.Ezio.a Virus.Win32.Jlok

Net-Worm.Win32.Maslan.b Virus.Win32.Redemption

Net-Worm.Win32.Nimda Virus.Win32.Small.c

Net-Worm.Win32.Rega.a Virus.Win32.Spreder

Net-Worm.Win32.Sasser.b Virus.Win32.Watcher.a

Net-Worm.Win32.Syner.a Virus.Win32.Zori.a

Figure 5.6: Test Viruses for User implementation of SRRAT

V.W32.Zevity V.W32.ZMist V.W32.Zori.a

V.W32.ZPerm.b V.W32.ZPerm.b2 V.Win9x.CIH

V.Win9x.DarkSide.1371 V.Win9x.Sledge.735.b V.Win9x.Small.140

Worm.VB-16

Figure 5.7: Test Viruses for Kernel implementation of SRRAT - 1

68

EW.3DStars EW.W32.Bormex EW.W32.NSky.d

EW.VBS.Homepage EW.W32.Borzella EW.W32.NSky.q

EW.VBS.Loveletter.A EW.W32.Botter.a EW.W32.Plexus-a

EW.W32.Actem EW.W32.Bumper.a EW.W32.Roach.b

EW.W32.Agist.a EW.W32.Burnox EW.W32.Sircam.a

EW.W32.Alanis EW.W32.Antiman EW.W32.Sircam.d

EW.W32.Amus.a EW.W32.Calposa EW.W32.Sober.a

EW.W32.Anarch EW.W32.Canbis.a EW.W32.Sober.f

EW.W32.Android EW.W32.Carfrin EW.W32.Sober.y

EW.W32.Anel EW.W32.Cervivec EW.W32.Xanax

EW.W32.Animan EW.W32.CWS.a EW.W32.Zafi.b

EW.W32.Anpir.a EW.W32.Doombot.b EW.W32.Zafi.d

EW.W32.Antiax EW.W32.Dumaru.a EW.W32.Zar.a

EW.W32.Antites EW.W32.Dumaru.c EW.W32.Zhangpo

EW.W32.Aplore EW.W32.Dumaru.m EW.W32.Zush

EW.W32.Apost EW.W32.Dumaru.r IM-Worm.W32.Bropia.aj

EW.W32.Appflet.a EW.W32.Eyeveg.m IM-Worm.W32.Aimes-b

EW.W32.Babuin.a EW.W32.Klez.a NW.W32.AllocUp-b

EW.W32.BabyBear.a EW.W32.Klez.b NW.W32.Afire.c

EW.W32.Baconex EW.W32.Klez.c NW.W32.Afire.d

EW.W32.Bagle.fj EW.W32.Klez.d NW.W32.BlueCode

EW.W32.Bagle.fk EW.W32.Klez.e NW.W32.Bobic.k

EW.W32.Bagle.h EW.W32.Klez.f NW.W32.Bozori.b

EW.W32.Bagle.i EW.W32.Klez.g NW.W32.Bozori.e

EW.W32.Bagle.j EW.W32.Klez.i NW.W32.Bozori.j

EW.W32.Bagle.k EW.W32.Klez.j NW.W32.CodeGreen.a

EW.W32.Bagle.m EW.W32.LovGate.g NW.W32.CodeRed

EW.W32.Bagle.n EW.W32.Nyxem NW.W32.Cycle.a

EW.W32.Bagle.o EW.W32.Merkur.b NW.W32.Dipnet.f

EW.W32.Bagle.q EW.W32.Mimail.j NW.W32.Dabber.b

EW.W32.Bandet.a EW.W32.Mydoom.ax NW.W32.Dabber.c

EW.W32.Banza EW.W32.Mydoom.b NW.W32.Daper.a

EW.W32.Bater.a EW.W32.Mydoom.e NW.W32.Domwoot.c

EW.W32.Benny EW.W32.Mydoom.l NW.W32.Doomjuice.b

EW.W32.Bimoco.a EW.W32.Mydoom.m NW.W32.Doomjuice.d

EW.W32.Blare EW.W32.Mydoom.q NW.W32.Doomran

EW.W32.Blitzy EW.W32.NSky NW.W32.Ezio.a

EW.W32.Bonorm EW.W32.NSky.b NW.W32.Francette.a

EW.W32.Asid.a EW.W32.Happy EW.W32.Klez

EW.W32.Atirus V.W32.Xorala V.W32.Xorala.b

Figure 5.8: Test Viruses for Kernel implementation of SRRAT - 2

69

NW.W32.Francette.b NW.W32.SdBoter.k P2PW.W32.Cabby

NW.W32.Francette.c NW.W32.Shelp.a P2PW.W32.Cake

NW.W32.Francette.d NW.W32.Spoder.a P2PW.W32.Carfin

NW.W32.Francette.e NW.W32.Stap.b P2PW.W32.Cassidy

NW.W32.Francette.g NW.W32.Stap.e P2PW.W32.Cayen.a

NW.W32.Hiberium.b NW.W32.Stap.f P2PW.W32.Cocker

NW.W32.Incef.a NW.W32.Syner.a P2PW.W32.Compatex

NW.W32.Incef.b NW.W32.Theals.b P2PW.W32.Compux.a

NW.W32.Kidala.a NW.W32.Theals.c P2PW.W32.Cozit

NW.W32.Kidala.b NW.W32.Vesser.a P2PW.W32.Dafly.b

NW.W32.Lebreat.a NW.W32.Webdav.a P2PW.W32.Dani

NW.W32.Lebreat.b NW.W32.Welchia.a P2PW.W32.Darby.b

NW.W32.Lebreat.d NW.W32.Welchia.b P2PW.W32.Darby.c

NW.W32.Lebreat.m NW.W32.Welchia.c P2PW.W32.Delf.a

NW.W32.Muma.c NW.W32.Welchia.e P2PW.W32.Disager

NW.W32.Maslan.b NW.W32.Xatch.a P2PW.W32.Druagz

NW.W32.Muma.b NW.W32.Zan P2PW.W32.Erdam

NW.W32.Muma.c NW.W32.Zusha.a P2PW.W32.Flocker.01

NW.W32.Mytob.q NW.W32.Zusha.b P2PW.W32.Franvir

NW.W32.Nimda NW.W32.Zusha.c P2PW.W32.Furby

NW.W32.OpasSoft.a.pac NW.W32.Zusha.e P2PW.W32.Gagse

NW.W32.Padobot.m NW.W32.Zusha.f P2PW.W32.Gedza.b

NW.W32.Protoride.aa P2PW.W32.Abuva P2PW.W32.Gedza.c

NW.W32.Protoride.ai P2PW.W32.Adil P2PW.W32.Gotorm

NW.W32.Protoride.al P2PW.W32.Agobot.a P2PW.W32.Grompo

NW.W32.Protoride.ar P2PW.W32.Agobot.b P2PW.W32.Habaku.a

NW.W32.Protoride.b P2PW.W32.Agobot.c P2PW.W32.Habku.b

NW.W32.Protoride.bk P2PW.W32.Agobot.d P2PW.W32.Halfint

NW.W32.Protoride.e P2PW.W32.Alcan.a P2PW.W32.Huntox

NW.W32.Protoride.f P2PW.W32.AntiFizz P2PW.W32.Ident

NW.W32.Protoride.g P2PW.W32.Aplich P2PW.W32.Ihit.a

NW.W32.Raleka.b P2PW.W32.Apsiv P2PW.W32.Insta.a

NW.W32.Rega.a P2PW.W32.Aritim P2PW.W32.Inter

NW.W32.Salie.a P2PW.W32.Ariver P2PW.W32.Irkaz

NW.W32.Sasser.b P2PW.W32.Backterra.a P2PW.W32.Kabak.a

NW.W32.Sasser.d P2PW.W32.Banuris.a P2PW.W32.Kamadina

NW.W32.SdBoter.a P2PW.W32.Benjamin.a.exe P2PW.W32.Kamafe

NW.W32.SdBoter.b P2PW.W32.Bereb.a P2PW.W32.Kanyak.a

NW.W32.SdBoter.c P2PW.W32.Bereb.b P2PW.W32.Kapucen.b

NW.W32.SdBoter.g P2PW.W32.Blaxe P2PW.W32.Kazeus

Figure 5.9: Test Viruses for Kernel implementation of SRRAT - 3

70

P2PW.W32.Kenfo V.W32.Arch.a V.W32.Gipiras.a

P2PW.W32.Kevor V.W32.Aris V.W32.Gpcode.ac

P2PW.W32.Kifie.a V.W32.Artelad.2173 V.W32.Halen.2618

P2PW.W32.Kifie.c V.W32.Bacros.a V.W32.Hezhi

P2PW.W32.Kifie.f V.W32.Banaw.2157 V.W32.Jlok

P2PW.W32.Lamerx V.W32.Barum.1536 V.W32.Kenfa.a

P2PW.W32.Lemb.b V.W32.Basket.a V.W32.Levi.2961

P2PW.W32.Mantas.a V.W32.Bayan.a V.W32.Mental

P2PW.W32.Niklas.a V.W32.BCB.a V.W32.Mental.10000

P2PW.W32.Niklas.b V.W32.Bee V.W32.Mental.10472

P2PW.W32.Niklas.c V.W32.Beef.2110 V.W32.Neshta.a

P2PW.W32.Opex.a V.W32.Bender.1363 V.W32.Nlip

P2PW.W32.Polipos V.W32.Bika.1906 V.W32.Niya.a

P2PW.W32.SpyBot V.W32.Blateroz V.W32.Parite.a

P2PW.W32.Vagas.a V.W32.Bluback.1376 V.W32.Parite.b

P2PW.W32.Walrain V.W32.Blueballs.4117 V.W32.Porad.a

P2PW.W32.Weakas V.W32.Bogus.4096 V.W32.Redemption

P2PW.W32.Zaka.a V.W32.Bondage.968.a V.W32.Savior.1680

P2PW.W32.Zaka.f V.W32.Butter V.W32.Seppuku.6834

P2PW.W32.Zaka.m V.W32.Cabanas.e V.W32.Sinco

V.W32.Cloz.a V.W32.CabInfector V.W32.Small.a

V.W32.Storm-2 V.W32.Canbis.a V.W32.Small.c

V.W32.Civut.a V.W32.Cecile V.W32.Spreder

V.Boot-DOS.Tequila V.W32.Cmay.1222 V.W32.Stream.a

V.DOS.Maltese-Amoeba.2367 V.W32.Cornad V.W32.Stream.b

V.DOS.OneHalf.3666 V.W32.Crosser V.W32.Sugin

V.MSIL.Gastropod V.W32.Crypto V.W32.Tapan.3882

V.MSWord.Blaster V.W32.CTX.6886 V.W32.TeddyBear

V.MSWord.Melissa V.W32.Delfer.a V.W32.Tenga.a

V.VBS.Lucky2 V.W32.Devir V.W32.Teta.a

V.VBS.H V.W32.Dictator.2304 V.W32.Thorin.11932

V.W32.Aidlot V.W32.Dislex V.W32.Thorin.b

V.W32.Aldebaran.8365.a V.W32.Donut V.W32.Thorin.c

V.W32.Aldebaran.8365.b V.W32.Elkern.a V.W32.Thorin.d

V.W32.Andras.7300 V.W32.Emotion.a V.W32.Thorin.e

V.W32.Apathy.5378 V.W32.Enumiacs.6656 V.W32.VChain

V.W32.Apoc.a V.W32.Fosforo V.W32.Voltage.A

V.W32.Apparition V.W32.Ghost.1667 V.W32.Watcher.a

V.W32.Storm V.W32.Yerg.9571 V.W32.Younga.4434

