Search for supersymmetry in pp collisions at View the MathML sources=8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets

CMS Collaboration, CERN, Switzerland

V. Gaultney
Department of Physics, Florida International University

Samantha Hewamanage
Department of Physics, Florida International University, shewaman@fiu.edu

Stephan Linn
Department of Physics, Florida International University, linns@fiu.edu

Pete E. Markowitz
Department of Physics, Florida International University, markowitz@fiu.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.fiu.edu/physics_fac

Part of the Physics Commons

Recommended Citation
CMS Collaboration, CERN, Switzerland; Gaultney, V.; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete E.; Martinez, German; and Rodriguez, Jorge Luis, "Search for supersymmetry in pp collisions at View the MathML sources=8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets" (2014). Department of Physics. 31.
http://digitalcommons.fiu.edu/physics_fac/31

This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Department of Physics by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
Authors
CMS Collaboration, CERN, Switzerland; V. Gaultney; Samantha Hewamanage; Stephan Linn; Pete E. Markowitz; German Martinez; and Jorge Luis Rodriguez

This article is available at FIU Digital Commons: http://digitalcommons.fiu.edu/physics_fac/31
Search for supersymmetry in pp collisions at $\sqrt{s} = 8$ TeV in events with a single lepton, large jet multiplicity, and multiple b jets

CERN Collaboration

1. Introduction

This paper presents results from a search for new physics in proton–proton collisions at a center-of-mass energy of 8 TeV in events with a single lepton (electron or muon), missing transverse momentum, and multiple jets, at least two of which are tagged as originating from bottom quarks (b-tagged jets). This signature arises in models based on supersymmetry (SUSY) [1–6], which potentially offers natural solutions to limitations of the standard model (SM). Large loop corrections to the Higgs boson mass could vary from standard model processes. The results are interpreted in the context of simplified supersymmetric scenarios with pair production of gluinos, where each gluino decays to a top quark–antiquark pair and the lightest neutralino. For the case of decays via virtual top squarks, gluinos with a mass smaller than 1.26 TeV are excluded for low neutralino masses.

In some of these scenarios top squarks are the lightest quark partners. In R-parity conserving models [18] this could lead to signatures with multiple W bosons, multiple b quarks, and two LSPs in the final state, where the LSP is the weakly interacting lightest SUSY particle. The search described in this paper is designed to detect these signatures. It focuses on gluino pair production, with subsequent gluino decay to two top quarks and the LSP ($\tilde{\chi}_1^0$) through either a virtual or an on-shell top squark: $pp \rightarrow \tilde{g} \tilde{g}$ with $\tilde{g}(\rightarrow t\bar{t}) \rightarrow t\tilde{t}_1^0$. These decay chains result in events with high jet multiplicity, four b quarks in the final state, and large missing transverse momentum (E_T). The probability that exactly one of the four W bosons decays leptonically is approximately 40%, motivating a search in the single-lepton channel.

Three variations of this scenario, denoted as models A, B, and C, are considered in this analysis and implemented within the simplified model spectra (SMS) framework [19–21]. In model A (models B and C), gluinos are lighter (heavier) than top squarks and gluino decay proceeds through a virtual (real) t. For model A, the gluino and LSP masses $m_{\tilde{g}}$ and $m_{\tilde{t}_1}$ are allowed to vary. For model B, we set $m_{\tilde{g}} = 1$ TeV and vary $m_{\tilde{t}_1}$ and the top squark mass $m_{\tilde{t}}$. For model C, $m_{\tilde{g}} = 50$ GeV while $m_{\tilde{t}}$ and $m_{\tilde{t}_1}$ are varied.

The relevant backgrounds for this search arise from $t\bar{t}$, W + jets, and single-top quark processes with small contributions from diboson, $t\bar{t}Z$, ttW, ttH, and Drell–Yan (DY) + jets production. The non-$t\bar{t}$ backgrounds are strongly suppressed by requiring at least six jets,
at least two of which are b-tagged. The remaining background is dominated by \(t\bar{t} \) events with large \(E_T \), generated either by a single highly boosted W boson that decays leptonically (single-lepton event) or by two leptonically decaying W bosons (dilepton event). Though \(t\bar{t} \) decays produce two true b quarks, additional b-tagged jets can arise because of gluon splitting to a b b pair or from mistagging of charm-quark, light-quark, or gluon jets.

We search for an excess of events over SM expectations using two approaches. The first approach is based on the distribution of \(E_T \) in exclusive intervals of \(H_T \), where \(H_T \) is the scalar sum of jet transverse momentum (\(p_T \)) values. In this approach, we evaluate the \(E_T \) distribution in the signal region of high \(H_T \) in two different ways [12,13]: by extrapolating from lower \(H_T \) and by using the charged-lepton momentum spectrum (this latter spectrum is highly correlated with the neutrino \(p_T \) spectrum in events with a leptonically decaying W boson and so carries information about \(E_T \)). In this approach combined signal regions for the e and the \(\mu \) channels are used since the differences in terms of backgrounds and sensitivity are small.

The second approach, which is new and described in more detail in this paper, is based on the azimuthal angle, \(\Delta \phi(W, \ell) \), between the reconstructed W-boson direction and the lepton. The single-lepton background from \(t\bar{t} \) is suppressed by rejecting events with small \(\Delta \phi(W, \ell) \). As will be shown later, this angle carries information similar to the transverse mass of the lepton and \(E_T \), but has superior resolution. The search is performed in different regions of the quantity \(S_{lep}^{\text{PF}} \), defined as the scalar sum of the \(E_T \) and lepton \(p_T \). The \(S_{lep}^{\text{PF}} \) variable is a measure of the lepton energy in the event and does not necessarily require high \(E_T \) in order to be large. SUSY events are expected to appear at large \(S_{lep}^{\text{PF}} \), where the contribution from SM processes is small. The definition of signal regions in terms of \(S_{lep}^{\text{PF}} \) allows the inclusion of events with lower \(E_T \) than are included in the first approach. Therefore the e channel receives a small, but non-negligible correction for the presence of multijet events, and the e and the \(\mu \) channels are treated as separate signal regions.

The two approaches are complementary in the kinematic observables used and data samples exploited. The first approach searches the tails of the single-lepton \(t\bar{t} \)-dominated sample at high \(E_T \) and \(H_T \) with two independent methods, while the second approach uses \(\Delta \phi(W, \ell) \) to reject that background process and search in a low-background region dominated by dilepton events in which one lepton is not identified or lies outside the acceptance of the analysis. Together the two approaches provide a broad view of possible deviations from the standard model.

2. Data sample and event selection

The data used in this search were collected in proton–proton collisions at \(\sqrt{s} = 8 \) TeV with the Compact Muon Solenoid (CMS) experiment in 2012 and correspond to an integrated luminosity of 19.3 fb\(^{-1}\). The central feature of the CMS apparatus is a superconducting solenoid, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass-scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. The origin of the CMS coordinate system is the nominal interaction point. The polar angle \(\theta \) is measured from the counterclockwise beam direction and the azimuthal angle \(\phi \) (in radians) is measured in the plane transverse to the beam axis. The silicon tracker, the muon systems, and the barrel and endcap calorimeters cover the regions \(|\eta| < 2.5\), \(|\eta| < 2.4\), and \(|\eta| < 3.0\), respectively, where \(\eta = -\ln(\tan(\theta/2)) \) is the pseudorapidity. A detailed description of the CMS detector can be found elsewhere [22].

