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once again be insufficient.  The JSI-reinforced valve showed no deterioration at this stage 

of cycling; however, the Vivitro HiCycle has to always be balanced, so it needs a 

minimum of 2 valves to be run simultaneously.  Due to the lack of a replacement valve 

after the BARD valve failed, the cyclic fatigue of the JSI valve had to be halted.  The JSI 

valve had also been cycled an equivalent of 4.19 years at this stage.  Both the JSI and 

BARD valves were subjected to a hydrodynamic evaluation after 66 million cycles (1.65 

years).  Less than a 1 mmHg change in transvalvular pressure drop and a 2 % changed in 

percent regurgitation was seen for both valves when results were compared with their 

baseline, pre-fatigue data.  It was concluded that fatigue to this point had not impacted 

the acute function of the valves.  The failure mode experienced by the BARD valve was 

not sufficient to eliminate it as a potential leaflet reinforcement material.  In fact, it is the 

only viable reinforcement material out of all of the versions that have been tested.  The 

dip-coated JSI reinforcement had previously been eliminated due to unfavorable in vivo 

response.   

 

 

 

 

 

 

 
 

Figure 64.  BARD valve showing deterioration of the heat-sealed joint. 
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It has been proposed by Bernacca et al. [64] that a high modulus material could be 

more resistant to fatigue.  A plot of the circumferential and radial moduli versus fatigue 

life (Figure 65) shows no distinct pattern exists for the fiber-reinforced SIBS valves.  

Once again, the complex interaction within each orthotropic material invalidates such a 

simplistic interaction between fatigue life and leaflet modulus.  Interactions within the 

material exist, and a finite element analysis could provide a better predictor of fatigue life 

based on an analysis of the stress concentrations within a leaflet subjected to a 

physiological load.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 65.  Plot of fatigue life versus the radial and circumferential moduli. 
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modification for the leaflet cylinder sealing technique is required for this to be a 

possibility.  

5.2.3. Finite Element Model 

Eight separate combinations of valve geometry and material properties were 

compared to assess the impact of 1) stent flexibility and geometry, 2) leaflet anisotropy, 

and 3) leaflet coaptation geometry on the stress concentrations in the leaflet as a result of 

pressure loading.  One particular valve, the BARD-reinforced valve mounted on a 

medium profile, 48.5% styrene stent, was manufactured and its stent deflection and 

transient geometry were quantified for comparison and validation of the finite element 

model.  Each valve was subjected to a quasi-static diastolic loading regimen to assess the 

resultant stress concentrations when the valve was subjected to its maximum pressure 

load.   

For the quasi-static analysis, it was the initial intention to subject the valve to the 

incremental loading steps representing the entire cardiac cycle, i.e. diastolic and systolic 

loading.  What was found was that the static, implicit solution technique was not 

equipped to deal with the numerical instabilities that occurred when a complete inversion 

of curvature or buckling occurred, such as what happens during systole.  For all quasi-

static models, the analysis terminated during systole.  As per a discussion with Michel 

Labrosse (University of Ottawa, Department of Mechanical Engineering, Ottawa, 

Ontario, Canada), it was recommended that the dynamic explicit solution procedure in 

ABAQUS was more suitable for analysis of heart valve leaflets subject to buckling, so 

analysis of the full cardiac loading cycle is proposed for future analyses with this method. 
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Figure 66.  Hydrodynamic data showing the flow and pressure waveforms.  The dashed lines (1 – 8) 
represent the specific locations during the cardiac cycle where each image pair was triggered. 

 

5.2.3.1. Model Validation 

5.2.3.1.1. Transient Geometry Analysis 

During the DCSP procedure, the eight images that were taken during the cardiac 

cycle corresponded to points 1 through 8 on Figure 66.  An additional image was taken 

with the hydrodynamic tester switched off, thereby allowing imaging of the valve under a 

0 mmHg transvalvular pressure load.  The 3-D coordinates of the fiducial points were 

derived in Photomodeler®, and the generated scatterplots in addition to the raw image 

pairs are shown in Figure 67 - Figure 72 and in Appendix IV: Figure 107 - Figure 118.   
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Figure 67.  Photogrammetry image pairs corresponding to the baseline image where the valve was under a 
no load condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 68.  MatLab regeneration of fiducial points from the x, y, and z coordinated generated in 
Photomodeler® from Figure 67. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 69.  Photogrammetry image pairs corresponding to Frame 5 in Figure 66. 
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Figure 70.  MatLab regeneration of fiducial points from the x, y, and z coordinated generated in 
Photomodeler® from Figure 69. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 71.  Photogrammetry image pairs corresponding to Frame 7 in Figure 66. 
 

 

 

 

 

 

 

 

 
Figure 72.  MatLab regeneration of fiducial points from the x, y, and z coordinated generated in 
Photomodeler® from Figure 71. 
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converge.  By assuming the Poisson’s ratios to be zero, a comparison between all cases 

was achieved, and the impact of changing Young’s modulus and leaflet thickness could 

be assessed.  For the isotropic materials, a non-zero Poisson’s ratio did not present a 

problem, so the measured value was input in these cases. 