Figure 5.10: Test Viruses for Kernel implementation of SRRAT - 4

71

CHAPTER 6

TEST RESULTS: ANALYSIS AND EVALUATION

Performing the tests was a long and strenuous process. The nature of virus testing

requires several re-installations of the host computer to ensure a clean virus free

environment for the next test. To ensure that each virus was executed in a virus free

environment, the Vmware workstation virtual machine was restored to a clean state

after concluding each test. Assuring a virus free environment for each test was needed

to ensure that a virus was not kept form executing normally as a result of a previous

virus’s infection on the virtual machine. What follows is an analysis and evaluation

of all the test results along with observations and experiences from conducting the

tests.

6.1 Theory Validation

Conducting this test took approximately 4 days to complete. The benign process

testing was completed in one day and the balance of days was taken by the virus

testing. The test results for the benign processes are presented in Figure 6.1. The

first and fourth columns are the names of each benign process tested, the second

and fifth columns are the results of testing for SR, the third and sixth columns are

the test results for SR-replication with Y meaning yes and N meaning No. When

testing commenced I decided to also record any occurrence of SR. My reasoning for

this was if a benign process was an SR process and did not attempt SR-replication

during testing, the possibility of attempting SR-replication could still occur under

different execution conditions. Therefore I considered an SR benign process as being

a potential false positive assuming the correct execution conditions were in place for

SR-replication to occur. The test results show that all 62 benign process not only

did not attempt SR-replication but none even attempted SR. The result is the whole

72

test set can be classified as non-SR benign processes based on the test results. Not

finding any SR-replication did not surprise me as this characteristic not being found

in benign processes is one of my main assumptions in this research. I was surprised

though that none of the processes attempted SR. As each process was executed I

interacted with them in as many typical user ways as possible to afford maximum

possibility to the process to exhibit different forms of behavior. Finding none of these

processes attempted SR-replication and SR supports my assumption that SR can

be used to distinguish between viral and non-viral processes. Furthermore the lack

of SR reenforces my assumption by showing that not only do benign processes not

attempt SR-replication but they may not even read themselves, thus not be an SR

process, in any way during their execution. This further distinguishes benign from

viral based on SR-replication characteristic and reduces the chances of false positive

production.

All 284 viruses were tested one by one in the virtual machine for the attempt

of SR-replication. The virtual machine was reset to a clean virus free state before

each test was conducted. A summary of the virus results are in Figures 6.1. The

full test results are in Figures 6.1, 6.1, 6.1 and 6.1. Analyzing the results it becomes

clear that a majority of the viruses did in fact show SR-replication with the excep-

tion of the Win32 Virus class. For that class the majority, 58 viruses, did not show

SR-replication. The viruses that did not show SR-replication could be the result of

advanced anti-detection techniques. Some viruses have the capacity to detect running

processes that may be used to terminate or erase them, if they detect such a process

they will behave as a benign process and do nothing exhibiting virus like behavior,

this of course includes replication. Another reason for these viruses not showing SR-

replication is they may have not found the right conditions to replicate. Win32 viruses

tend to infect files that are of a specific format, most notably the Portable Execution

73

Benign SR SRR Benign SR SRR
Process Process
AcroRd32.exe N N netbeans.exe N N

AcroRd32Info.exe N N OUTLOOK.EXE N N

Ad-Aware.exe N N pa.exe N N

AlbumDB2.exe N N palaunch.exe N N

AsusProb.exe N N pastatus.exe N N

bibtex.exe N N pdflatex.exe N N

CFD.exe N N PHOTOED.EXE N N

csrss.exe N N POWERPNT.EXE N N

Deskup.exe N N procexp.exe N N

devenv.exe N N Procmon.exe N N

emule.exe N N rundll32.exe N N

ErrorKiller.exe N N services.exe N N

EXCEL.EXE N N Skype.exe N N

Explorer.EXE N N sol.exe N N

firefox.exe N N sqlservr.exe N N

FrameworkService.exe N N svchost.exe N N

gbk2uni.exe N N symlcsvc.exe N N

GoogleEarth.exe N N SyncBackSE.exe N N

HWN.exe N N System N N

IEXPLORE.EXE N N TEXCNTR.EXE N N

iexplore.exe N N TexFriend.exe N N

java.exe N N tomcat5.exe N N

LimeWire.exe N N verclsid.exe N N

MATLAB.exe N N WCESCOMM.EXE N N

Mcshield.exe N N WinEdt.exe N N

MemoryManagement.vshost.exe N N winlogon.exe N N

MSACCESS.EXE N N winmine.exe N N

mscorsvw.exe N N WinRAR.exe N N

msnmsgr.exe N N WINWORD.EXE N N

naPrdMgr.exe N N wmiprvse.exe N N

nbexec.exe N N wuauclt.exe N N

Figure 6.1: Theory Validation Test Results Benign Processes

74

Email Peer-to-Peer Network Win32
Worms Worms Worms Viruses

SR-replication 43 47 45 13

No SRreplication 28 24 26 58

Figure 6.2: Summary Results Theory Validation Virus Test

(PE) format. It is possible these viruses searched for victim files and simply did not

find any and thus could not replicated. A second interesting observation from the

results is where the SR-replication occurred. Of the viruses that did replicate, the

overwhelming majority did so in Kernel mode and a smaller amount replicated in user

mode. Only three viruses replicated in both user and Kernel mode. The implication

of the majority of these viruses replicating in Kernel is they do this purposely to

attempt detection avoidance. By executing in Kernel mode they have the capacity to

run below or at the same level as virus detectors thus allowing them more leeway to

hide and avoid detection. Just considering only the static analysis, the viruses that

did not show SR-replication are false negatives. It is however difficult to say if they

really could be false negatives for the reasons stated here, it is possible they could be

detected with the proper virus detector in place.