Simulated event samples generated on Monte Carlo (MC) event generators are used to validate and calibrate the background estimates from data and to evaluate the contributions for some small backgrounds. The MadGraph 5 [23] generator with CT10Q1L1 [24] parton distribution functions (PDFs) is used for \(t\bar{t}, W + jets, D Y + jets, \) t\(Z, W + jets, \) and multijet processes and the powheg 1.0 [25] generator for single-top-quark production. The Pythia 6.4 [26] generator is used to generate diboson and t\(t\bar{H} \) samples and to describe the showering and hadronization of all samples (the Z2 tune [27] is used). The cross sections used to scale the yields of these samples are calculated at next-to-leading (NLO) or higher order. Decays of \(\tau \) leptons are handled by Tauola [28]. The Geant4 [29] package is used to describe the detector response.

The SUSY signals for the three scenarios considered in this analysis are generated with MadGraph and CT10Q1L1 PDFs. In these scenarios, gluinos are pair-produced and decay into t\(t\bar{t} \), assuming the narrow-width approximation. For the signal samples, the detector response is described using a fast simulation [30]. The fast simulation has been validated extensively against the detailed Geant4 simulation for the variables relevant for this search and efficiency corrections based on data are applied. All simulated events are reweighted to match the multiplicity distribution of additional proton–proton collisions (“pileup”) as observed in data.

Events are selected online with either triple- or double-object triggers. The triple-object triggers require a lepton with \(p_T > 15 \) GeV, together with \(H_T > 350 \) GeV and \(E_T > 45 \) GeV. The double-object triggers, which are used to select control samples and extend the \(E_T \) acceptance in the approach based on \(\Delta \phi(W, \ell) \), have the same \(H_T \) requirement, no \(E_T \) requirement, and a lepton \(p_T \) threshold of 40 GeV. The trigger object efficiencies are measured in independently triggered control samples and found to reach a plateau at approximately 95% for thresholds well below those used in the offline selection. The measured trigger efficiencies are used to correct the simulation.

The preselection of events is based on the reconstruction of an isolated lepton (e or \(\mu \)) and multiple jets and follows the procedure described in Ref. [12]. Events are required to include at least one lepton with \(p_T > 20 \) GeV and \(|\eta| < 2.5 \) (e) or \(|\eta| < 2.4 \) (\(\mu \)). Standard identification and isolation requirements [31,32] are applied to reject backgrounds from jets mimicking the lepton signature and from non-prompt leptons produced in semileptonic decays of hadrons within jets. The isolation selection requires the sum of transverse momenta of particles in a cone of radius \(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3 \) around the electron (muon) direction, divided by the \(p_T \) of the lepton itself, to be less than 0.15 (0.12).

The lepton efficiencies are measured with a “tag-and-probe” technique [33] to be approximately 80% for electrons and 95% for muons. The efficiencies vary by less than 20% over the selected kinematic range and the average values agree to better than 1% between data and simulation.

Jets are clustered from particles reconstructed with the particle-flow (PF) algorithm [34], which combines information from all components of the detector. The clustering is performed with the anti-4\(\text{Jet} \) clustering algorithm [35] with a distance parameter of 0.5. Jet candidates are required to satisfy quality criteria that suppress noise and spurious non-collision-related energy deposits. Jets with \(p_T > 40 \) GeV and \(|\eta| < 2.4 \) are considered in the analysis and are used to determine the number of selected jets \(N_j \) and \(H_T \). The missing transverse momentum is determined from the vector sum of the momenta of all particles reconstructed by the PF algorithm. Jet and \(E_T \) energies are corrected to compensate for shifts in the
jet energy scale and the presence of particles from pileup interactions \cite{36}.

The number of b-tagged jets, \(N_b\), is determined by applying the combined secondary vertex tagger \cite{37,38} to the selected jets. At the working point used, this tagger has a roughly 70\% b-tag efficiency, and a mistag rate for light partons (charm quarks) of approximately 3\% (15–20\%). Scale factors for the efficiencies and mistag rates relative to simulation are measured with control samples in data and applied in the analysis.

As the signal events are expected to exhibit a high level of hadronic activity and contain a large number of b quarks, events are required to have \(H_T > 400\) GeV. In addition, at least two b-tagged jets and a total jet multiplicity \(N_j \geq 6\) are required. The SM background in this sample is dominated by \(t\bar{t}\) production. Samples selected with the requirements \(3 \leq N_j \leq 5\) or \(N_b < 2\) are used to define background-dominated control regions. Events with a second isolated lepton with \(p_T > 15\) GeV are vetoed by the nominal signal selection to suppress contributions from dilepton \(t\bar{t}\) decays, but such events are used as a control sample to measure the residual background from that process.

3. Search in missing transverse momentum and \(H_T\)

We now describe the background estimation method based on the evaluation of the \(E_T\) spectrum. This method utilizes two techniques, as mentioned above, both of which were employed for previous CMS studies \cite{12,13}. The lepton spectrum (LS) method makes use of the similarity between the neutrino and charged-lepton \(p_T\) spectra in \(W\) decays to predict the high-side tail of the \(E_T\) distribution from single-lepton \(t\bar{t}\) decays based on the \(p_T\) distribution of charged leptons with high \(p_T\) \cite{39}. The contributions from dilepton and \(\tau\) lepton decays are predicted from single-lepton and dilepton control samples. The missing transverse momentum template (MT) method uses a parametric description of the \(E_T\) spectrum based on a fit to control regions at low \(H_T\). Through extensive use of data control samples, we avoid uncertainties related to potential mismodelling of SM yields by the simulation in the high \(H_T\) and high \(E_T\) tails.

We consider overlapping signal regions corresponding to lower limits for \(H_T\) ranging from 400 to 1000 GeV, each of which provides sensitivity to a different SUSY-particle mass region. The \(E_T\) spectrum in these samples is divided into exclusive ranges: 150–250, 250–350, 350–450, and \(>450\) GeV. To increase the sensitivity, the search regions are further divided into events with \(N_b = 2\) and \(\geq 3\). The two background estimation methods provide direct predictions for events with two b-tagged jets. The expected yields at higher \(N_b\) are obtained by extrapolating those predictions to the \(\geq 3\) b-jet case.