5.2.3.3. Quasi-Static Model 

For the quasi-static model, the transvalvular pressure load was ramped over time 

according to the curve shown in Figure 73.  The resultant stress concentrations at the 

maximum load for all eight models are shown in Figure 74 - Figure 81.  For the leaflets, 

images of the stress concentration on both the aortic and ventricular surfaces are provided 

for comparison.  For all models, a high stress point occurred on the inner surface of the 

stent where the stent post joined the stent base, which is consistent with a failure mode 

seen in vitro.  During dynamic fatigue of the XA-47 reinforced valve and the high-profile 

JSI-reinforced valve with radial compliance, the stent post failed in this region.   

 

 

 

 

 

 

 

 

Figure 73.  Diastolic pressure loading regimen for the quasi-static model 
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Figure 74.  BARD-reinforced leaflets with slight coaptation curvature mounted on a 48.5% styrene, 
medium profile stent (BARD-Reg). Views include (a) top view of aortic surface stresses, (b) top view of 
ventricular surface stresses, (c) front view of one third of the valve showing aortic surface stresses, and (d) 
front view of one third of the valve showing the ventricular surface stresses. 

 

 

 

 

 

 

 

 

 

 
 
Figure 75.  BARD-reinforced leaflets with slight coaptation curvature mounted on a rigid, medium profile 
stent (BARD-Reg-Rigid).  Views include (a) top view of aortic surface stresses, (b) top view of ventricular 
surface stresses, (c) front view of one third of the valve showing aortic surface stresses, and (d) front view 
of one third of the valve showing the ventricular surface stresses. 
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Figure 76.  BARD-reinforced leaflet with flat coaptation curvature mounted on a 48.5% styrene, medium 
profile stent (BARD-Flat).  Views include (a) top view of aortic surface stresses, (b) top view of 
ventricular surface stresses, (c) front view of one third of the valve showing aortic surface stresses, and (d) 
front view of one third of the valve showing the ventricular surface stresses. 
 
 

 

 

 

 

 

 

 

 

 

Figure 77.  BARD- reinforced leaflet with large coaptation curvature, mounted on a 48.5% styrene, 
medium profile stent (BARD-Lrg).  Views include (a) top view of aortic surface stresses, (b) top view of 
ventricular surface stresses, (c) front view of one third of the valve showing aortic surface stresses, and (d) 
front view of one third of the valve showing the ventricular surface stresses. 
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Figure 78.  SIBS-leaflet with slight coaptation curvature mounted on a 48.5% styrene, medium profile 
stent (SIBS-Reg).  Views include (a) top view of aortic surface stresses, (b) top view of ventricular surface 
stresses, (c) front view of one third of the valve showing aortic surface stresses, and (d) front view of one 
third of the valve showing the ventricular surface stresses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 79.  JSI-reinforced valve with slight coaptation curvature mounted on a 48.5% styrene, medium 
profile stent (JSI-Reg).  Views include (a) top view of aortic surface stresses, (b) top view of ventricular 
surface stresses, (c) front view of one third of the valve showing aortic surface stresses, and (d) front view 
of one third of the valve showing the ventricular surface stresses. 
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Figure 80.  JSI-reinforced leaflet (max compliance oriented circumferentially) with slight coaptation 
curvature mounted on a 30% styrene, high profile stent (JSI-HiP-Circ).  Views include (a) top view of 
aortic surface stresses, (b) top view of ventricular surface stresses, (c) front view of one third of the valve 
showing aortic surface stresses, and (d) front view of one third of the valve showing the ventricular surface 
stresses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 81.  JSI-reinforced leaflet (max compliance oriented radially) with slight coaptation curvature 
mounted on a 30% styrene, high profile stent (JSI-HiP-Rad).  Views include (a) top view of aortic surface 
stresses, (b) top view of ventricular surface stresses, (c) front view of one third of the valve showing aortic 
surface stresses, and (d) front view of one third of the valve showing the ventricular surface stresses. 
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Figure 107.  Photogrammetry image pairs corresponding to Frame 1 in Figure 66. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 108.  MatLab regeneration of fiducial points from the x, y, and z coordinated generated in 
Photomodeler® from Figure 107. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 109.  Photogrammetry image pairs corresponding to Frame 2 in Figure 66. 
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Figure 116.  MatLab regeneration of fiducial points from the x, y, and z coordinated generated in 
Photomodeler® from Figure 115. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 117.  Photogrammetry image pairs corresponding to Frame 8 in Figure 66. 
 

 

 

 

 

 

 

 
 

Figure 118.  MatLab regeneration of fiducial points from the x, y, and z coordinated generated in 
Photomodeler® from Figure 117. 
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