Overall the theory validation testing results strongly support my assumption that

SR-replication can distinguish between viruses and benign processes. The key to

this conclusion is the fact that no false positives occurred and several true positives

occurred. If false positives had occurred then one can conclude that SR-replication

is a characteristic generally occurring in any process. The lack of SR-replication and

SR itself in the benign processes suggests the opposite, that SR-replication may in

fact be a characteristic unique to viruses and not occurring in benign processes.

75

Email SRR API Kernel Peer to Peer SRR API Kernel
Worms Attempts Call Service Worms Attempts Call Service
Abotus 0 N N Abuva 0 N N
Actem 0 N N Adil 3 Y Y
Agist.a 1 N Y Alcan.a 1 N Y
Alanis 7 N Y AntiFizz 1 N Y
Aliz 0 N N Aplich 1 N Y
Altice 0 N N Apsiv 0 N N
Amus.a 10 N Y Aritim 1 N Y
Anarch 1 N Y Ariver 1 N Y
Android 1 Y N Blaxe 6 N Y
Anel 0 N N Cabby 1 N Y
Animan 1 N Y Cake 0 N N
Anpir.a 4 Y N Carfin 0 N N
Antiax 1 Y N Cassidy 19 Y N
Antites 0 N N Cayen.a 0 N N
Aplore 2 N Y Cocker 61 N Y
Apost 1 N Y Compatex 6 N Y
Assarm 1 Y N Compux.a 36 Y Y
Atirus 1 N Y Cozit 2 N Y
Avoner 0 N N Dafly.b 0 N N
Babuin 1 N Y Dani 0 N N
BabyBear 0 N N Delf.a 1 Y N
Badass 0 N N Druagz 1 N Y
Badtrans.a 0 N N Agobot.a 1 Y N
Bagle.a 1 N Y Agobot.b 1 Y N
Bagle.j 1 N Y Agobot.c 1 Y N
Bagle.k 1 N Y Agobot.d 1 Y N
Bagle.m 1 N Y Backterra.a 0 N N
Bagle.n 1 N Y Banuris.a 217 N Y
Bagle.o 1 N Y Bereb.a 474 N Y
Bandet.a 2 Y N Erdam 1 Y N
Banza 0 N N Flocker 1 Y N
Bater.a 1 Y N Franvir 0 N N
Benny 1 N Y Furby 0 N N
Bimoco.a 1 Y N Gagse 257 N Y
Black 0 N N Gotorm 1 N Y
Blare 0 N N Grompo 1 N Y
Blitzy 0 N N Halfint 0 N N
Bonorm 0 N N Huntox 0 N N

Figure 6.3: Theory Validation Test Results Viruses - 1

76

Email SRR API Kernel Peer to Peer SRR API Kernel
Worms Attempts Call Service Worms Attempts Call Service
Bormex 0 N N Ident 0 N N
Borzella 1 Y N Insta.a 7 N Y
Botter.a 1 N Y Inter 1 N Y
Bumper 0 N N Irkaz 2 Y N
Burnox 30 N Y Kabak.a 0 N N
Calil 0 N N Kamadina 0 N N
Calposa 8 N Y Kamafe 0 N N
Carfrin 1 N Y Kanyak.a 1 Y N
Cervivec 1 N Y Kapucen.b 1 Y N
CWS.a 0 N N Kazeus 1 N Y
Dumaru.r 3 N Y Bereb.b 481 N Y
Eyeveg.m 1 N Y Gedza.b 0 N N
Happy 0 N Y Kenfo 0 N N
Klez.a 3 Y Y Gedza.c 2 N Y
Klez.e 1 Y N Habaku.b 0 N N
Klez.i 1 Y N Kifie.a 2 N Y
Merkur.b 0 N N Kifie.c 2 N Y
Mimail.j 1 N Y Kifie.f 3 N Y
Mydoom.ax 1 N Y Niklas.b 2 N Y
Mydoom.b 1 N Y Niklas.c 2 N Y
Plexus.a 1 N Y Opex.a 103 N Y
Sircam.a 0 N N Polip.a 0 N N
Sircam.d 1 Y N Zaka.a 1 N Y
Sober.a 2 N Y Zaka.f 1 N Y
Sober.f 3 N Y Zaka.m 1 N Y
Yoxec 0 N N Kevor 0 N N
Zar.a 3 N Y Kovirz 0 N N
Zhangpo 1 N Y Krepper 0 N N
Zircon 0 N N Lamerx 0 N N
Zoek 0 N N Lemb.b 3 N Y
Zoher 0 N N Vagas.a 4 N Y
Zush 0 N N Walrain 30 N Y
Zwur.a 0 N N Weakas 1 Y N

Figure 6.4: Theory Validation Test Results Viruses - 2

77

Network SRR API Kernel Win32 SRR API Kernel
Worms Attempts Call Service Viruses Attempts Call Service
3DStars 0 N N Aidlot 0 N N
CodeGreen.a 0 N N Andras.7300 0 N N
Cycle.a 1 N Y Apathy.5378 1 N Y
Ezio.a 1 Y N Apoc.a 0 N N
Francette.a 0 N N Arch.a 1 N Y
Francette.b 0 N N Aris 0 N N
Francette.c 0 N N Artelad.2173 0 N N
Francette.d 0 N N Bacros.a 4 N Y
Francette.e 0 N N Banaw.2157 0 N N
Francette.g 0 N N Barum.1536 0 N N
Hiberium.b 0 N N Basket.a 0 N N
Maslan.a 1 N Y Bayan.a 0 N N
Maslan.b 1 N Y BCB.a 60 N Y
Mytob.q 1 N Y Bee 2 N Y
Protoride.aa 0 N N Beef.2110 0 N N
Protoride.ai 0 N N Bender.1363 0 N N
Protoride.al 0 N N Bika.1906 0 N N
Protoride.ar 0 N N Blateroz 0 N N
Protoride.b 0 N N Bluback.1376 0 N N
Protoride.bk 1 N Y Blueballs.4117 0 N N
Protoride.e 0 N N Bogus.4096 0 N N
Protoride.f 0 N N Bondage.968.a 0 N N
Afire.b 3 N Y Cabanas.e 0 N N
Afire.c 1 N Y DarkSide.1371 0 N N
Afire.d 1 N Y Elkern.a 0 N N
Bozori.b 1 N Y Enumiacs-6656 0 N N
Bozori.e 1 N Y Levi-2961 0 N N
Bozori.j 1 N Y Mental 0 N N
Dabber.a 1 N Y Mental-10000 0 N N
Protoride.g 0 N N Butter 0 N N
Raleka.b 0 N N CabInfector 0 N N
Rega.a 2 Y N Cecile 0 N N
Salie.a 0 N N Civut.a 1 N Y
SdBoter.a 1 N Y Cloz.a 0 N N
SdBoter.b 1 N Y Cmay.1222 0 N N
SdBoter.c 1 N Y Cornad 1 Y N
SdBoter.g 1 N Y Crosser 0 N N
SdBoter.k 1 N Y Delfer.a 0 N N

Figure 6.5: Theory Validation Test Results Viruses - 3

78

Network SRR API Kernel Win32 SRR API Kernel
Worms Attempts Call Service Viruses Attempts Call Service
Shelp.a 0 N N Devir 0 N N
Spoder.a 0 N N Dictator.2304 0 N N
Stap.b 8 N Y Dislex 0 N N
Stap.e 7 N Y Gipiras.a 0 N N
Stap.f 7 N Y Hezhi 0 N N
Syner.a 1 Y N Jlok 2 Y Y
Webdav.a 9 Y N Kenfa.a 0 N N
Welchia.a 1 N Y Netlip 0 N N
Welchia.b 1 N Y Niya.a 0 N N
Welchia.c 1 N Y Porad.a 0 N N
Dabber.b 1 N Y Neshta.a 0 N N
Dabber.c 1 N Y Parite.a 1 N Y
Welchia.e 1 N Y Sinco 0 N N
Domwoot.c 1 N Y Parite-b 1 N Y
Doomjuice.b 1 N Y Seppuku.6834 0 N N
Kidala.a 1 N Y Small.a 0 N N
Kidala.b 1 N Y Small.b 0 N N
Lebreat.a 2 N Y Tapan-3882 0 N N
Muma.b 1 N Y Thorin.11932 0 N N
Muma.c 1 N Y Thorin.b 0 N N
Opasoft.a 0 N N Thorin.c 0 N N
Padobot.m 1 N Y Xorala 0 N N
Sasser.b 1 Y N Younga.4434 0 N N
Theals.c 0 N N ZMist 1 N Y
Vesser.a 0 N N ZPerm.b 0 N N
Xatch.a 0 N N Spreder 0 N N
Zan 0 N N Sugin 0 N N
Zusha.a 1 Y N TeddyBear 0 N N
Zusha.b 1 N Y VChain 0 N N
Zusha.c 1 N Y Watcher.a 1 Y N
Zusha.e 1 N Y Zevity 0 N N
Zusha.f 1 N Y Zorg.a 0 N N
Zusha.h 1 N Y Zori.a 1 Y N