3.1. Prediction of the single-lepton background for the LS method

The \(E_T\) spectrum of the single-lepton background is predicted with a method based on the similarity of the neutrino and charged lepton \(p_T\) spectra in \(W\) decays. In each event, the charged and neutral lepton \(p_T\) can be very different, but the distributions of the true neutrino \(p_T\) and the true lepton \(p_T\) are identical in the absence of \(W\) polarization. There are several effects that result in differences between the observed lepton and neutrino \(p_T\) spectra and for which corrections are derived: \(W\) polarization, the effect of a lepton \(p_T\) threshold, and the difference between the \(E_T\) and lepton-\(p_T\) resolutions. The \(W\)-boson polarization in \(t\bar{t}\) decays is the dominant effect that causes a difference between the neutrino and lepton \(p_T\) spectra. This polarization is well understood theoretically \cite{40} and accounted for in the simulation. The difference between the \(E_T\) and lepton-\(p_T\) resolution is modeled with \(E_T\) resolution templates measured in multijet data samples. These samples are used because the \(E_T\) resolution is dominated by the measurement of the hadronic activity in an event, and these samples have little genuine \(E_T\). These resolution templates are binned in \(H_T\) and \(N_j\) and are used to smear the lepton-\(p_T\) spectrum to account for the difference with respect to the \(E_T\) resolution.

The single-lepton \(E_T\) spectrum is predicted from the lepton \(p_T\) spectrum using the following steps. First, the lepton \(p_T\) spectrum in a control sample, selected with lepton \(p_T > 50\) GeV and without a \(E_T\) requirement, is smeared with the resolution templates. The smeared distribution is then corrected with \(p_T\)-dependent scale factors \(K_{LS}\) to obtain a predicted \(E_T\) spectrum. These scale factors are defined by \(K_{LS}(p_T \text{ bin}) = N_{\text{true}}(E_T \text{ bin}) / N_{\text{pred}}(p_T \text{ bin})\), where \(N_{\text{true}}\) is the MC yield in a given bin of the smeared \(p_T\) distribution and \(N_{\text{true}}\) is the MC yield in the same bin of \(E_T\). The latter includes only events with a single lepton at generator level, while the former includes all events passing the selection of the control sample. This definition ensures that the scale factors model the \(E_T\) distribution from only the single-lepton background without contributions from \(\tau\) leptons or dilepton backgrounds, which are predicted separately. The calculation of the scale factor is dominated by the contribution of diboson events, but \(W + \text{jets}, \text{DY} + \text{jets}, \text{single-top quark}, \text{tZ}, \text{tW}\) events are included as well; the contribution of diboson events is negligible. The impact of \(\text{tZ}, \text{tW}, \text{and tH}\) events is insignificant, and for the results shown in this section only the first two categories have been included. The dependence of the scale factor on lepton \(p_T\) primarily reflects the effect of the \(W\)-boson polarization in \(t\bar{t}\) decays. The scale factor varies from around 1.0 for lepton \(p_T\) of 150 to 250 GeV, after \(E_T\) resolution smearing, to about 1.5 for \(p_T > 450\) GeV.

Systematic uncertainties are evaluated by calculating the change induced in the scale factors from various effects and propagating this change to the predicted yields. The sources of systematic uncertainty are the \(p_T\) and \(E_T\) scale, \(W\) polarization in \(t\bar{t}\) decays and direct \(W\) production, \(t\bar{t}\) and sub-dominant background cross sections, lepton efficiency, muon \(p_T\) scale, and \(DY + \text{jets}\) yield. The dominant uncertainties arise from the statistical uncertainties of the simulated samples used in the determination of the scale factor (9–49\%), the \(E_T\) and \(p_T\) scale (7–31\%, depending on \(H_T\) and \(E_T\)), and the \(W\) polarization in \(t\bar{t}\) decays (2–4\%).

3.2. Predictions of \(\tau\) lepton and dilepton backgrounds for the LS method

Neutrinos from \(\tau\) lepton decays cause the \(E_T\) and charged-lepton \(p_T\) spectra to differ. Therefore, the SM background from \(\tau\) leptons is evaluated separately, following the procedure documented in Ref. \cite{39}. While \(\tau\)-lepton decays are well simulated, their \(p_T\) spectra may not be. Thus we apply \(\tau\)-lepton response functions derived from simulated \(t\bar{t}\) events to the \(p_T\) spectra of electrons and muons measured in single-lepton and dilepton control samples. To suppress \(DY\) events in these control samples, same flavor dilepton events are rejected if they have \(E_T < 40\) GeV or a dilepton invariant mass within 20 GeV of \(m_Z\). In these control samples, the \(E_T\) requirement is removed and a selection to reject \(DY\) events is applied. The \(H_T\) and \(N_j\) requirements are loosened in the control sample used to estimate the background of events with hadronically decaying \(\tau\) leptons. For leptonic (hadronic) \(\tau\)-lepton decays, hereafter labelled \(\tau_e\) (\(\tau_h\)), the response function is the distribution of the daughter lepton (jet) \(p_T\) as a fraction of the parent \(\tau\) lepton \(p_T\). To predict the contribution to the \(E_T\) spectrum, the observed lepton in the control sample is replaced by a lepton (or jet), with the transverse momentum sampled from the appropriate response function; the difference between the sampled and original \(p_T\) is added vectorially to the \(E_T\). This procedure is used to
predict three background categories: single $\tau\ell$, $\ell + \tau_h$, and $\ell + \tau_\tau$ events; the notation ℓ includes ℓ_T components.

The \vec{E}_T spectrum obtained from applying the response functions to the control samples is corrected as a function of H_T and H_T for branching fractions and efficiencies determined from MC simulation. These correction factors are roughly 0.2, 0.9, and 0.6 for the single $\tau\ell$, $\ell + \tau_\tau$, and $\ell + \tau_h$ backgrounds, respectively, in all H_T bins. A correction is derived from simulation to account for a possible dependence on \vec{E}_T of the event selection and acceptance (note that this correction is consistent with one within the uncertainties).

SM backgrounds also arise from dilepton events. There are two categories of these events: those with both leptons reconstructed but where only one of the leptons is selected, and those with one lepton that is not reconstructed, which can occur either because of a reconstruction inefficiency or because the lepton lies outside the η acceptance of the detector. The estimate of the background from these processes is given by the simulated \vec{E}_T distribution, corrected by the ratio of the number of data to MC events in a dilepton control sample. This sample is the same as that used in the $\ell + \tau_\tau$ background prediction, but with an additional requirement of $H_T > 100$ GeV used to retain high trigger efficiency. Systematic uncertainties for the dilepton background estimate arise from the uncertainty in the data/MC scale factor, pileup, trigger and selection efficiencies, and the top-quark p_T spectrum.

The background composition is similar in each of the LS signal regions. For example, the signal region with $H_T > 500$ GeV, $N_b = 2$, and $350 < \vec{E}_T < 450$ GeV has predicted single-lepton and single-τ backgrounds of 11.6 ± 5.2 and 1.8 ± 0.7, respectively. The remainder of the background prediction, consisting of $\ell + \tau_h$, $\ell + \tau_\tau$, and dilepton events, is 2.0 ± 1.1. The total yields for all signal regions are given in Table 1 and Fig. 1 shows the \vec{E}_T distributions.

Table 1

<table>
<thead>
<tr>
<th>$H_T > 400$ GeV</th>
<th>$N_b = 2$</th>
<th>$N_b \geq 3$</th>
<th>$N_b \geq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$150 < \vec{E}_T < 250$ GeV</td>
<td>150</td>
<td>LS</td>
<td>320</td>
</tr>
<tr>
<td>$250 < \vec{E}_T < 350$ GeV</td>
<td>250</td>
<td>LS</td>
<td>58.1</td>
</tr>
<tr>
<td>$350 < \vec{E}_T < 450$ GeV</td>
<td>350</td>
<td>LS</td>
<td>15.4</td>
</tr>
<tr>
<td>$\vec{E}_T > 450$ GeV</td>
<td>450</td>
<td>LS</td>
<td>0.7</td>
</tr>
</tbody>
</table>

3.3. The missing transverse momentum model in the MT method

For values of \vec{E}_T well above the W boson mass, the SM \vec{E}_T distribution primarily arises from neutrino emission (genuine \vec{E}_T) and has an approximately exponential shape. According to simulation, this distribution depends on H_T and, to a lesser extent, N_b and N_b, with only a small variation predicted for the non-exponential tails. Empirically, we find that the genuine \vec{E}_T distribution from tt events (the leading background term) can be parametrized well with the Pareto distribution [41], which is widely used in extreme value theory:

$$f_{\vec{E}_T}(x; x_{\text{min}}, \alpha, \beta) = \frac{\beta}{\alpha} \left(1 + \frac{\beta(x - x_{\text{min}})}{\alpha}\right)^{-\frac{1}{\beta} - 1},$$

where x_{min}, α, and β are the position, scale, and shape parameters, respectively. Eq. (1) yields an exponential function for $\beta = 0$. We set $x_{\text{min}} = 150$ GeV, representing the lower bound of the \vec{E}_T spectrum to be described, while α and β are determined from a fit to data.

Both the control regions used for a fit of the \vec{E}_T model to data and the signal regions have selection criteria applied to H_T. Because of the correlation between the moment of the leptonically decaying W boson and the momenta of the jets balancing it, restrictions on H_T affect the \vec{E}_T spectrum. We describe the ratio between the \vec{E}_T spectrum after imposing a lower bound
on H_T and the inclusive E_T spectrum by a generalized error function (corresponding to a skewed Gaussian distribution), similar to the approach described in Ref. [13]. The evolutions with H_T of the location and variance parameters of this function are determined from simulation and found to be linear. The results in simulation are found to be consistent with the dependence measured from a $t\bar{t}$-dominated control sample in data, defined by $N_j \geq 4$, $N_b \geq 2$, and $H_T > 400$ GeV. Systematic uncertainties related to the error functions are determined from this comparison and from the difference between linear and quadratic models of the function parameters. The E_T spectrum in exclusive bins of N_b is also affected by an acceptance effect due to the p_T requirement on the b-tagged jets: in $t\bar{t}$ events at low H_T, high values of E_T correspond to low values of the p_T of the b quark associated with the leptonically decaying W boson and tend to move events to lower b-jet multiplicities. We therefore apply an acceptance correction when applying the E_T model to events with one or two b-tagged jets. For $N_b = 2$ and $150 < E_T < 1000$ GeV, the size of the correction is 12% for $H_T = 750$ GeV and is smaller for larger H_T.

The b-jet multiplicity distribution is used to estimate the ratio of the $W +$ jets background to the $t\bar{t}$ background as a function of H_T. The H_T distribution of $t\bar{t}$ events is extracted from the $N_b = 2$ sample as described in Ref. [13]. The contribution of $W +$ jets events for $E_T > 150$ GeV is approximately 1%. Uncertainties related to other non-leading background components are estimated by varying the corresponding cross sections and are found to be small. Based on the measured ratio of $W +$ jets to $t\bar{t}$ background events, the Pareto distribution describing the leading background term is combined with the shape of the $W +$ jets E_T distribution from simulation to form the full model describing the genuine E_T distribution of SM events.

3.4. The fit to the missing transverse momentum spectrum in the MT method

The model for genuine E_T in SM events is convolved with the E_T resolution templates described in Section 3.1 and used in a simultaneous fit to the E_T shapes in control regions in the $N_b = 1$ and $N_b = 2$ bins. The control regions are chosen in order to ensure reasonably small statistical uncertainties and to limit potential contributions from signal events: for events with two b-tagged jets the control region is defined by $400 < H_T < 750$ GeV and $150 < E_T < 400$ GeV, while for one b-tagged jet it is extended to $400 < H_T < 2500$ GeV and $150 < E_T < 1500$ GeV.

Because of limited statistical precision in the control regions, we are unable to obtain a reliable estimate of β from data. We use a constraint from simulation together with an uncertainty derived from a comparison between data and simulation in control regions with lower jet multiplicity. The constraint is implemented as a Gaussian term corresponding to the value and its statistical uncertainty obtained from simulation, $\beta = 0.03 \pm 0.01$. The prediction from simulation for $N_j = 3$–5 is $\beta = 0.15$–0.05, consistent with the data. The maximum difference between data and simulation in any of these three N_b bins of 0.05 is used to define a systematic uncertainty in the prediction. The parameters of the error function (Section 3.3) are constrained by Gaussian terms reflecting the respective values and covariance from simulation.

The predictions for the $N_b = 2$ signal regions are obtained by integrating the function representing the E_T model over the relevant E_T range and summing over the H_T bins. In each H_T bin, the predicted distribution is scaled to match the observed number of events in the normalization region defined by $150 < E_T < 250$ GeV. The statistical uncertainties of the predictions are evaluated by repeating the procedure using parameter values randomly generated.
according to the results of the fit, including the covariance matrix. The predictions are stable to within 1% if the E_T model described in Ref. [13] is used in place of the model described here.

The results of the MT method can be affected by several systematic uncertainties that are related to detector effects, assumptions made on the shape of the distribution, as well as theoretical uncertainties and the contamination due to non-leading backgrounds. Systematic uncertainties related to the jet and E_T scale, lepton reconstruction efficiencies, W-boson polarization in $t\bar{t}$ events, and cross sections of non-leading backgrounds are evaluated in the same way as for the LS method (Section 3.1). Effects due to b-jet identification efficiencies and pileup are also taken into account. In addition, the following uncertainties specific to the MT method are considered. The b parameter and parameters of the error function are varied as described above. The differences with respect to the standard result define the systematic uncertainty for each signal region. The effects of a possible residual non-linearity in the error function parameters versus H_T are also taken into account. To test the validity of the method, the procedure is applied to simulated events. The resulting background predictions are found to be statistically consistent with the true numbers from simulation. Conservatively, the maximum of the relative difference and its uncertainty are assigned as a further systematic uncertainty ("closure"). The dominant contributions to the systematic uncertainty are related to the E_T model (1–35%, depending on the H_T and E_T bin) and the closure (8–43%). Uncertainties related to the theoretical predictions of the cross section for SM backgrounds, the jet and E_T scale, and pileup contribute each with less than 5%.