Figure 6.6: Theory Validation Test Results Viruses - 4

79

6.2 User Mode Prototype

Testing the user implementation of SRRAT against the 66 test viruses was conducted

in less than a day. The detection of SR-replication for the viruses is listed in Figure

6.2. Out of 66 viruses in the test set 18 were terminated and flagged as attempting to

execute SR-replication. When each of these viruses were terminated by SRRAT, the

virus’s SR-replication graph was created and saved to a text file. The SR-replication

graph for the Alanis email worm is presented in Figure 6.7. The graph shows the

Alanis worm attempted SR-replication by first invokng the Readfile API function

with itself as the source parameter, the function returned the memory address 1568460

pointing to the buffer containing the read portion of the virus, this function call makes

Alanis an SR process for invoking a read general operation using itself as the source

of the read, thus Alanis is reading itself. The virus then called the Writefile Api

function using the memory address 1568460 as the source of the write and the desti-

nation was the file kerneldll32.api. When this function was called SRRAT established

transitivity between kerneldll32.api and gallo.exe which is the virus file itself. This

positive test for transitivity showed Alanis to be attempting SR-replication and was

terminated. SRRAT always terminated these processes before the actual Writefile

function was invoked, this prevented the SR-replication from completing. Further-

more the graph show the read operation was the first operation to occur dealing with

SR, this is noted by the 1 next to the function name, the number 2 next to the write

operation function name indicates this operation was then the second that occurred

dealing with SR. The significance of this numbering is that SRRAT not only ter-

minated Alanis for attempting SR-replication but it terminated Alanis on it’s first

attempt of SR-replication.

I classified the viruses that were not terminated into two groups: those viruses not

hooked by SSRAT listed in Figure 6.2 and those viruses that did not attempt SR-

80

Figure 6.7: EW-Win32.Alanis SR-replication graph

replication during testing which are listed in Figure 6.2. Of the remaining 48 viruses

that were not terminated, 15 of them executed and did not attempt SR-replication

by the use of API function calls in a way that was detectable by SRRAT. Some of

these viruses perform SR-replication in Kernel mode and others will only replicate

when certain conditions are met and quite possibly these conditions were not present

in the virtual machine. Interestingly, 5 of these viruses: watcher.a, weakas, rega.a,

delf.a and ezio.a had previously attempted SR-replication during the theory vali-

dation testing. During that testing the SR-replication had been identified by the log

files of API SPY 32. I later concluded that these 5 viruses that should have been

detected were not as a result of the implementation of SRRAT missing some key

functionality which prevented detection from occurring.

Of the 48 viruses not terminated by SRRAT, 33 were not hooked by SRRAT when

execution commenced. SRRAT notifies me through a log file of it’s activities while

it runs. When it hooks a process the action is noted in the log file. When each of

the 33 viruses listed in Figure 6.2 were executed one by one, the SRRAT log file did

81

Virus SRR Virus SRR
Name Detected Name Detected
Email-Worm.Win32.Alanis Y Net-Worm.Win32.Webdav.a N
Email-Worm.Win32.Android N Net-Worm.Win32.Zusha.a N
Email-Worm.Win32.Anpir.a N Net-Worm.Win32.Zusha.b N
Email-Worm.Win32.Antiax N Net-Worm.Win32.Zusha.c N
Email-Worm.Win32.Apost Y Net-Worm.Win32.Zusha.e Y
Email-Worm.Win32.Asid.a N Net-Worm.Win32.Zusha.f Y
Email-Worm.Win32.Bandet.a N P2P-Worm.Win32.Agobot.a Y
Email-Worm.Win32.Bater.a N P2P-Worm.Win32.Agobot.b Y
Email-Worm.Win32.Benny N P2P-Worm.Win32.Agobot.c Y
Email-Worm.Win32.Bimoco.a N P2P-Worm.Win32.Agobot.d Y
Email-Worm.Win32.Bormex N P2P-Worm.Win32.Aplich N
Email-Worm.Win32.Borzella Y P2P-Worm.Win32.Blaxe Y
Email-Worm.Win32.Botter.a N P2P-Worm.Win32.Cassidy Y
Email-Worm.Win32.Burnox Y P2P-Worm.Win32.Compux.a N
Email-Worm.Win32.Calposa Y P2P-Worm.Win32.Delf.a N
Email-Worm.Win32.Canbis.a N P2P-Worm.Win32.Erdam N
Email-Worm.Win32.Happy N P2P-Worm.Win32.Flocker.01 Y
Email-Worm.Win32.Klez.b N P2P-Worm.Win32.Gagse Y
Email-Worm.Win32.Klez.c N P2P-Worm.Win32.Gedza.c N
Email-Worm.Win32.Klez.d N P2P-Worm.Win32.Irkaz N
Email-Worm.Win32.Klez.e N P2P-Worm.Win32.Kanyak.a N
Email-Worm.Win32.Klez.f N P2P-Worm.Win32.Kapucen.b Y
Email-Worm.Win32.Klez.g N P2P-Worm.Win32.Weakas N
Email-Worm.Win32.Klez.i N Virus.Win32.Arch.a N
Email-Worm.Win32.Klez.j N Virus.Win32.BCB.a Y
Email-Worm.Win32.Sircam.d N Virus.Win32.Bee N
Net-Worm.Win32.Doomran N Virus.Win32.Canbis.a N
Net-Worm.Win32.Ezio.a N Virus.Win32.Jlok N
Net-Worm.Win32.Maslan.b N Virus.Win32.Redemption Y
Net-Worm.Win32.Nimda N Virus.Win32.Small.c N
Net-Worm.Win32.Rega.a N Virus.Win32.Spreder N
Net-Worm.Win32.Sasser.b N Virus.Win32.Watcher.a N
Net-Worm.Win32.Syner.a N Virus.Win32.Zori.a N

Figure 6.8: Virus Test Results User implementation of SRRAT

82

Virus Virus
Name Name
Email-Worm.Win32.Android Email-Worm.Win32.Anpir.a

Email-Worm.Win32.Antiax Email-Worm.Win32.Asid.a

Email-Worm.Win32.Bandet.a Email-Worm.Win32.Bater.a

Email-Worm.Win32.Benny Email-Worm.Win32.Bimoco.a

Email-Worm.Win32.Bormex Email-Worm.Win32.Canbis.a

Email-Worm.Win32.Klez.b Email-Worm.Win32.Klez.c

Email-Worm.Win32.Klez.d Email-Worm.Win32.Klez.e

Email-Worm.Win32.Klez.f Email-Worm.Win32.Klez.g

Email-Worm.Win32.Klez.i Email-Worm.Win32.Klez.j

Email-Worm.Win32.Sircam.d Net-Worm.Win32.Maslan.b

Net-Worm.Win32.Nimda Net-Worm.Win32.Sasser.b

Net-Worm.Win32.Syner.a Net-Worm.Win32.Webdav.a

P2P-Worm.Win32.Compux.a P2P-Worm.Win32.Erdam

P2P-Worm.Win32.Gedza.c P2P-Worm.Win32.Irkaz

P2P-Worm.Win32.Kanyak.a Virus.Win32.Bee

Virus.Win32.Jlok Virus.Win32.Small.c

Virus.Win32.Zori.a

Figure 6.9: Viruses not hooked by User implementation of SRRAT

Virus Virus Virus
Name Name Name
Virus.Win32.Watcher.a Virus.Win32.Spreder Virus.Win32.Canbis.a

Virus.Win32.Arch.a P2P-Worm.Win32.Weakas P2P-Worm.Win32.Delf.a

P2P-Worm.Win32.Aplich Net-Worm.Win32.Zusha.c Net-Worm.Win32.Zusha.b

Net-Worm.Win32.Zusha.a Net-Worm.Win32.Rega.a Net-Worm.Win32.Ezio.a

Net-Worm.Win32.Doomran Email-Worm.Win32.Happy Email-Worm.Win32.Botter.a

Figure 6.10: Viruses not Exhibiting SR-replication in User Mode SRRAT Testing

83

not contain any entry documenting a successful hook of the executing virus. These

viruses executed fully on the system with no monitoring of them being conducted by

SRRAT. Some of these viruses actually run in Kernel mode and are able to bypass

user mode detectors such as SSRAT. But others do show usage of API function calls

in user mode. These were not detected due to lack of functionality in the user mode

implementation of SRRAT.