3.5. Background estimation in the $N_b \geq 3$ bin

The numbers of data events in the $N_b \geq 3$ control samples are too low for an application of the LS or MT technique. Therefore we estimate the background for high b-jet multiplicities by applying to the background predictions for $N_b = 2$ transfer factors (R_{32}) that give the ratio of the number of events with ≥ 3 and $= 2$ b-tagged jets for each of the signal regions. The central values for the R_{32} factors are determined from simulation. The scale factors R_{32} increase with jet multiplicity from approximately 0.05 for events with three jets to approximately 0.2 in events with ≥ 6 jets because of the higher probability of misidentifying one or more jets. For constant jet multiplicity they do not demonstrate a strong dependence on H_T. The ratios between $N_b \geq 3$ and $= 2$ events in data and simulation could differ because of incorrect modeling of the heavy-flavor content, the jet kinematics, and uncertainties in the b-tagged jet misidentification rates. To probe the impact of the first source of uncertainties, the weight of events with at least one c quark is varied by $\pm 50\%$. A variation of the same size is applied to events with additional b- or c-quark pairs. The effect of possible differences between data and simulation in the kinematics of the system of non-b jets on R_{32} is tested in a control sample with exactly two b-tagged jets. The remaining jets in the event are randomly assigned a parton flavor: one jet is marked as a c-quark jet, while the others are marked as light-quark jets. Based on this assignment the ratio of probabilities to tag at least one additional jet is expected to be flat. The residual difference is interpreted as the signal region. The complementary sample, events with $N_b = 5$ or ≥ 6 in both regions the values of R_{32} obtained in simulation are compatible with the ones observed in data.

In the LS method, the transfer factors are applied to the signal regions for $H_T > 500$, 750, and 1000 GeV. In the MT method, signal regions for $H_T > 400$ GeV and $150 < E_T < 250$ GeV are added for the $N_b \geq 3$ bin, corresponding to the limits of the control and normalization regions in the $N_b = 2$ bin, respectively.

3.6. Results for signal regions in missing transverse momentum and H_T bins

The predictions of both methods are compared with the observed number of events in Table 1. For the LS method the predictions consist of the single-lepton and τ-lepton backgrounds with a small contribution from dilepton events. Drell–Yan events are heavily suppressed by the $N_{\ell\ell}$, $N_{\tau\tau}$, and kinematic requirements. The yield of this small component of the background is taken from simulation. For the MT method the predictions consist of the inclusive estimation of the leading backgrounds. Additional contributions to the signal regions from multijet events are heavily suppressed, but their cross section is large and not precisely known. Therefore, they are predicted from data based on scaling the sideband of the relative lepton isolation distribution. These contributions are neglected as they are found to constitute 1% or less of the total background in all cases.

The corresponding observed and predicted E_T spectra are shown in Fig. 1 for the two b-jet multiplicity bins and different H_T requirements. The two methods differ in their leading systematic terms and in the correlations they exhibit between the background predictions in different signal regions. The predictions are consistent, an indication of the robustness of the methods. No excess is observed in the tails of the E_T distributions with respect to the expectations from SM processes. The results are interpreted in terms of upper limits on the production cross section for different benchmark models in Section 5.

4. Search using s_T^{lep} and $\Delta \phi(W, \ell)$

After applying the selection criteria in Section 2, the sample is dominated by single-lepton $t\bar{t}$ events. In the delta phi ($\Delta \phi$) analysis method, this background is further reduced by applying a requirement on the azimuthal angle between the W-boson candidate and the charged lepton. The W-boson candidate transverse momentum is obtained as the vector sum of the lepton p_T and the E_T vectors. For single-lepton $t\bar{t}$ events, the angle between the W-boson direction and the charged lepton has a maximum value, which is fixed by the mass of the W boson and its momentum. Furthermore, the requirement (direct or indirect) of large E_T selects events in which the W boson yielding the lepton and the neutrino is boosted, thus resulting in a fairly narrow distribution in $\Delta \phi(W, \ell)$. On the other hand, in SUSY decays, the “effective W boson” that is formed from the vector sum of the transverse momenta of the charged lepton and the E_T vector will have no such maximum. Since the E_T results mostly from two neutralinos, the directions of which are largely independent of the lepton flight direction, the $\Delta \phi(W, \ell)$ distribution is expected to be flat.

Distributions of $\Delta \phi(W, \ell)$ in different s_T^{lep} bins are shown for the $N_b \geq 3$ and $N_b \geq 6$ samples in Fig. 2. We select $\Delta \phi(W, \ell) > 1$ as the signal region. The complementary sample, events with $\Delta \phi(W, \ell) < 1$, constitutes the control region. It can be seen that this selection is effective in reducing the background from single-lepton $t\bar{t}$ decays; the dominant background in the signal regions comes from dilepton $t\bar{t}$ events. Table 2 shows the event yields for simulation for the signal and control regions in different s_T^{lep} bins for events with $N_b \geq 3$, which have the highest sensitivity to the
tained using the data and some input from simulation. We define the distributions expected for signal are illustrated using two mass points from model A, with masses specified as (m_g, $m_{\tilde{\chi}^0_1}$) in GeV. Left: 250 < S^{pp} < 350 GeV, center: 350 < S^{pp} < 450 GeV, and right: S^{pp} > 450 GeV.

Table 2

Event yields for the combined e and μ channels, as predicted by simulation, for $N_J \geq 6$ and $N_b \geq 3$. The R_{CS} column lists the ratio of yields in the signal and control regions. The yields for signal benchmark points are shown for comparison, with the (m_g, $m_{\tilde{\chi}^0_1}$) masses (in GeV) listed in brackets. The uncertainties are statistical only.

<table>
<thead>
<tr>
<th>Sample</th>
<th>250 < S^{pp} < 350 GeV</th>
<th>350 < S^{pp} < 450 GeV</th>
<th>S^{pp} > 450 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signal</td>
<td>Control</td>
<td>R_{CS}</td>
</tr>
<tr>
<td></td>
<td>Signal</td>
<td>Control</td>
<td>R_{CS}</td>
</tr>
<tr>
<td></td>
<td>Signal</td>
<td>Control</td>
<td>R_{CS}</td>
</tr>
<tr>
<td>$t\bar{t}(c)$</td>
<td>0.8 ± 0.2</td>
<td>43.2 ± 1.8</td>
<td>0.02</td>
</tr>
<tr>
<td>$t\bar{t}(t)$</td>
<td>2.0 ± 0.3</td>
<td>4.0 ± 0.4</td>
<td>0.51</td>
</tr>
<tr>
<td>W</td>
<td><0.23</td>
<td><0.23</td>
<td><0.24</td>
</tr>
<tr>
<td>DY</td>
<td><0.03</td>
<td><0.03</td>
<td><0.02</td>
</tr>
<tr>
<td>Multijet</td>
<td><0.05</td>
<td><0.05</td>
<td><0.01</td>
</tr>
<tr>
<td>Single t</td>
<td>0.4 ± 0.2</td>
<td>1.9 ± 0.3</td>
<td>0.21</td>
</tr>
<tr>
<td>SM all</td>
<td>3.3 ± 0.4</td>
<td>4.5 ± 1.8</td>
<td>0.07</td>
</tr>
<tr>
<td>Model A</td>
<td>Signal</td>
<td>Control</td>
<td>R_{CS}</td>
</tr>
<tr>
<td>(1000, 600)</td>
<td>2.80 ± 0.10</td>
<td>2.09 ± 0.09</td>
<td>1.34</td>
</tr>
<tr>
<td>(1250, 0)</td>
<td>0.45 ± 0.01</td>
<td>0.40 ± 0.01</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Fig. 3

The transfer factor R_{CS} in simulation for the combined e and μ channels as a function of N_b for events with $N_J \geq 6$. The lines correspond to SM only and to the sum of SM backgrounds and signal corresponding to the mass point ($m_g = 1250$ GeV, $m_{\tilde{\chi}^0_1} = 0$ GeV) of model A. Left: 250 < S^{pp} < 350 GeV, center: 350 < S^{pp} < 450 GeV, and right: S^{pp} > 450 GeV.