Testing for false positives occurred together with usability as a real time monitor

by running SRRAT on two desktop computers for three days. During this time the

two computers were used under normal conditions plus some installation programs

were purposely run in an attempt to cause SRRAT to produce a false positive. At

the end of the three days SRRAT did not report a single process as having attempted

SR-replication, no processes were terminated as a result of exhibiting possible virus

behavior which ultimately means that no false positives were produced. The testing

also showed the user mode implementation of SRRAT not to be a very practical real

time monitor and detector. One five occasions one of the computers had to be re-

booted due to very slow operation resulting from SRRAT consuming high amounts of

resources thus starving all the other processes running on the computer. On several

occasions, SRRAT would crash when attempting to hook a process that was running

at the time SRRAT was started. On a few occasions when SRRAT was terminated

it still kept running and the process had to be terminated directly and ungracefully

using Windows system tools. These problems were all implementation related and

despite them no false positives occur and virus detection had been successful in some

cases.

Overall, I feel the testing of the user mode implementation of SRRAT had mixed

results. On the one hand detecting a subset of the test viruses shows that detection of

84

SR-replication in user mode is possible. The non-production of false positives further

reenforces the idea that SR-replication is a characteristic unique to viruses. On the

other hand, implementation issues due to lack of programming knowledge within the

Windows environment may have led to some false negative production and a resource

intensive implementation causing many problems that made it not to be the best

choice as a practical tool for real time monitoring and detection of SR-replication

in currently running processes. Only with increased programming experience in this

area can a leaner, more robust and effective implementation tool be built.

6.3 Kernel Mode Prototype

A total of 14 days was need to test the Kernel mode implementation of SRRAT

against the 367 test viruses and false positive testing. To test each virus required 8

days with the balance of days being used for false positive and usability testing. A

summary of the test results is listed in Figure 6.3. As we can see from the summary

the overall testing result showed half of the test viruses to exhibit SR-replication

behavior with the other have not exhibiting this behavior.

Recall the memory problems encountered during creation of the implementation

were not overcome and these results were built from analysis of the log files produced

by the Kernel Mode implementation of SRRAT. Besides the four main categories of

viruses I also added one and two samples of two new categories which were Instant

Messaging viruses and Win32 Worms. These are not major categories of my test set

and they were added just to have at least one sample to make the test set represen-

tative of other virus categories.

Viewing the results by virus category is is clear that SR-replication occured in the

majority of viruses in the categories of: email worms, network worms, peer-to-peer

85

worms, instant messaging worms and Win32 worms. The main cause of the 50/50

split in the overall results is directly related to the very high false negative rate pro-

duced by the Win32 viruses category.

Email Peer-to-Peer Network IM Win32 Win32 Total
Worms Worms Worms Worms Worms Viruses Amount

SR-replication 67 50 45 2 1 19 184
No SRreplication 28 28 38 0 0 89 183
True Positve 70% 64% 54% 100% 100% 18% 50%
False Negative 30% 36% 46% 0% 0% 82% 50%

Figure 6.11: Summary Results Kernel Implementation SRRAT Virus Test

The viruses showing SR replication did so in one of two basic forms. The first form

was a simple read and write general operations. This form was not the dominant one

in the log file analysis of the virus executions. A sample of this form is in Figure 6.12.

The second form and by far the most dominant was a sequence of operations that

began with reading a file into memory followed by another reading of that memory

to a new memory location and finally writing the memory to a new file. A sample

of this form is in Figure 6.13. As seen from the test results in Figures 6.1, 6.1, 6.1

and 6.1, several of the viruses that attempted SR-replication did so multiple times,

the same was true in this testing. The log files clearly showed multiple attempts to

perform SR-replication by several of the test viruses.

The Win32 viruses which produced the highest number of false negatives, were

for the most part the same viruses used in the testing in Figure 6.1 and 6.1. In that

testing these viruses showed no attempts whatsoever of SR-replication. In testing

these viruses again with the Kernel implementation of SRRAT those results were

confirmed by the log file analysis. As it turns out by studying the log files, these

viruses either: 1. make a copy of the virus itself into memory one or more times. In

many cases this copy into memory is into the memory space of a currently running

86

Figure 6.12: SRRAT Kernel Mode Log File Amus Virus

Figure 6.13: SRRAT Kernel Mode Log File Borzella Virus

87

process. or 2. did not attempt to replicate in any fashion at all. This can be the

result of the failure to find a suitable environment or victim file to replicate. Given

that these viruses performed poorly during the theory validation testing it is not at

all surprising those findings would be confirmed here as well.

Excluding the Win32 viruses category, the rest of the false negatives produced in

the other categories result from none of their log files showing any attempt to exe-

cuted SR-replication. In several cases these viruses did copy the virus itself into the

memory of currently running processes. Interestingly there were a few viruses that

never attempted replication at all. These viruses I consider false negatives as well

because their lack of replication can be from the absence of a suitable environment

needed to replicate. These viruses may in fact replicate and may even perform SR-

replication given the environment facilitating this for each virus.

False positive testing along with testing for usability as a real time monitor of

the Kernel implementation of SRRAT was conducted across 4 days. The log files

produced by SRRAT were saved once per hour and were analyzed when the testing

was completed. Analyzing the log files showed no attempts SR-replication by any

of the processes recorded. Furthermore no SR operations were conducted either by

any process. This gives further support to my assumption of SR-replication being a

characteristic unique to viruses. From a usability standpoint this version is very ro-

bust not causing and crashing or slowdown of the system at any point during testing.

Furthermore it was never disabled or terminated by any virus during testing.

Overall I was quite happy with the testing results of the Kernel implementation

of SRRAT. The number of true positives was much higher than those produced by

the user implementation of SRRAT and no false positives occurred. The one disap-

88

pointment though not surprising was the high false negative amount of the Win32

viruses category. The Kernel implementation of SRRAT proved to be superior to the

user mode in many aspects. It ran leaner, more robust, never crashed or slowed down

the system at any time and proved capable of detecting far more viruses exhibiting

SR-replication attempts then its user mode counterpart. Given this version is more

capable of true positive detection then the user implementation version along with an

overall 50% false negative production indicates to me this approach may be best used

in conjunction with other known approaches to compensate their detection abilities

with the false negatives produced by this implementation. The complete results of

the virus testing with the Kernel mode version of SRRAT are listed in Figures 6.4,

6.4, 6.4, 6.4 and 6.4.

6.4 Evaluation of Proposed Solution

Analyzing the results of all the testing two conclusions can be made about SR-

replication. First it seems clear that this form of replication is unique to viruses and

not to benign processes. It may therefore be suitable as a characteristic to differen-

tiate between the viruses and benign processes. Second, implementing this theory is

better suited at the lowest possible level of a system to maximize detection capabili-

ties. This is evident from the much larger number of true positives produced by the

kernel mode of SRRAT then the user mode of SRRAT.

The false negative production can be from one of two observations each with its

own unique solution: First the viruses replicate at different levels from those in my

implementations or they are able to avoid detection, this would require better pro-

gramming techniques which is realizable. Second, these viruses may in fact replicate

and my implementations simply lacks some functionality to detect these viruses and

this functionality is not implementable. In this case, the best solution would be to

89

compliment this approach with other known approaches with the assumption that

the combination will reduce the false negatives while at the same time maintain or

increase the true positives.

90

Virus SRR Virus SRR
Name Detected Name Detected
EW.3DStars N EW.W32.Bormex N
EW.W32.NSky.d Y EW.VBS.Homepage N
EW.W32.Borzella Y EW.W32.NSky.q N
EW.VBS.Loveletter.A N EW.W32.Botter.a Y
EW.W32.Plexus-a Y EW.W32.Actem N
EW.W32.Bumper.a N EW.W32.Roach.b Y
EW.W32.Agist.a Y EW.W32.Burnox Y
EW.W32.Sircam.a N EW.W32.Alanis N
EW.W32.Antiman Y EW.W32.Sircam.d Y
EW.W32.Amus.a Y EW.W32.Calposa Y
EW.W32.Sober.a N EW.W32.Anarch Y
EW.W32.Canbis.a Y EW.W32.Sober.f N
EW.W32.Android Y EW.W32.Carfrin Y
EW.W32.Sober.y N EW.W32.Anel N
EW.W32.Cervivec Y EW.W32.Xanax Y
EW.W32.Animan Y EW.W32.CWS.a N
EW.W32.Zafi.b Y EW.W32.Anpir.a Y
EW.W32.Doombot.b Y EW.W32.Zafi.d Y
EW.W32.Antiax Y EW.W32.Dumaru.a Y
EW.W32.Zar.a Y EW.W32.Antites N
EW.W32.Dumaru.c Y EW.W32.Zhangpo N
EW.W32.Aplore Y EW.W32.Dumaru.m Y
EW.W32.Zush N EW.W32.Apost Y
EW.W32.Dumaru.r Y IM-Worm.W32.Bropia.aj Y
EW.W32.Appflet.a Y EW.W32.Eyeveg.m Y
IM-Worm.W32.Aimes-b Y EW.W32.Asid.a Y
EW.W32.Happy Y EW.W32.Babuin.a Y
EW.W32.Atirus Y EW.W32.Klez N
EW.W32.Klez.a N NW.W32.AllocUp-b Y
EW.W32.BabyBear.a N EW.W32.Klez.b N
NW.W32.Afire.c Y EW.W32.Baconex Y
EW.W32.Klez.c Y NW.W32.Afire.d N
EW.W32.Bagle.fj Y EW.W32.Klez.d Y
NW.W32.BlueCode N EW.W32.Bagle.fk Y
EW.W32.Klez.e Y NW.W32.Bobic.k Y
EW.W32.Bagle.h Y EW.W32.Klez.f Y
NW.W32.Bozori.b Y EW.W32.Bagle.i Y
EW.W32.Klez.g Y NW.W32.Bozori.e Y
EW.W32.Bagle.j Y EW.W32.Klez.i Y

Figure 6.14: Virus Test Results Kernel implementation of SRRAT - 1

91

Virus SRR Virus SRR
Name Detected Name Detected
NW.W32.Bozori.j Y EW.W32.Bagle.k Y
EW.W32.Klez.j Y NW.W32.CodeGreen.a N
EW.W32.Bagle.m Y EW.W32.LovGate.g Y
NW.W32.CodeRed N EW.W32.Bagle.n Y
EW.W32.Nyxem Y NW.W32.Cycle.a Y
EW.W32.Bagle.o Y EW.W32.Merkur.b N
NW.W32.Dipnet-f Y EW.W32.Bagle.q Y
EW.W32.Mimail.j Y NW.W32.Dabber.b N
EW.W32.Bandet.a Y EW.W32.Mydoom.ax Y
NW.W32.Dabber.c Y EW.W32.Banza N
EW.W32.Mydoom.b N NW.W32.Daper.a N
EW.W32.Bater.a Y EW.W32.Mydoom.e Y
NW.W32.Domwoot.c Y EW.W32.Benny Y
EW.W32.Mydoom.l Y NW.W32.Doomjuice.b Y
EW.W32.Bimoco.a Y EW.W32.Mydoom.m Y
NW.W32.Doomjuice.d Y EW.W32.Blare N
EW.W32.Mydoom.q Y NW.W32.Doomran Y
EW.W32.Blitzy N EW.W32.NSky N
NW.W32.Ezio.a Y EW.W32.Bonorm N
EW.W32.NSky.b Y NW.W32.Francette.a N
NW.W32.Francette.b N NW.W32.SdBoter.k N
P2PW.W32.Cabby Y NW.W32.Francette.c N
NW.W32.Shelp.a N P2PW.W32.Cake N
NW.W32.Francette.d N NW.W32.Spoder.a N
P2PW.W32.Carfin N NW.W32.Francette.e N
NW.W32.Stap.b Y P2PW.W32.Cassidy Y
NW.W32.Francette.g N NW.W32.Stap.e N
P2PW.W32.Cayen.a N NW.W32.Hiberium.b N
NW.W32.Stap.f N P2PW.W32.Cocker Y
NW.W32.Incef.a Y NW.W32.Syner.a Y
P2PW.W32.Compatex Y NW.W32.Incef.b Y
NW.W32.Theals.b N P2PW.W32.Compux.a Y
NW.W32.Kidala.a Y NW.W32.Theals.c N
P2PW.W32.Cozit Y NW.W32.Kidala.b Y
NW.W32.Vesser.a N P2PW.W32.Dafly.b Y
NW.W32.Lebreat.a Y NW.W32.Webdav.a Y
P2PW.W32.Dani N NW.W32.Lebreat.b Y
NW.W32.Welchia.a Y P2PW.W32.Darby.b N
NW.W32.Lebreat.d Y NW.W32.Welchia.b Y
P2PW.W32.Darby.c N NW.W32.Lebreat.m Y

Figure 6.15: Virus Test Results Kernel implementation of SRRAT - 2

92

Virus SRR Virus SRR
Name Detected Name Detected
NW.W32.Welchia.c Y P2PW.W32.Delf.a Y
NW.W32.Muma.c Y NW.W32.Welchia.e Y
P2PW.W32.Disager Y NW.W32.Maslan.b N
NW.W32.Xatch.a N P2PW.W32.Druagz Y
NW.W32.Muma.b Y NW.W32.Zan N
P2PW.W32.Erdam Y NW.W32.Muma.c Y
NW.W32.Zusha.a Y P2PW.W32.Flocker.01 Y
NW.W32.Mytob.q Y NW.W32.Zusha.b Y
P2PW.W32.Franvir N NW.W32.Nimda Y
NW.W32.Zusha.c Y P2PW.W32.Furby N
NW.W32.OpasSoft.a.pac N NW.W32.Zusha.e N
P2PW.W32.Gagse Y NW.W32.Padobot.m Y
NW.W32.Zusha.f N P2PW.W32.Gedza.b N
NW.W32.Protoride.aa N P2PW.W32.Abuva N
P2PW.W32.Gedza.c Y NW.W32.Protoride.ai N
P2PW.W32.Adil Y P2PW.W32.Gotorm Y
NW.W32.Protoride.al N P2PW.W32.Agobot.a Y
P2PW.W32.Grompo Y NW.W32.Protoride.ar N
P2PW.W32.Agobot.b Y P2PW.W32.Habaku.a N
NW.W32.Protoride.b N P2PW.W32.Agobot.c Y
P2PW.W32.Habku.b N NW.W32.Protoride.bk Y
P2PW.W32.Agobot.d Y P2PW.W32.Halfint N
NW.W32.Protoride.e N P2PW.W32.Alcan.a Y
P2PW.W32.Huntox N NW.W32.Protoride.f N
P2PW.W32.AntiFizz Y P2PW.W32.Ident N
NW.W32.Protoride.g N P2PW.W32.Aplich Y
P2PW.W32.Ihit.a N NW.W32.Raleka.b N
P2PW.W32.Apsiv N P2PW.W32.Insta.a N
NW.W32.Rega.a Y P2PW.W32.Aritim Y
P2PW.W32.Inter Y NW.W32.Salie.a N
P2PW.W32.Ariver Y P2PW.W32.Irkaz Y
NW.W32.Sasser.b Y P2PW.W32.Backterra.a N
P2PW.W32.Kabak.a N NW.W32.Sasser.d Y
P2PW.W32.Banuris.a Y P2PW.W32.Kamadina N
NW.W32.SdBoter.a N P2PW.W32.Benjamin.a.exe Y
P2PW.W32.Kamafe N NW.W32.SdBoter.b Y
P2PW.W32.Bereb.a Y P2PW.W32.Kanyak.a Y
NW.W32.SdBoter.c Y P2PW.W32.Bereb.b Y
P2PW.W32.Kapucen.b Y NW.W32.SdBoter.g Y
P2PW.W32.Blaxe Y P2PW.W32.Kazeus Y