SUSY signal. The contributions from $t\bar{t}Z$, $t\bar{t}W$, $t\bar{t}H$, and diboson events are insignificant and have not been used for the results shown in this section. The search also uses events with $N_b = 2$, albeit with smaller sensitivity.

4.1 Prediction of Standard Model background

The estimate of the SM background in the signal region is obtained using the data and some input from simulation. We define a transfer factor, R_{CS}, as the ratio of the number of events with $\Delta\phi(W, l) > 1$ to the number with $\Delta\phi(W, l) < 1$. Fig. 3 displays the value of R_{CS} as a function of N_b for the SM alone and also with the addition of signal from a SUSY benchmark scenario. In the absence of a SUSY signal, the value of R_{CS} is roughly independent of the b-jet multiplicity. In the presence of a signal containing four top quarks, however, the value of R_{CS} in the $N_b \geq 2$ bins changes significantly, whereas it remains unchanged in the $N_b = 1$ bin, which is dominated by background from SM processes.
Table 3
Data yields and the corresponding R_{CS} values for events with $N_\ell \geq 6$ and $N_b = 1$.

<table>
<thead>
<tr>
<th>$S_{\text{lep}}^{\text{pred}}$ [GeV]</th>
<th>Control</th>
<th>Signal</th>
<th>R_{CS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{ℓ} ≥ 2</td>
<td>[255, 350]</td>
<td>169</td>
<td>6</td>
</tr>
<tr>
<td>N_{ℓ} ≥ 3</td>
<td>[350, 450]</td>
<td>44</td>
<td>3</td>
</tr>
<tr>
<td>N_{ℓ} ≥ 4</td>
<td>>450</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4
Comparison of the simulated yields, combined for the e and μ channels, in the signal region and the estimate using R_{CS} from the $N_b = 1$ sample. The k_{CS} factor is calculated as the ratio of the true yield in the signal region (“MC truth”) and the predicted number.

<table>
<thead>
<tr>
<th>$S_{\text{lep}}^{\text{pred}}$ [GeV]</th>
<th>Predicted (without k_{CS})</th>
<th>MC truth</th>
<th>k_{CS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{ℓ} ≥ 2</td>
<td>[250, 350]</td>
<td>15.26 ± 0.06</td>
<td>14.17 ± 0.01</td>
</tr>
<tr>
<td>N_{ℓ} ≥ 3</td>
<td>[350, 450]</td>
<td>2.10 ± 0.03</td>
<td>3.04 ± 0.03</td>
</tr>
<tr>
<td>N_{ℓ} ≥ 4</td>
<td>>450</td>
<td>0.90 ± 0.03</td>
<td>0.87 ± 0.26</td>
</tr>
</tbody>
</table>

Given this observation, we obtain the transfer factors used to predict the SM background for different values of N_b, $R_{\text{CS}}^{\text{pred}}(N_b)$, as $R_{\text{CS}}^{\text{pred}}(N_b) = R_{\text{CS}}(N_b = 1) \cdot k_{\text{CS}}(N_b)$, where $R_{\text{CS}}(N_b = 1)$ is the R_{CS} factor measured in data with $N_b = 1$ (Table 3) and k_{CS} is a correction factor obtained from simulation (Table 4), introduced to account for any residual dependence of R_{CS} on N_b. The transfer factors $R_{\text{CS}}^{\text{pred}}(N_b)$ are calculated independently for each bin in $S_{\text{lep}}^{\text{pred}}$.

The calculation of the k_{CS} factor in simulation is shown in Table 4, which lists the yield without a k_{CS} factor correction, and the observed event yields, as well as the corresponding k_{CS} correction factors for $N_b \geq 3$. The k_{CS} factor ranges from 0.93 to 1.45 with statistical uncertainties up to ±0.6. The large statistical uncertainty reflects the very small event yields expected in the signal region from SM processes.

We observe only a weak dependence of the transfer factor R_{CS} on N_ℓ and, as stated above, on N_b. Two sources of this dependence have been identified: the relative composition of SM samples (W + jets, $t\bar{t}$ (1ℓ), $t\bar{t}$ (2ℓ), single top quark), and the residual dependence of R_{CS} within each SM sample. The effect of each source on R_{CS} is found to be <50%. The application of the k_{CS} factor compensates for these effects and incorporates their uncertainties. A potential signal would result in much larger values of R_{CS} (e.g., of up to a factor of five larger for the benchmark points) than the variations above, as can be seen from Fig. 3.

The only elements of the background estimate that depend on simulation are the k_{CS} factors. Most potential sources of systematic uncertainties leave k_{CS} unaffected, since the correction factor reflects only residual changes in the value of R_{CS} from $N_b = 1$ to $N_b \geq 3$ ($N_b = 2$) as a result of each systematic uncertainty. Systematic uncertainties are estimated as in Section 3, i.e., by calculating the change induced in the scale factor, Δk_{CS}, from various effects and propagating this change to the predicted yields. The jet/E_t energy scale and the b-tagging efficiencies are varied within their uncertainties. For each independent source (energy scale, heavy- and light-parton tagging efficiencies) the effects of the upwards and downwards variations are averaged. The W + jets cross section is varied by 30% as in Ref. [12]. The cross section for W + b is varied by 100% [42,43] and that for single-top–quark production by 50% [44]. We assign an uncertainty of 5 and 10%, respectively, to the W boson and t̄t polarizations [45,40]. These effects are negligible.

Since the estimate of the background in the signal region is based on ratios of events in the data and the k_{CS} factor that only depends on the number of b-tagged jets, the systematic uncertainties of the background prediction are expected to be the same for the electron and muon samples. This is confirmed with an explicit calculation of these uncertainties, and thus the final result uses the combination of the uncertainties from the two lepton flavors. The overall systematic uncertainty found for k_{CS}, which is dominated by the limited statistics in the simulated samples, is 23%, 45% and 70%, respectively, in the three $S_{\text{lep}}^{\text{pred}}$ ranges. The total systematic uncertainty of the background prediction is dominated by the statistical uncertainty that arises due to the limited number of events in the data control samples.

4.2. Multijet background estimate
Contributions of multijet events to the control and signal regions could affect the correction factors. Therefore we estimate these contributions from data. For the muon channel, the MC prediction for the multijet background is smaller than all other backgrounds by two to three orders of magnitude. This was confirmed by an estimate from data in the previous single-lepton SUSY search [12].

In the electron channel, the multijet background is larger than in the muon channel, but it remains significantly smaller than the other backgrounds. We make use of the method described in Ref. [45], employing a control sample in data that is enriched in electrons from multijet events, obtained by inverting some of the electron identification requirements (“antisellected” sample). While the method works well at low N_b and N_ℓ, it yields statistically limited results in the samples with higher N_b and higher N_ℓ. To obtain more precise predictions for the multijet background in these regions, the estimate from the $N_b = 1$ sample is extrapolated with two methods that rely on the relative insensitivity of the multijet background to N_b. The results of these methods are found to be consistent, and the fraction of multijet events is determined to be less than 5–7% of the total number of data events observed in the control region. Based on the antisellected sample, the corresponding transfer factor for multijet events is estimated to be smaller than approximately 2%. The multijet contamination in the signal region ($\Delta \phi(W, t) > 1$) is therefore determined to be negligible and so the multijet background is subtracted only in the control region.

4.3. Results for signal regions in S_{T}^{lep} and N_b
The background prediction method is validated with the 3 ≤ N_ℓ ≤ 5 control sample, which is background dominated with dilepton $t\bar{t}$ events and with a relative contribution from W + jets larger than in the signal region. The compatibility between the predicted and observed yields in this sample is demonstrated by the results shown in the left portion of Table 5.

The predicted and observed data yields in the signal regions are also presented in Table 5. In the single case of a control region with zero observed events the uncertainty is estimated assuming that one event was present. Combining all signal bins we predict 19.2 ± 4.0 events and observe 26. In the $N_b \geq 3$ bins, which are the most relevant regions for the signal, we predict 5.3 ± 1.5 events and observe 4. For $S_{T}^{\text{lep}} > 350$ GeV we predict 5.6 ± 2.5 events and observe 4.

5. Interpretation
The compatibility between the observed and predicted event counts in the searches described above is used to exclude regions
in the parameter space of the three models of gluino-mediated production of final states with four top quarks and two LSPs introduced in Section 2. The expected signal yield obtained from simulation is corrected for small differences in the efficiencies between data and simulation and for an overestimation of events with high-p_T radiated jets in MadGraph, as described in Ref. [11]. Systematic uncertainties in the signal yield due to uncertainty in the jet/E_T scale [36], initial-state radiation, PDFs [46], pileup, b-tagging scale factors [37], lepton efficiency, and trigger efficiency are calculated for each of the models and for every mass combination. The uncertainty due to the measurement of the integrated luminosity is 2.6% [47]. For model A, the total uncertainty in the signal yields ranges from 20% to 60%. The largest uncertainties are related to the PDFs and occur in regions with small mass differences $m_{\tilde{g}} - m_{\tilde{g}_{\mu \mu}}$ and high $m_{\tilde{g}}$.

The modified-frequentist \mathcal{CL}_S method [48–50] with a one-sided profile likelihood ratio test statistic is used to define 95% confidence level (CL) upper limits on the production cross section for each model and mass combination. Statistical uncertainties related to the observed number of events in control regions are modeled as Poisson distributions. All other uncertainties are assumed to be multiplicative and are modeled with lognormal distributions. For each method, several of the signal regions defined in Sections 3 and 4 are used simultaneously. In the LS method, three different sets of signal regions are defined, with a lower H_T bound of either 500, 750, or 1000 GeV. For each model point, the signal region set with the most stringent expected sensitivity is chosen and the six (H_T, N_μ) bins with $H_T > 250$ GeV are used simultaneously. The most stringent limits are typically obtained for the lowest H_T threshold. In the MT method, the requirement $H_T > 750$ GeV globally yields the best results when combined with the region $400 < H_T < 750$ GeV in the $N_\mu \geq 3$ bin. The samples in the two b-jet multiplicity bins are further divided into H_T bins with lower bounds at 250, 350, and 450 GeV. For the $N_\mu \geq 3$ bin, a low H_T region of 150–250 GeV is added, and the H_T bins above 250 GeV are combined for $400 < H_T < 750$ GeV. In the $\Delta \phi (W, \ell)$ method all 12 signal regions defined by the three S_{lep} bins, the two b-jet multiplicity requirements, and the two lepton flavors are used simultaneously for all model points. For all three methods, correlations between the uncertainties in different signal regions and between signal yields and background predictions, are taken into account, as well as the effect of signal contamination on the predictions.

Upper limits on the cross section at a 95% CL are set in the parameter plane of the three models. Corresponding mass limits are derived with the next-to-leading order (NLO) + next-to-leading logarithm (NLL) gluino production cross section [51–55] as a reference. The uncertainty on this cross section is determined as described in Ref. [56]. These limits are summarized in Fig. 4, which shows a comparison of the mass limits obtained for signal regions in H_T and E_T, cross section and mass limits for the signal regions in S_{lep} and $\Delta \phi (W, \ell)$, and a comparison of the observed mass limits obtained by the three methods. For each of the considered models the LS and MT methods show a similar reach; the most stringent limits are set by the $\Delta \phi$ method. For model A, with off-shell top squarks, the limits extend to a gluino mass of 1.26 TeV for the lowest LSP masses and to an LSP mass of 580 GeV for $m_{\tilde{g}} = 1.1$ TeV. At low gluino masses the sensitivity extends to the region $m_{\tilde{g}} > m_{\tilde{g}_{\mu \mu}} - 2m_\chi$, for model B, where the top squarks are on-shell, the limits for $m_{\tilde{g}_{\mu \mu}}$ reach 560 GeV for $m_{\tilde{g}} = 800$ GeV. For model C the gluino mass limits for low LSP mass are similar to model A for $m_{\tilde{g}} > 500$ GeV but decrease to $m_{\tilde{g}} = 1.0$ TeV for lower stop masses because the signal populates the lower E_T region, which has higher background. For $m_{\tilde{g}} = 1.0$ TeV, the limits cover the full range of top-squark masses if the LSP mass lies below approximately 530 GeV. Conservatively, these limits are derived from the reference cross section minus one standard deviation [56].