Figure 6.16: Virus Test Results Kernel implementation of SRRAT - 3

93

Virus SRR Virus SRR
Name Detected Name Detected
P2PW.W32.Kenfo N V.W32.Arch.a Y
V.W32.Gipiras.a N P2PW.W32.Kevor N
V.W32.Aris N V.W32.Gpcode.ac N
P2PW.W32.Kifie.a N V.W32.Artelad.2173 N
V.W32.Halen.2618 N P2PW.W32.Kifie.c Y
V.W32.Bacros.a Y V.W32.Hezhi N
P2PW.W32.Kifie.f Y V.W32.Banaw.2157 N
V.W32.Jlok Y P2PW.W32.Lamerx N
V.W32.Barum.1536 N V.W32.Kenfa.a N
P2PW.W32.Lemb.b Y V.W32.Basket.a N
V.W32.Levi.2961 N P2PW.W32.Mantas.a Y
V.W32.Bayan.a N V.W32.Mental N
P2PW.W32.Niklas.a Y V.W32.BCB.a Y
V.W32.Mental.10000 N P2PW.W32.Niklas.b Y
V.W32.Bee N V.W32.Mental.10472 N
P2PW.W32.Niklas.c Y V.W32.Beef.2110 N
V.W32.Neshta.a Y P2PW.W32.Opex.a Y
V.W32.Bender.1363 N V.W32.Nlip N
P2PW.W32.Polipos N V.W32.Bika.1906 N
V.W32.Niya.a N P2PW.W32.SpyBot N
V.W32.Blateroz N V.W32.Parite.a Y
P2PW.W32.Vagas.a Y V.W32.Bluback.1376 N
V.W32.Parite.b Y P2PW.W32.Walrain Y
V.W32.Blueballs.4117 N V.W32.Porad.a N
P2PW.W32.Weakas Y V.W32.Bogus.4096 N
V.W32.Redemption N P2PW.W32.Zaka.a Y
V.W32.Bondage.968.a N V.W32.Savior.1680 N
P2PW.W32.Zaka.f Y V.W32.Butter N
V.W32.Seppuku.6834 Y P2PW.W32.Zaka.m Y
V.W32.Cabanas.e N V.W32.Sinco N
V.W32.Small.a N V.W32.CabInfector N
V.W32.Canbis.a Y V.W32.Small.c N
V.W32.Spreder Y V.W32.Cecile N
V.W32.Civut.a N V.W32.Storm N
V.W32.Storm-2 N V.Boot-DOS.Tequila N
V.W32.Cmay.1222 N V.W32.Stream.a N
V.DOS.Maltese-Amoeba.2367 N V.W32.Cornad N
V.W32.Cloz.a N

Figure 6.17: Virus Test Results Kernel implementation of SRRAT - 4

94

Virus SRR Virus SRR
Name Detected Name Detected
V.W32.Stream.b N V.DOS.OneHalf.3666 N
V.W32.Crosser N V.W32.Sugin N
V.MSIL.Gastropod N V.W32.Crypto N
V.W32.Tapan.3882 N V.MSWord.Blaster N
V.W32.CTX.6886 N V.W32.TeddyBear N
V.MSWord.Melissa N V.W32.Delfer.a Y
V.W32.Tenga.a Y V.VBS.Lucky2 N
V.W32.Devir N V.W32.Teta.a Y
V.VBS.H Y V.W32.Dictator.2304 N
V.W32.Thorin.11932 N V.W32.Aidlot N
V.W32.Dislex N V.W32.Thorin.b N
V.W32.Aldebaran.8365.a N V.W32.Donut Y
V.W32.Thorin.c N V.W32.Aldebaran.8365.b N
V.W32.Elkern.a N V.W32.Thorin.d N
V.W32.Andras.7300 N V.W32.Emotion.a N
V.W32.Thorin.e N V.W32.Apathy.5378 Y
V.W32.Enumiacs.6656 N V.W32.VChain N
V.W32.Apoc.a N V.W32.Fosforo N
V.W32.Voltage.A N V.W32.Apparition N
V.W32.Ghost.1667 N V.W32.Watcher.a Y
V.W32.Xorala N V.W32.Xorala.b N
V.W32.Yerg.9571 N V.W32.Younga.4434 Y
V.W32.Zevity N V.W32.ZMist N
V.W32.Zori.a Y V.W32.ZPerm.b N
V.W32.ZPerm.b2 N V.Win9x.CIH N
V.Win9x.DarkSide.1371 N V.Win9x.Sledge.735.b N
V.Win9x.Small.140 N Worm.VB-16 Y

Figure 6.18: Virus Test Results Kernel implementation of SRRAT - 5

95

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This dissertation has address the problem of finding a characteristic present in all

viruses that is suitable to detect both known and unknown viruses belonging to dif-

ferent categories and under several execution conditions. The problems of current

virus detection both signature and behavior based are well established in the liter-

ature. This research presents a behavior based approach to virus detection based

on self-reference replication (SR-replication) which is a characteristic assumed to be

unique to viruses and not commonly occurring in benign processes. Using this charac-

teristic a behavior based detection approach was formalized using directed call graphs

to detect the self replication of a virus file to some other preexisting or newly created

file on a system. The approach works without any a priori knowledge of previously

discovered viruses. The approach simply detects attempts by a process to perform

SR-replication. The approach was tested by conducting static analysis of known

viruses and benign processes.

The results showed SR-replication to be occurring in most viruses and in none

of the tested benign processes. Two implementations of the approach were created

and tested. In both cases no false positives were produced. There were false nega-

tives which resulted from the implementations lacking needed functionality to cover

more sophisticated viruses capable of executing and avoiding detection. The over-

all conclusions of this dissertation is twofold: First, SR-replication can be used as

a characteristic to differentiate between viruses and benign processes. Furthermore

SR-replication can detect known and unknown viruses when they execute without

96

any a priori knowledge. This ability makes SR-replication well suited to detect newly

released unknown file infecting viruses upon their initial attempts to executed SR-

replication on a system. Second, a real time process monitor and virus detector on

a system can be implemented and is usable using SR-replication as long as the im-

plementation is at a low level of the computer system, for example the in Kernel mode.

A final observation about SR-replication follows: this dissertation has shown the

virus detection abilities of SR-replication to be very good with strong potential but in

its current state, this form of virus detection is not suitable as a stand alone solution

for all forms of viruses detection. From analyzing the test results it is clear that

SR-replication, in its current form, is best used in conjunction with other forms of

virus detection to provide a robust compound solution that is better suited to face

the issues of virus attacks on computer systems with its strongest novel contribution

being the ability to detect newly released not yet analyzed viruses initially attempting

SR-replication on preexisting or newly created files on a computer system.

7.2 Future Work

The approach of SR-replication presented here can be strengthened by expanding it

to detect replication of viruses into memory and not just files. Another key aspect

is to extend this approach to detect SR-replication across a network. Another form

of replication called indirect self-reference replication (ISR-replication) was briefly

discussed. This is a whole new field of replication complimentary to SR-replication.

Creating algorithms to detect ISR-replication will provide an overall more robust

approach to detecting virus replication in general with no a priori knowledge of any

known viruses. This is essential to protect computer systems from future virus at-

tacks. The problems faced during creation of our implementation of SRRAT need to

be addressed with an appropriate solution. Specifically the memory problems found

97

in the Kernel implementation of SRRAT need to be solved to provide a complete

implementation that works the same as the user implementation of SRRAT building

directed call graphs to determine if SR-replication has occurred in real time and pro-

vide the functionality of terminating a process when it does exhibit SR-replication.

98

BIBLIOGRAPHY

[1] Conry-Murray A. Behavior blocking stops unknown malicious code. Network
Magazine, June 2002. http://www.networkmagazine.com.

[2] Gostev A. Malicious code evolution: July to september 2007.
http://www.viruslist.com/en/analysis?pubid=204791973.

[3] Gostev A. Malware evolution: January to july 2007.
http://www.viruslist.com/en/analysis?pubid=204791966.

[4] Gostev A. Kaspersky security bulletin 2006: Malware evolution. Viruslist.com,
February 2007.

[5] Morales J. A., Clarke P. J., Kibria B.M., and Deng Y. Testing and evaluating
virus detectors for handheld devices. Journal in Computer Virology, September
2006.

[6] Anarch email worm. http://www.viruslist.com/en/viruses/encyclopedia.

[7] Api spy 32. http://www.matcode.com/apis32.htm (November 2007).

[8] Livingston B. How long must you wait for an anti-virus fix? Datamation,
February 2004. http://itmanagement.earthweb.com/.

[9] Nachenberg C. Behavior blocking: The next step in anti-virus protection.
Security Focus, March 2002. http://www.securityfocus.com/infocus/1557.

[10] Langston C.G. Self reproduction in cellular automata. Physica D, 10:135–144,
1984.

[11] Denning D. Cyberterrorism testimony before the special oversight panel of
terrorism committee on armed services, house of representatives, May 2000.
http://www.cs.georgetown.edu/ denning/infosec/cyberterror.html.

[12] Mutz D., Valeur F., Vigna G, and Kruegel C. Anomalous system call detection.
ACM Trans. Inf. Syst. Secur., 9(1):61–93, 2006.

[13] Bell D.E. and LaPadula L.J. Secure computer systems: Mathematical
foundations and model. Technical report, The Mitre Corporation, 1973.

[14] Filiol E. Computer Viruses: from Theory to Applications. IRIS International
series, Springer Verlag, 2005. ISBN 2-287-23939-1.

[15] Filiol E. Malware pattern scanning schemes secure against black box analysis.
In European Institute for Computer Anti-Virus Research (EICAR), 2006.

[16] Kaspersky E. Problems for av vendors: some thoughts. Virus Bulletin, April
2006.

99

[17] Messmer E. Behavior blocking repels new viruses. Network World Fusion,
January 2002. http://www.nwfusion.com/news/2002/0128antivirus.html.

[18] Codd E.F. Cellular Automata. Academic Press, 1968.

[19] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and Scott D. Tenaglia. A
behavioral approach to worm detection. In WORM ’04: Proceedings of the
2004 ACM workshop on Rapid malcode, pages 43–53, New York, NY, USA,
2004. ACM Press.

[20] Cohen F. Computer Viruses. PhD thesis, University of Southern California,
1986.

[21] Cohen F. Computer viruses - theory and experiments. Computers and Security,
6:22–35, 1987.

[22] Cohen F. A Short Course on Computer Viruses. Wiley Professional
Computing, 1994. ISBN 0-471-00769-2.

[23] Schneider F. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30–50, 2000. ACM Press, New York, NY, USA.
http://doi.acm.org/10.1145/353323.353382.

[24] D. Golden and M. Pechura. The structure of microcomputer file systems.
Commun. ACM, 29(3):222–230, 1986.

[25] G. Hoglund and J. Butler. Rootkits: subverting the Windows Kernel. Addison
Wesley Professional, 2005.

[26] Bergeron J., Debbabi M., Erhioui M. M., and Ktari B. Static analysis of binary
code to isolate malicious behaviors. In Proceedings of the IEEE 4th
International Workshops on Enterprise Security (WETICE’99),, June 1999.

[27] Byl J. Self reproduction in cellular automata. Physica D, 34:295–299, 1989.

[28] Evers J. Computer crimes cost 67 billion, fbi says. cnet News.com, January
2006.

[29] Von Neumann J. Theory of self-reproducing automata. Technical report,
University of Illinois, 1966.

[30] Morales J.A., Clarke P.J., and Deng Y. Characterizing virus replication. 2nd
International Workshop on the Theory of Computer Viruses in Nancy, France,
May 2007.

[31] Anderson J.P. Computer security threat monitoring and surveillance. Technical
report, James P. Anderson Co., April 1980.

[32] Kornakov K. Cybersecurity on the agenda for us government.
http://www.viruslist.com/en/news?id=208274036.

100

[33] Kaspersky anti-virus. http://www.kaspersky.com.

[34] Biba K.J. Integrity considerations for secure computer systems. Technical
report, USAF Electronic Systems Division, 1977.

[35] T.A. Linden. Operating system structures to support security and reliable
software. ACM Comput. Surv., 8(4):409–445, 1976.

[36] Adleman L.M. An abstract theory of computer viruses. In CRYPTO ’88:
Advances in Cryptology, pages 354–374. Springer, 1988.

[37] Bernaschi M., Gabrielli E., and Mancini L.V. Remus: a security-enhanced
operating system. ACM Trans. Inf. Syst. Secur., 5(1):36–61, 2002.

[38] Christodorescu M. and Jha S. Testing malware detectors. ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international symposium on Software
testing and analysis, pages 34–44, 2004. ACM Press, New York, NY, USA.
http://doi.acm.org/10.1145/1007512.1007518.

[39] Christodorescu M., Jha S., Maughan D., Song D., and Wang C., editors.
Malware Detection. Springer, 2007.

[40] Ludwig M.A. Computer Viruses and Artificial Life and Evoluiton. American
Eagle Press, 1993.

[41] G. Nebbett. Windows NT/2000 Native API Reference. Macmillan Technical
Publishing, 2000.

[42] Offensive computing malware repository. http://www.offensivecomputing.net.

[43] Singh P. and Lakhotia A. Analysis and detection of computer viruses and
worms: an annotated bibliography. In ACM SIGPLAN Notices, volume 37,
pages 29–35, 2002. ACM Press, New York, NY, USA.
http://doi.acm.org/10.1145/568600.568608.

[44] Szor P. The Art of Computer Virus Research and Defense. Symantec Press and
Addison-Wesley, 2005. ISBN 9-780321-304544.

[45] Sekar R., Bendre M., Dhurjati D., and Bollineni P. A fast automaton-based
method for detecting anomalous program behaviors. In SP ’01: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, page 144, Washington,
DC, USA, 2001. IEEE Computer Society.

[46] Rega network worm. http://www.viruslist.com/en/viruses/encyclopedia.

[47] Forrest S., Hofmeyr S.A., Somayaji A., and Longstaff T.A. A sense of self for
unix processes. In Proceedings of 1996 IEEE Symposium on Computer Security
and Privacy, 1996.

101

[48] Gordon S. and Ford R. Computer crime revisited: The evolution of definition
and classification. In European Institute for Computer Anti-Virus Research
(EICAR), 2006.

[49] Moore S. The spread of the witty worm.
http://www.caida.org/analysis/security/witty/.

[50] Kleene S.C. On notation for ordinal numbers. Journal of Symbolic Logic,
3:150–155, 1938.

[51] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Concepts. John
Wiley & Sons, Inc., New York, NY, USA, 2001.

[52] V. Skormin, A. Volynkin, D. Summerville, and J. Moronski. Prevention of
information attacks by run-time detection of self-replication in computer codes.
Journal of Computer Security, 15(2):273–302, 2007.

[53] Chari S.N. and Cheng P. Bluebox: A policy-driven, host-based intrusion
detection system. ACM Trans. Inf. Syst. Secur., 6(2):173–200, 2003.

[54] Symantec antivirus research center. http://securityresponse.symantec.com/.

[55] Microsoft sysinternals software.
http://www.microsoft.com/technet/sysinternals/.

[56] Bradley T. The new virus fighters. Datamation, January 2006.
http://www.pcworld.com/article/id,124163-page,4/article.html.

[57] K. Thompson. Reflections on trusting trust. Communications of the ACM,
27(8):761–763, 1984.

[58] R. Vieler. Professional Rootkits. Wrox Press, 2007.

[59] Vmware virtual workstation. http://www.vmware.com.

[60] Vx heavens. http://vx.netlux.org/.

[61] Burks A. W. Essays on cellular automata. Technical report, University of
Illinois, 1970.

[62] Wikipedia.com. http://www.wikipedia.com/.

[63] Windows api reference.
http://msdn2.microsoft.com/en-us/library/aa383749.aspx.

102

VITA

JOSE ANDRE MORALES

1997 B.S., Computer Science
Florida International University
Miami, Florida

2004 M.Sc., Computer Science
Florida International University
Miami, Florida

2008 Doctoral Candidate in Computer Science
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Morales J.A., Clarke P.J., Kibria B.M.G. and Deng Y. (2008). Characterization
of Virus Replication, in Journal in Computer Virology Special Issue on Theory of
Computer Viruses Workshop, Springer-Verlag.

Morales J.A., Clarke P.J., Kibria B.M.G. and Deng Y. (2006). Testing and Evalu-
ating Virus Detectors for Handheld Devices, in Journal in Computer Virology
Special Issue on Mobile Malware and Anti-malware Technologies, Springer Paris,
Volume 2/Number 2, pg. 135-147.

Morales J.A., Clarke P.J., and Deng Y. (2008). Detecting Self-Reference Virus
Replication, in Proceedings of the 17th Annual European Institute for Computer
Anti-Virus Research (EICAR) Conference, May 3-8, Laval France.

Morales J.A., Clarke P.J., and Deng Y. (2008). Characterizing and Detecting
Virus Replication, in Proceedings of the Third International Conference on Sys-
tems (ICONS), April 13-18 2008, Cancun Mexico.

103

	Florida International University
	FIU Digital Commons
	3-24-2008

	A Behavior Based Approach to Virus Detection
	Jose Andre Morales
	Recommended Citation