6. Summary

A sample of proton–proton collisions recorded with the CMS detector at a center-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 19.3 fb$^{-1}$ has been used for a search for new physics in events with a single isolated electron or muon, multiple high-p_T jets, including identified b jets, and missing transverse momentum. This event topology is a possible signature for the production of supersymmetric particles in R-parity conserving models, in particular the production of gluinos with subsequent decays into top squarks. The dominant standard model background in a search region defined by the presence of at least six jets, including at least two jets identified as originating from the fragmentation of b quarks, is due to $t\bar{t}$ production. The search is performed with two sets of signal regions, and uses three different methods, each based on data, to estimate the leading background contributions. The lepton spectrum and the missing transverse momentum template methods are designed as searches in the high H_T, high E_T region. They estimate the SM backgrounds (dominated by single-lepton $t\bar{t}$ decays) for events with two identified b jets and extrapolate these predictions to additional signal regions requiring ≥ 3 b-tagged jets. The first of these methods uses the lepton p_T distribution to estimate the E_T spectrum while the second obtains the predictions in a parametrized form by fitting a E_T model to control regions in data. The $\Delta \phi$
Fig. 4. Cross section and mass limits at 95% CL in the parameter planes of (top) model A, (center) model B, and (bottom) model C. The color shading indicates the observed limit on the cross section. The solid (dashed) lines show the observed (expected) mass limits, with the thick lines representing the central value and the thin lines the variations from the theoretical [56] (experimental) uncertainties. Left column: mass limits for signal regions in H_T and E_T (LS and MT) and uncertainty bands for the LS method (the uncertainties for the MT method have similar size). Central column: cross section and mass limits for signal regions in S_{lep} and $\Delta \phi (W, \ell)$ ($\Delta \phi$). Right column: comparison of the observed mass limits for the three methods.

phi method uses the azimuthal angle between the lepton and W boson directions as a discriminating variable, leading to a strong suppression of the single-lepton backgrounds and leaving dilepton $t\bar{t}$ events as the leading SM contribution. The signal regions are defined by the use of the same two b-jet multiplicity requirements and by bins in S_{lep}, which probes the total leptonic (ℓ and ν) scalar transverse momentum in the event. While the delta phi approach shows the highest sensitivity, the use of different methods, which probe complementary kinematic aspects and both hadronic and leptonic event characteristics, increases the robustness of this search. Together these methods examine the event sample in both high- and low-yield regions to provide sensitivity to signal topologies with high hadronic activity, missing transverse momentum, and at least two b jets.

No significant excess is observed in any of the signal regions. Upper limits are set at 95% CL on the product of production cross section and branching fraction for three benchmark models of gluino pair production with subsequent decay into virtual or on-shell top squarks, where each of the two top squarks decays in turn into a top quark and the lightest supersymmetric particle. In the case of decays via virtual top squarks and for light LSPs, gluino masses below 1.26 TeV are excluded.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction...

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan
Yerevan Physics Institute, Yerevan, Armenia

Institut für Höchstenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Athens, Athens, Greece

X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

University of Ioannina, Ioannina, Greece

G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

S.K. Swain

National Institute of Science Education and Research, Bhubaneswar, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

Punjab University, Chandigarh, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research – EHEP, Mumbai, India

S. Banerjee, S. Dugad

Tata Institute of Fundamental Research – HECR, Mumbai, India

H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Grunewald

University College Dublin, Dublin, Ireland

INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy

S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy

G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, H. Focardi, E. Gallo, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy
P. Fabbricatore a, R. Ferretti a,b, F. Ferro a, M. Lo Vetere a,b, R. Musenich a, E. Robutti a, S. Tosi a,b

a INFN Sezione di Genova, Genova, Italy
b Università di Genova, Genova, Italy

A. Benaglia a, M.E. Dinardo a,b, S. Fiorendi a,b,2 S. Gennai a, A. Ghezzi a,b, P. Govoni a,b, M.T. Lucchini a,b,2 S. Malvezzi a, R.A. Manzoni a,b,2 A. Martelli a,b,2 D. Menasce a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, T. Tabarelli de Fatis a,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

c Scuola Normale Superiore di Pisa, Pisa, Italy

S. Buontempo a, N. Cavallo a,c, F. Fabozzi a,c, A.O.M. Iorio a,b, L. Lista a, S. Meola a,d,2, M. Merola a, P. Paolucci a,2

a INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli 'Federico II', Napoli, Italy
c Università della Basilicata (Potenza), Napoli, Italy
d Università G. Marconi (Roma), Napoli, Italy

M. Gabusi a,b, S.P. Ratti a,b, C. Riccardi a,b, P. Vitulo a,b

a INFN Sezione di Padova, Padova, Italy
b Università di Padova, Padova, Italy
c Università di Trento (Trento), Padova, Italy

c University of Genoa, Genoa, Italy

M. Biasini a,b, G.M. Bilei a, L. Fanò a,b, P. Lariccia a,b, G. Mantovani a,b, M. Menichelli a, A. Nappi a,b,†, F. Romeo a,b, A. Saha a, A. Santocchia a,b, A. Spiezia a,b

a INFN Sezione di Perugia, Perugia, Italy
b Università di Perugia, Perugia, Italy

c University of Perugia, Perugia, Italy

d University of Pisa, Pisa, Italy

K. Androsov a,31, P. Azzurri a, G. Bagliesi a, J. Bernardini a, T. Boccali a, G. Broccolo a,c, R. Castaldi a, M.A. Ciocci a,31, R. Dell’Orso a, F. Fiori a,c, L. Foà a,c, A. Giassi a, M.T. Grippa a,31, A. Kraan a, F. Ligabue a,c, T. Lomtadze a, L. Martinis a,b, A. Messineo a,b, C.S. Moon a,32, F. Palla a, A. Rizzi a,b, A. Savoy-Navarro a,33, A.T. Serban a, P. Spagnolo a, P. Squillacioti a,31, R. Tenchini a, G. Tonelli a,b, A. Venturi a, P.G. Verdini a, C. Vernieri a,c

a INFN Sezione di Pisa, Pisa, Italy
b Università di Pisa, Pisa, Italy
c Scuola Normale Superiore di Pisa, Pisa, Italy

c University of Turin, Turin, Italy

L. Barone a,b, F. Cavallari a, D. Del Re a,b, M. Diemoz a, M. Grassi a,b, C. Jordà a, E. Longo a,b, F. Margaroli a,b, P. Meridiani a, F. Micheli a,b, S. Nourbakhsh a,b, G. Organtini a,b, R. Paramatti a, S. Rahatlou a,b, C. Rovelli a, L. Soffi a,b, P. Traczyk a,b

a INFN Sezione di Roma, Roma, Italy
b Università di Roma, Roma, Italy

N. Amapane a,b, R. Arcidiacono a,c, S. Argiro a,b, M. Arneodo a,c, R. Bellan a,b, C. Biino a, N. Cartiglia a, S. Casasso a,b, M. Costa a,b, A. Degano a,b, N. Demaria a, C. Mariotti a, S. Maselli a, E. Migliore a,b, V. Monaco a,b, M. Musich a, M.M. Obertino a,c, G. Ortona a,b, L. Pacher a,b, N. Pastrone a, M. Pelliccioni a,2, A. Potenza a,b, A. Romero a,b, M. Ruspa a,c, R. Sacchi a,b, A. Solano a,b, A. Staiano a, U. Tamponi a

a INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy
Universidad Autónoma de Madrid, Madrid, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC–Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, N. Suwonjandee

Chulalongkorn University, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Bogazici University, Istanbul, Turkey

H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

Istanbul Technical University, Istanbul, Turkey

L. Levchuk, P. Sorokin

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

Baylor University, Waco, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

The University of Alabama, Tuscaloosa, USA

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Boston University, Boston, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. liyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

D. Winn

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

J. Gronberg, D. Lange, F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA
