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Abstract 24 

We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the 25 

major benthic primary producer groups in Florida Bay: seagrass, epiphytes, macroalgae, and 26 

benthic microalgae, and characterized the shifts in primary producer community composition 27 

following nutrient enrichment. We established 24 permanent 0.25 m
2
 study plots at each of six 28 

sites across Florida Bay and added N and P to the sediments in a factorial design for 18 months. 29 

Tissue nutrient content of the turtlegrass Thalassia testudinum revealed a spatial pattern in P 30 

limitation, from severe limitation in the eastern bay (N:P > 96:1), moderate limitation in two 31 

intermediate sites (~63:1), and balanced with N availability in the western bay (~31:1). P 32 

addition increased T. testudinum cover by 50-75% and short-shoot productivity by up to 100%, 33 

but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P 34 

limitation (~63:1), few seagrass responses to nutrients occurred. Where ambient T. testudinum 35 

tissue N:P ratios indicated N and P availability was balanced (~31:1), seagrass was not affected 36 

by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal 37 

and epiphytic and benthic microalgal biomass were variable between sites and treatments. In 38 

general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the 39 

strength of seasonal influences on algal biomass or regulation by grazers. N addition had little 40 

effect on any benthic primary producers throughout the bay. Overall, the Florida Bay benthic 41 

primary producer community was P-limited, but P-induced alterations of community structure 42 

were not uniform among primary producers or across Florida Bay and did not always agree with 43 

expected patterns of nutrient limitation based on stoichiometric predictions from field assays of 44 

T. testudinum tissue N:P ratios.  45 



  Armitage et al. 

3 

Introduction 46 

Increased nutrient input as a consequence of human land use can cause changes in species 47 

composition and primary productivity in terrestrial and aquatic habitats (Borum and Sand-Jensen 48 

1996; Smith et al. 1999; Kennish 2002). Urban and agricultural development in watersheds 49 

render coastal systems particularly susceptible to nutrient input (Nixon 1995; Smith et al. 1999), 50 

making the prediction of nutrient loading effects on coastal systems a key management goal. 51 

Nitrogen (N) is frequently a limiting nutrient in coastal systems, but increasing evidence for 52 

phosphorus (P) limitation suggests that both N and P enrichment are of concern in nearshore 53 

habitats (Howarth 1988). 54 

Frequently documented responses of tropical and subtropical seagrasses to elevated N or P 55 

supply include increases in biomass and productivity (Powell et al. 1989; Tomasko and Lapointe 56 

1991; Lee and Dunton 2000), though consequences of nutrient enrichment vary widely within 57 

and among species and regions. Seagrass beds in carbonate sediments are generally considered to 58 

be P-limited (Short et al. 1985) and may respond strongly to P enrichment, though N-limitation 59 

in carbonate sediments has been documented as well (Udy et al. 1999; Ferdie and Fourqurean 60 

2004). Different nutrient requirements among seagrass species can cause co-occurring species to 61 

be limited by different nutrients (Udy and Dennison 1997). Furthermore, different levels of N or 62 

P limitation for individual seagrass species can occur along regional nutrient availability 63 

gradients (Lee and Dunton 2000; Fourqurean and Zieman 2002; Ferdie and Fourqurean 2004).  64 

Macroalgae are important components of seagrass communities as well, but increases in 65 

nutrient supply can cause algal proliferations that overgrow and displace aquatic vegetation 66 

(Duarte 1995; Valiela et al. 1997; Hauxwell et al. 2001; McGlathery 2001). Evidence for both P-67 

limitation (Lapointe 1989) and N-limitation (Larned 1998) suggests that tropical macroalgal 68 
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responses to nutrient enrichment are highly species-specific and vary among regions. Like 69 

seagrasses, tropical macroalgae may also exhibit intraspecific variation in responses to nutrient 70 

enrichment along gradients corresponding to background nutrient influence (Fong et al. 2003). 71 

However, algae do not necessarily exhibit the same limitation patterns as co-occurring seagrasses 72 

(Ferdie and Fourqurean 2004). 73 

Microalgae, both benthic and epiphytic, comprise another important primary producer in 74 

seagrass communities (Moncreiff et al. 1992). Microalgal biomass and productivity can increase 75 

when enriched with N or P (Nilsson et al. 1991) and can overgrow other aquatic vegetation 76 

(Tomasko and Lapointe 1991). However, microalgal responses to nutrient enrichment may also 77 

be strongly limited by biotic factors including herbivory (Williams and Ruckelshaus 1993). 78 

Florida Bay is a shallow, semi-enclosed system with extensive seagrass beds dominated by 79 

Thalassia testudinum (turtle grass). T. testudinum tissue in much of Florida Bay has a N:P ratio 80 

of >>30:1 with a maximum of 115:1 (Fourqurean and Zieman 2002), suggesting severe P-81 

limitation (Atkinson and Smith 1983). A complex network of shallow carbonate banks within the 82 

bay restricts water flow and creates numerous, effectively isolated basins, such that sites in close 83 

proximity may have dramatically different stoichiometric patterns. A spatial gradient in N:P of 84 

seagrass tissue (Fourqurean et al. 1992) and the water column (Fourqurean et al. 1993) suggest 85 

that P availability is highest along the western marine boundary of the Bay and decreases 86 

towards the east and north. From this pattern, it has been hypothesized that the marine waters of 87 

the Gulf of Mexico are the major P source for Florida Bay (Fourqurean et al. 1992; Fourqurean 88 

et al. 1993); these hypotheses have been supported with budgetary calculations (Rudnick et al. 89 

1999). There is evidence, however, that N can limit some components of the pelagic primary 90 

producers in the western regions of the Bay (Lavrentyev et al. 1998; Tomas et al. 1999), and 91 
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arguments have been made that some of the changes in the Florida Bay ecosystem, including loss 92 

of seagrass and increases in phytoplankton abundance, may be a result of increased N loading 93 

into western Florida Bay (Brand 2002; Lapointe and Barile 2004). Given the gradient of N:P and 94 

the finding of N limitation of benthic primary producers offshore towards the Florida Barrier 95 

Reef (Ferdie and Fourqurean 2004), such arguments bear testing experimentally. 96 

Our objectives were to evaluate the spatial extent of nutrient (N or P) limitation of each of 97 

the major benthic primary producer groups in Florida Bay: seagrass, epiphytes, macroalgae, and 98 

benthic microalgae, and characterize the shifts in primary producer community composition 99 

following fertilization of the seagrass community. We hypothesized that N and P enrichment 100 

would stimulate acute primary producer responses corresponding to the degree of nutrient 101 

limitation as predicted by ambient T. testudinum tissue N:P ratios along the gradient of P 102 

availability in the Bay. We also predicted that nutrient enrichment would shift primary producer 103 

community composition towards micro- and macroalgal species with high turnover rates (sensu 104 

Duarte 1995). 105 

Methods 106 

To evaluate the effects of N and P enrichment across a P-availability gradient within 107 

Everglades National Park in Florida Bay, we used a three-way split-plot ANOVA design, where 108 

the factors were P addition, N addition, and region of the bay. In October 2002 we established 109 

six study sites (all depths <2 m), with two sites nested in each of three major regions of the bay: 110 

Northeast, Interior/Central, and Gulf, as defined by Zieman et al. (1989) based on macrophyte 111 

and sediment characteristics. The two eastern sites (Region "C," Fig. 1) were characterized by a 112 

sparse, short Thalassia testudinum canopy with some calcareous green macroalgae, primarily 113 

Penicillus spp., and occurred in an area of severe P-limitation (Fourqurean and Zieman 2002). 114 
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The middle two sites (Region "B") occurred in a region of intermediate P-limitation (Fourqurean 115 

and Zieman 2002) but varied in their vegetation characteristics. The easternmost of these sites 116 

(B2) had vegetation characteristics similar to those in region C, while the westernmost site (B1) 117 

featured a dense, tall T. testudinum canopy and little macroalgae. The westernmost two sites 118 

(Region "A") were located in a region that may experience both N- and P-limitation. The eastern 119 

site in region A (A2) had vegetation characteristics similar to site B1. The western site (A1) was 120 

characterized by a dense macroalgal-Syringodium filiforme (manatee grass)-T. testudinum 121 

assemblage. At each site we established 24 0.25 m
2
 study plots demarcated with a PVC frame 122 

secured to the benthos at one meter intervals. 123 

We randomly assigned treatments [control (C), nitrogen only (N), phosphorus only (P), both 124 

nitrogen and phosphorus (NP)] to six plots per site (at site A1, n = 3 due to the loss of 12 plots 125 

from erosion and boat disturbance over the course of the study). Nitrogen was added in the form 126 

of slow release nitrogen fertilizer (Polyon, Pursell Technologies Inc., 38-0-0, 94% N as urea) 127 

and phosphorus as granular phosphate rock (Multifos, IMC Global, Ca3(PO4)2, 18% P). 128 

Loading rates of 1.43 g N m
-2

 day
-1

 and 0.18 g P m
-2

 day
-1

 (molar N:P ratio 17.6:1) were selected 129 

based on potential sewage loading rates (MCSM 2001) and previous studies in the region (Ferdie 130 

and Fourqurean 2004). We began bimonthly applications of fertilizer in October 2002 by 131 

sprinkling granular fertilizer evenly on the sediment surface and gently working it into the 132 

sediment by hand. Sediment in the control plots was similarly disturbed but no fertilizer was 133 

added. Benthic fertilizer applications ensured accessibility of nutrients to both above-ground and 134 

benthic primary producers (Ferdie and Fourqurean 2004; Mutchler et al. 2004).  135 

In February 2004 we determined sediment, seagrass tissue, and seagrass epiphyte N and P 136 

content to assess the effectiveness of the enrichment treatments. Macroalgal tissue nutrient 137 
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content was not determined due to insufficient algal abundance and the occurrence of different 138 

species at each site. Sediment cores (1 cm diameter, 5 cm deep) were collected from each plot 139 

and dried at 60ºC. Two T. testudinum short-shoots were collected from each plot and the 140 

epiphytes removed by gently scraping the blades with a razor blade. At site A1, nutrient content 141 

of S. filiforme tissue was also determined. Nitrogen content of the sediment, epiphytes, and the 142 

cleaned seagrass tissue were determined separately using a CHN analyzer (Fisons NA1500). 143 

Phosphorus content was determined by a dry-oxidation, acid hydrolysis extraction followed by a 144 

colorimetric analysis of phosphate concentration of the extract (Fourqurean et al. 1992).  145 

Using methods based on extensive monitoring in this region (Fourqurean et al. 2002), we 146 

estimated seagrass (T. testudinum, S. filiforme, and Halodule wrightii) and macroalgal percent 147 

cover with a modified Braun-Blanquet (BB) abundance scale: 0 = absent; 0.1 = one individual, 148 

<5% cover; 0.5 = few individuals, <5% cover; 1 = many individuals, <5% cover; 2 = 5-25% 149 

cover; 3 = 25-50% cover; 4 = 50-75% cover; 5 = 75-100% cover. To measure T. testudinum 150 

productivity, two haphazardly selected short-shoots in each plot were marked at the base of the 151 

leaves with an 18-gauge hypodermic needle and labeled with a cable tie for identification. We 152 

collected the shoots after 11-13 days, recorded the increase in leaf lengths, and calculated 153 

productivity (mg short-shoot
-1

 d
-1

). We limited our productivity measurements to two shoots to 154 

minimize impact and facilitate future long-term sampling of this experiment 155 

All epiphytes were removed from one short-shoot from each plot as above. Epiphytes were 156 

freeze dried and pigments extracted with 90% acetone. The chlorophyll a concentration was 157 

determined using a Shimadzu RF-Mini 150 fluorometer with low bandwidth filters 158 

(Welschmeyer 1994) following calibration with a chlorophyll a standard using a Shimadzu UV 159 
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Mini 1240 spectrophotometer and the spectrophotometric equations of Jeffrey and Humphrey 160 

(1975).  161 

To determine benthic microalgal biomass, we collected a 2.5 cm diameter, 1 cm deep core 162 

haphazardly located within each plot. Sediments were freeze dried, pigments extracted with 90% 163 

acetone, and chlorophyll a concentration determined as for the epiphytes. 164 

The variances of all data were tested for homoscedasticity using the Fmax test and log 165 

transformed if necessary to conform to the assumptions of ANOVA. All data were analyzed with 166 

three-way split-plot ANOVA, where the factors were ± P, ± N, and region (A, B, C) with sites 167 

(A1, A2, B1, B2, C1, C2) nested within regions. Region, P, and N factors were considered fixed 168 

and sites were random for this ANOVA model. The linear model for this design was: 169 

(response variable)ijklm = µ + (region)i + (P addition)k + (N addition)l + (interaction between 170 

region and P)ik + (interaction between region and N)il + (interaction between P and N)kl + 171 

(interaction between region, P, and N)ikl + (site within region)j(i) + (interaction between site 172 

within region and P)j(i)k + (interaction between site within region and N)j(i)l + (interaction 173 

between site within region, P, and N)j(i)kl + εijklm 174 

where µ is the overall mean, ε is the unexplained error, i, j, k, and l represent the levels within 175 

each factor, and m is the number of observations per site per nutrient treatment (Quinn and 176 

Keough 2002). Site A1 was excluded from analyses of T. testudinum productivity and epiphyte 177 

nutrient content due to insufficient replication, as several plots at that site contained only one T. 178 

testudinum short-shoot, and we prioritized the epiphyte chlorophyll a and seagrass tissue nutrient 179 

analyses. 180 

Results 181 
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Sediment, seagrass, and epiphyte nutrient content reflected nutrient treatments, though the 182 

magnitude of the responses varied among regions and sites. Significant region*P and site*P 183 

interactions for sediment %P (Table 1) suggested that although sediment P content increased at 184 

all sites when P was added, the magnitude of increase varied among sites within regions. All 185 

sites had low P content (<0.05%) prior to P addition, but sites A2 and B1 appeared to have the 186 

largest increases when P was added (Fig. 2a). Sediment N content was significantly affected by 187 

region, site, and N addition. Overall, sediment %N increased when N was added, but the increase 188 

was generally less than 50% over control levels (Fig. 2b). Sediment N content was lower in 189 

region C than in regions A and B and highest overall in sites A2 and B1.  190 

Significant region*P and site*P*N interactions suggested that responses of T. testudinum 191 

tissue %P content to nutrient treatments varied among sites within regions but that there was no 192 

clear regional pattern (Table 1). Overall, T. testudinum P content increased by up to 300% when 193 

P was added at all sites except A1, where control and enriched levels of P were similar to each 194 

other and to enriched P levels at other sites (Fig. 3a). However, at sites B2 and C2, P addition did 195 

not increase tissue P content as much when N was also added. Tissue %N content significantly 196 

increased in response to N addition, though the change was small (10-20% increase, Fig. 3b), 197 

relative to the P responses. Significant site*P and region*P interactions suggested that tissue %N 198 

content response to P enrichment varied among sites within regions. Tissue %N content 199 

increased when P was also added, but only at sites B2 and C1. In addition, at site A1, N content 200 

decreased when P was added. Significant region*P and site*P*N interactions for T. testudinum 201 

molar N:P ratios closely followed the site-specific but not region-specific tissue %P responses. In 202 

control plots, the T. testudinum N:P ratio was ~30:1 at site A1, ~60:1 at sites A2 and B1, and 203 

~100:1 at sites B2, C1, and C2 (Fig. 3c). At all sites except A1, P addition lowered T. testudinum 204 
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N:P ratios to values approaching those at A1, though the largest relative decreases occurred at 205 

sites B2 and C2. At those two sites, N:P ratios appeared to be lower when P was added alone 206 

than when P and N were added together. S. filiforme  tissue nutrient content did not vary with 207 

nutrient treatment, but did have slightly higher P (mean 0.24 ± 0.01 SE %P) and N (2.45 ± 0.09 208 

%N) content and a lower N:P ratio (22.58 ± 1.27 N:P) than T. testudinum at site A1. 209 

The nutrient content of T. testudinum epiphytes also showed complex responses to nutrient 210 

addition. Significant region*P and site*P interactions for epiphyte P content stemmed from 211 

larger increases in %P following P addition at sites B2 and C2 than at the other sites with no 212 

distinct regional pattern (Table 1, Fig. 4a). No epiphyte elemental analyses were performed for 213 

site A1 due to insufficient T. testudinum tissue available for collection. Epiphyte N content was 214 

lower in region C than in the other regions and variable among sites, with the highest content at 215 

sites A2 and B1, but was not affected by nutrient addition treatment (Fig. 4b). Significant 216 

region*P and site*P interactions for epiphyte molar N:P ratios were driven by large P-induced 217 

decreases in N:P ratios at all sites except A2 (Fig. 4c). In addition, epiphyte N:P ratios were 218 

significantly higher when N was added in all regions, though the magnitude of the N effect was 219 

smaller than the P effect.  220 

T. testudinum cover and productivity generally responded positively to P addition but were 221 

unaffected by N addition. A significant interaction between site and P for T. testudinum cover 222 

stemmed from large P-induced increases in cover at sites B2, C1, and C2 (Table 2, Fig 5a). The 223 

strong site-specific responses of T. testudinum cover to P addition obscured any regional 224 

patterns. At sites B2, C1, and C2, control plots had a Braun-Blanquet (BB) score of ~2, which 225 

corresponds to about 25% cover. P addition plots had BB scores of 3 or 4, corresponding to 50-226 

75% cover. T. testudinum productivity varied significantly with P and N addition but strong site-227 
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specific responses masked regional trends. Productivity increased with both N and P addition 228 

relative to controls, though productivity tended to be similar between P and NP plots at sites B2, 229 

C1, and C2 (Fig. 5b). In addition, productivity tended to be higher at sites A2 and B1 than at the 230 

other sites. Site A1 was excluded from the productivity analysis due to insufficient T. testudinum 231 

tissue available for collection. 232 

Two additional species of seagrass occurred at some study sites. Syringodium filiforme was 233 

found in all plots at site A1 throughout the study period, but percent cover was similar across 234 

nutrient treatments (average BB score 3.1 ± 0.3). Halodule wrightii colonized one NP plot at 235 

both sites A2 and B1 and comprised 25-50% cover in those plots. 236 

Macroalgal cover showed group-specific responses to nutrient treatment that varied widely 237 

among regions and between sites within regions. Filamentous and other uncalcified, branching 238 

red algae (Div. Rhodophyta) and calcified green algae (Div. Chlorophyta) were the most 239 

common groups. A significant region*P interaction suggested that cover of red macroalgae 240 

(especially the epiphytic species Polysiphonia binneyi, Ceramium brevizonatum var. caribicum, 241 

and Chondria sp.) increased in response to P addition, but primarily at sites in region C (Table 2; 242 

Fig. 5c). Percent cover tended to be highest overall at site A1, and red algae were not detected at 243 

site B1 or in the control and N only plots at site B2. A site*N interaction suggested that calcified 244 

green macroalgal cover (especially the benthic genus Penicillus spp.) response to nutrient 245 

addition differed among sites, but high variability among sites obscured regional patterns (Fig. 246 

5d). A slight N-induced increase in cover occurred at site C2 and a small N-induced decrease in 247 

cover occurred at site A1. Calcareous green algae were not detected at sites A2 or B1. 248 

Epiphyte loads were highly variable among regions and sites and exhibited complex 249 

responses to nutrient treatments. A significant site*P*N interactions suggested that epiphyte 250 
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chlorophyll a concentration exhibited strong site-specific responses to nutrients that masked 251 

regional patterns (Table 2). The highest chlorophyll a concentrations occurred at sites A1 and B2 252 

(Fig. 5e). There was a strong decrease in chlorophyll a in the P and NP treatments at site B2, an 253 

increase in the P and NP treatments at site C1, and no nutrient effects at sites A1, A2, B1, or C2.  254 

Benthic microalgal biomass, as estimated by benthic chlorophyll a concentration, exhibited 255 

region-specific but generally weak responses to P addition, as suggested by a significant 256 

region*P interaction (Table 2). P addition slightly increased benthic chlorophyll a in region C 257 

(Fig. 5f). Similar trends occurred in region A, though variability was high at site A1. Benthic 258 

microalgal biomass did not respond to P addition treatment at sites in region B, and no N effects 259 

were detected throughout the bay. A significant site effect stemmed from higher benthic 260 

chlorophyll a concentrations at sites A1 and B2 than the other sites. 261 

Discussion 262 

Stoichiometric evidence from seagrass tissue N:P ratios suggests widespread phosphorus 263 

limitation in tropical seagrass communities on carbonate sediments (Atkinson and Smith 1983; 264 

Fourqurean et al. 1992). This prediction has been corroborated by experimental evidence that 265 

demonstrated positive seagrass responses to P addition (Short et al. 1985) and low porewater P 266 

concentration in carbonate sediments (McGlathery et al. 2001). P-limitation in these cases may 267 

be attributed to the adsorption of phosphate to carbonate sediments (Koch et al. 2001) and the 268 

augmentation of N supply through nitrogen fixation in systems like Florida Bay with long water 269 

residence times (Howarth 1988). Accordingly, in our study there was little evidence for N 270 

limitation for any of the benthic primary producers throughout the bay. This agrees with 271 

predictions from studies of seagrass tissue nutrient content, which suggest that %N content above 272 

1.8% indicates that N is not limiting (Duarte 1990), and seagrass tissue %N at all of our study 273 



  Armitage et al. 

13 

sites was ~2%. However, we underestimated the complexity of the benthic primary producer 274 

responses to P enrichment. Recent work finds that there is no general pattern of P-limitation on 275 

carbonate sediments (Ferdie and Fourqurean 2004), possibly due to an active dissolution of 276 

carbonate sediments in the rhizosphere of seagrass beds (Burdige and Zimmerman 2002), 277 

making P sorbed to sediments available for root uptake (Jensen et al. 1998). Thus, relative supply 278 

of N and P are probably the most important determinants of the limiting nutrient, even in 279 

carbonate sediments (Erftemeijer et al. 1994). 280 

T. testudinum responses to P enrichment exhibited strong site-specific variation that 281 

corresponded with the ambient seagrass N:P ratio at each site but did not follow the regional 282 

patterns we expected. The eastern bay was severely P-limited, as indicated by the high (~100:1) 283 

seagrass N:P ratios in unenriched plots, and P addition caused marked increases in seagrass 284 

cover and growth. However, the impacts of P addition were not restricted to the two sites in 285 

region C; site B2 had a similarly high ambient N:P ratio and increase in cover and productivity 286 

following P enrichment. In contrast, there was little cover or growth response to P addition in the 287 

three western sites, despite tissue P content that fell well below the 0.2% DW threshold that 288 

suggests P limitation (Duarte 1990) at all sites except A1. Variation in growth responses was 289 

introduced by sampling only two shoots per plot in order to preserve the integrity of the canopy 290 

and facilitate future observations in this long term study, but relative differences among sites 291 

suggest that productivity responses to nutrients were much less pronounced in the western than 292 

in the eastern sites. At sites A2 and B1, T. testudinum had similar N:P ratios in control plots 293 

(~60:1) and exhibited similar responses to nutrient addition, despite the presence of a large, 294 

shallow bank between the two sites that limited oceanic and Gulf of Mexico water input to the 295 

Interior Bay region (region B). It is not unusual to encounter site-specific patterns of nutrient 296 
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limitations in tropical seagrass communities (Agawin et al. 1996; Udy and Dennison 1997), but 297 

the spatial complexity we encountered did not follow topographic contours as we expected. 298 

Further complexity in responses to P enrichment was revealed by the generally weak micro- 299 

and macroalgal responses to nutrient addition throughout the bay. Epiphytic and macroalgal 300 

overgrowth of seagrass frequently occurs in nutrient enriched conditions in both temperate 301 

(Valiela et al. 1997; Hauxwell et al. 2001; Cardoso et al. 2004) and tropical (Tomasko and 302 

Lapointe 1991; McGlathery 2001) habitats, yet this expected algal proliferation did not occur in 303 

our study. In fact, a decrease in epiphyte load occurred in P-addition treatments at site B2. 304 

Increased T. testudinum leaf productivity may have reduced leaf life span and decreased the 305 

amount of time for epiphyte accumulation, a pattern similar to that seen in N-limited seagrass 306 

beds offshore from the Florida Keys (Ferdie and Fourqurean 2004). However, differences in T. 307 

testudinum specific leaf productivity in Florida Bay account for less variation in epiphyte loading 308 

than grazer abundance and nutrients (Frankovich and Zieman 2005), suggesting that increased 309 

leaf productivity in enriched plots at site B2 only partially explains lower epiphyte loads. Benthic 310 

microalgal biomass can also increase in enriched conditions (Nilsson et al. 1991), but we 311 

detected little microphytobenthic response. Although we disturbed the sediments every two 312 

months during the addition of fertilizer, our activities were unlikely to obscure microalgal 313 

responses to nutrient addition because benthic microalgae are often dominated by biraphid 314 

pennate diatoms that have well-developed motility, allowing rapid migration back to the 315 

sediment surface following small-scale bioturbation events (Admiraal 1984). It is possible that 316 

the lack of response of the epiphytic and macroalgal primary producers may have been a result of 317 

the mode of nutrient delivery via fertilization of the sediments. It has been suggested that 318 

seagrass epiphytes and some macroalgae are unable to utilize sediment nutrient pools 319 



  Armitage et al. 

15 

(Erftemeijer et al. 1994). In our study, substantial portions of the added nutrients, particularly 320 

phosphorus, were retained in the sediment, but we did elicit changes in the nutrient content and 321 

N:P ratios of the seagrass and epiphyte assemblages in a pattern consistent with increased N and 322 

P availability in fertilized plots. Furthermore, Ferdie and Fourqurean (2004) used an identical 323 

fertilization protocol in higher energy sites near the Florida Barrier Reef and detected nitrogen 324 

responses in both seagrass and epiphytes, demonstrating that this fertilization technique was 325 

effective in enriching both benthic and aboveground producers. Thus, the unexpected lack of 326 

responses to P addition by both seagrass and algae in seemingly P-limited habitats was probably 327 

not due to inaccessibility of the added nutrients but was the likely result of multiple alternative 328 

biotic and abiotic factors. 329 

Phosphorus storage in seagrass and algal tissue without subsequent growth or other 330 

morphological responses at some sites suggests that another nutrient may have been regulating 331 

plant growth. Iron availability may limit seagrasses or algal assemblages, particularly those in 332 

carbonate sediments (Duarte et al. 1995). However, experimental Fe additions have yielded few 333 

micro- or macroalgal (Kuffner and Paul 2001) or seagrass (Chambers et al. 2001) responses in 334 

tropical habitats. Silica availability can control diatom growth when N and P are in excess 335 

(Carrick and Lowe 1988). This mechanism may have been important in the benthic microalgal 336 

community in our study, which is diatom-dominated (Lewis et al. 2000), but Florida Bay 337 

seagrass epiphyte loads are typically dominated by calcium carbonate (coralline algae and 338 

adhered sediment) rather than diatoms (Frankovich and Zieman 1994), so silica availability 339 

probably did not limit epiphyte responses to N and P addition.  340 

Competition for other limiting resources, such as light (Ibarra-Obando et al. 2004) and space 341 

(Marbà and Duarte 2003) may have prevented primary producers from responding to P addition 342 
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in the western portions of the bay. Sites A2 and B1 were generally less turbid than sites in the 343 

eastern bay, but T. testudinum shoot densities at those sites (~500-800 short-shoots m
-2

) 344 

approached the maxima recorded in other studies in this region (Zieman et al. 1999), suggesting 345 

that the canopy may have been saturated and that self-shading was occurring. In addition, 346 

shading from a P-enriched T. testudinum canopy may have inhibited the response of benthic 347 

microalgae to enriched conditions across all sites.  348 

Grazing can structure temperate and tropical seagrass communities through direct 349 

consumption of seagrass (McGlathery 1995; Valentine and Heck 2001), controlling epiphyte 350 

growth (Williams and Ruckelshaus 1993; Heck et al. 2000), and regulating benthic microalgal 351 

production (Nilsson et al. 1991). Therefore, grazing pressure may have limited T. testudinum and 352 

algal responses to excess nutrients at the middle bay sites and algal responses throughout the bay. 353 

Grazers known to regulate epiphyte assemblages, including snails (van Montfrans et al. 1982) 354 

and grass shrimp (Zupo and Nelson 1999) are frequently found in Florida Bay (McClanahan 355 

1992; Matheson et al. 1999; Frankovich and Zieman 2005). Preferential grazing on nutrient-356 

enriched plant tissue, a pattern observed in algal (Boyer et al. 2004) and seagrass assemblages 357 

(McGlathery 1995), may compensate for nutrient-induced increases in plant biomass. Though 358 

this may have contributed to the control of nutrient-induced micro- or macroalgal growth, the 359 

most common seagrass grazer in Florida Bay, the pink urchin Lytechinus variegatus, does not 360 

exhibit a preference for nutrient-enriched seagrass (McGlathery 1995; Valentine and Heck 2001) 361 

and was seldom observed in the study areas (Armitage et al., unpub. data) and was therefore 362 

unlikely to mitigate T. testudinum response to nutrients. 363 

Species-specific seasonal fluctuations in primary producer biomass and productivity may 364 

result in temporally variable responses to excess nutrients. Wintertime peaks in epiphyte 365 
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(Frankovich and Zieman 1994) and rhodophyte (Collado-Vides et al. 1994) biomass in tropical 366 

regions suggest that algal responses to nutrient enrichment might have been most pronounced at 367 

the time of year of our sampling effort. Our continued monitoring of this project supports this 368 

assertion, as the proliferations of red algae in P addition treatments in the eastern bay had largely 369 

senesced by May 2004 (Armitage et al., unpub. data). In addition, we monitored this experiment 370 

on a bimonthly basis since its inception and no qualitative algal proliferations were observed at 371 

any time in this study until our sampling in February 2004, further suggesting that the macroalgal 372 

responses were ephemeral.  373 

T. testudinum may have responded to nutrient addition in a manner our measurements did not 374 

detect because belowground characteristics were not sampled in order to minimize impact and 375 

facilitate future long-term sampling of this experiment. Thus, it is possible that nutrient addition 376 

was disproportionately allocated to the root/rhizome complex, particularly at sites A2 and B1, 377 

where no aboveground response was detected. However, fertilizer-induced changes in shoot:root 378 

allocation generally result from an increase in shoot biomass (Lee and Dunton 2000). 379 

Alternatively, excess P may have been translocated along the rhizome system to new growth 380 

outside the treatment plot (Marbà et al. 2002) and was thus undetected in our sampling protocol, 381 

though our qualitative observations suggest that the fertilization effects were strongly localized 382 

around the treatment plots.  383 

The western site with an ambient T. testudinum tissue N:P ratio of 30:1 was not affected by N 384 

or P addition, suggesting a balance between N and P supply (Atkinson and Smith 1983). 385 

Accordingly, T. testudinum tissue phosphorus content at that site was high (Duarte 1990), and 386 

the diverse macroalgal assemblage and the abundance of Syringodium filiforme, a seagrass 387 

species associated with enriched conditions (Ferdie and Fourqurean 2004), reflected the elevated 388 



  Armitage et al. 

18 

nutrient supply. However, this site was heavily impacted by factors other than nutrient supply, 389 

particularly frequent disturbances, both through current and erosion processes as well as boat 390 

traffic, illustrating the range of factors that may regulate benthic primary producer assemblages. 391 

The replacement of slower growing species with more opportunistic ones in nutrient enriched 392 

conditions is a commonly observed occurrence in terrestrial (Bargali 1997), freshwater (Craft 393 

and Richardson 1997), and marine habitats (Duarte 1995; Valiela et al. 1997; McGlathery 2001). 394 

However, in our study, there was no suggestion of macroalgal replacement of seagrass, possibly 395 

due to the seasonal nature of macroalgae in Florida Bay. Shoalgrass Halodule wrightii began to 396 

colonize some of the NP plots, and though its occurrence was patchy at the time of this study, 397 

continued fertilization may eventually lead to H. wrightii replacement of T. testudinum, a 398 

phenomenon observed following two years of increased nutrient supply in a separate study in 399 

Florida Bay (Fourqurean et al. 1995).  400 

Our results bear directly on the hypothesis that increased freshwater, and therefore N loading 401 

from the Everglades ecosystem as a result of restoration efforts could change the nature of 402 

seagrass communities of Florida Bay (Brand 2002; Lapointe and Barile 2004). Direct addition of 403 

P to eastern Florida Bay seagrass beds caused marked changes in community structure in the 404 

short time course of our experiments, but N addition had almost no impact on primary producers 405 

in any region of the Bay. These results suggest that an increase in N loading to Florida Bay 406 

would have very little direct impact on seagrass communities. However, some bioassay 407 

experiments have shown N limitation within the western Bay phytoplankton communities 408 

(Lavrentyev et al. 1998; Tomas et al. 1999), so it is still possible that N loading could negatively 409 

impact seagrass communities by promoting phytoplankton growth, leading to light limitation of 410 

benthic plants. The spatial scale of our experiments was not appropriate for testing this idea, as 411 
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any phytoplankton bloom stimulated in our small study plots would have quickly been washed 412 

away. Further, as the seagrass communities of the adjacent Florida Keys National Marine 413 

Sanctuary are N-limited (Ferdie and Fourqurean 2004), increases in N loading to Florida Bay 414 

could have an effect on the adjacent, downstream communities without directly altering seagrass 415 

communities within the Bay. 416 

Stoichiometric ratios are widely used to predict nutrient limitation, where a N:P ratio of 30:1 417 

represents the modified Redfield ratio for seagrasses (e.g., Atkinson and Smith 1983; Fourqurean 418 

and Zieman 2002). However, our study adds to the growing body of evidence that although very 419 

high or very low stoichiometric ratios represent P or N (respectively) limitation, a broad middle 420 

range of N:P ratios (~20-60:1) does not yield consistent predictions of patterns of nutrient 421 

limitation in seagrasses. Although the breadth of that middle range might be a function of the 422 

relatively short time period of this study, several experimental studies provide further support for 423 

this conclusion. For example, four species of seagrass in Australia had similar (~20:1) molar N:P 424 

ratios, but each species exhibited a unique response to N and P addition: strong N limitation, 425 

weak N limitation, N and P balance, and no nutrient response were all observed (Udy and 426 

Dennison 1997; Udy et al. 1999). In another study on the ocean side of the Florida Keys, 427 

seagrass tissue N:P ratios (~40:1) suggested P-limitation in nearshore seagrass beds (Fourqurean 428 

and Zieman 2002). However, experimental nutrient enrichment demonstrated N-limitation in the 429 

macro- and microalgae but few effects of N or P enrichment on the seagrass (Ferdie and 430 

Fourqurean 2004), illustrating that predictions of nutrient limitation from stoichiometric ratios 431 

may not apply uniformly to all primary producers within a community. In addition, other biotic 432 

or abiotic factors, such as grazing pressure, space, or the level of disturbance, may exert strong 433 

influences on primary producer responses to nutrient enrichment. Supplementing stoichiometric 434 
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field assays with experimental manipulations will enable more accurate predictions of the 435 

impacts of nutrient enrichment on coastal habitats.  436 
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Table 1: Results from three-way split-plot ANOVA of P, N, and bay region, with site nested within region, on N and P content of the 

sediment, Thalassia testudinum tissue, and epiphytes.   

 df MS F p  df MS F p 

 Sediment %P   Sediment %N  

Region 2 373.91 365.20 <0.0001  2 3.83 106.36 <0.0001 

P 1 1640.11 1601.92 <0.0001  1 0.01 0.20 0.6580 

N 1 1.60 1.57 0.2134  1 0.82 22.71 <0.0001 

P*N 1 0.35 0.35 0.5577  1 <0.01 0.01 0.9403 

Region*P 2 300.37 293.38 <0.0001  2 0.07 1.87 0.1597 

Region*N 2 1.75 1.71 0.1851  2 0.01 0.22 0.8053 

Region*P*N 2 0.36 0.35 0.7025  2 0.01 0.35 0.7078 

Site(Region) 3 60.95 59.53 <0.0001  3 1.52 42.17 <0.0001 

Site(Region)*P 3 19.58 19.12 <0.0001  3 0.04 1.03 0.3821 

Site(Region)*N 3 0.81 0.79 0.5002  3 0.08 2.24 0.0874 

Site(Region)*P*N 3 0.25 0.24 0.8663  3 0.03 0.85 0.4723 

Residual 108 1.02    108 0.04   
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Table 1 (cont.):   

 df MS F p  df MS F P  df MS F P 

 T. testudinum  %P   T. testudinum %N   T. testudinum N:P  

Region 2 0.71 70.98 <0.0001  2 0.03 25.73 <0.0001  2 0.55 60.89 <0.0001 

P 1 1.75 175.44 <0.0001  1 <0.01 2.46 0.1196  1 1.61 177.76 <0.0001 

N 1 0.11 10.69 0.0014  1 0.01 8.47 0.0044  1 0.18 20.24 <0.0001 

P*N 1 0.05 4.67 0.0329  1 <0.01 <0.01 0.9807  1 0.05 5.20 0.0245 

Region*P 2 0.25 25.53 <0.0001  2 0.01 5.93 0.0036  2 0.18 19.56 <0.0001 

Region*N 2 0.01 1.13 0.3277  2 <0.01 0.15 0.8603  2 0.01 1.56 0.2152 

Region*P*N 2 0.02 2.37 0.0985  2 <0.01 0.58 0.5616  2 0.02 2.29 0.1059 

Site(Region) 3 0.20 20.13 <0.0001  3 0.05 45.63 <0.0001  3 0.41 45.67 <0.0001 

Site(Region)*P 3 0.08 8.45 <0.0001  3 <0.01 2.72 0.0481  3 0.07 7.63 <0.0001 

Site(Region)*N 3 0.01 0.96 0.4164  3 <0.01 1.17 0.3231  3 0.01 1.29 0.2832 

Site(Region)*P*N 3 0.03 3.33 0.0225  3 <0.01 0.66 0.5811  3 0.03 3.30 0.0233 

Residual 107 0.01    107 <0.01    107 0.01   
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Table 1 (cont.):   

 df MS F p  df MS F p  df MS F p 

 Epiphyte  %P   Epiphyte %N   Epiphyte N:P  

Region 2 0.55 19.24 <0.0001  2 0.21 16.57 <0.0001  2 0.12 6.23 0.0030 

P 1 1.32 45.93 <0.0001  1 0.02 1.72 0.1932  1 1.13 56.86 <0.0001 

N 1 0.04 1.38 0.2427  1 0.03 2.02 0.1584  1 0.11 5.45 0.0219 

P*N 1 <0.01 0.07 0.7988  1 0.04 2.84 0.0951  1 0.01 0.68 0.4127 

Region*P 2 0.13 4.62 0.0124  2 0.01 0.59 0.5578  2 0.16 8.01 0.0006 

Region*N 2 <0.01 0.05 0.9466  2 0.01 1.04 0.3577  2 <0.01 0.20 0.8217 

Region*P*N 2 <0.01 0.04 0.9638  2 0.01 0.96 0.3858  2 0.01 0.45 0.6368 

Site(Region) 2 0.11 3.64 0.0303  2 0.07 5.60 0.0050  2 0.18 9.10 0.0003 

Site(Region)*P 2 0.21 7.31 0.0012  2 0.03 1.95 0.1482  2 0.11 5.73 0.0046 

Site(Region)*N 2 0.07 2.41 0.0958  2 <0.01 0.23 0.7978  2 0.02 1.20 0.3069 

Site(Region)*P*N 2 0.01 0.17 0.8445  2 0.01 0.37 0.6905  2 0.01 0.65 0.5228 

Residual 87 0.03    97 0.01    87 0.02   
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Table 2:   Results from three-way split-plot ANOVA of P, N, and bay region, with site nested within region, on Thalassia testudinum, 

macroalgae, epiphytic microalgal, and benthic microalgal characteristics.  

 df MS F p  df MS F p  df MS F p 

 T. testudinum Cover   T. testudinum Productivity  Rhodophyta Cover  

Region 2 0.77 41.76 <0.0001  2 0.42 9.19 0.0002  2 45.34 83.05 <0.0001 

P 1 0.48 26.00 <0.0001  1 1.18 25.85 <0.0001  1 2.04 3.73 0.0560 

N 1 <0.01 0.15 0.7027  1 0.31 6.72 0.0110  1 0.43 0.79 0.3767 

P*N 1 <0.01 0.21 0.6519  1 <0.01 0.03 0.8515  1 0.54 0.98 0.3234 

Region*P 2 0.03 1.67 0.1933  2 0.05 1.06 0.3503  2 3.15 5.77 0.0042 

Region*N 2 0.04 2.03 0.1359  2 0.01 0.19 0.8279  2 1.12 2.04 0.1345 

Region*P*N 2 0.01 0.60 0.5491  2 0.08 1.81 0.1683  2 0.30 0.56 0.5753 

Site(Region) 3 1.78 95.72 <0.0001  2 0.56 12.32 <0.0001  3 15.33 28.09 <0.0001 

Site(Region)*P 3 0.22 11.63 <0.0001  2 0.05 1.08 0.3436  3 0.95 1.75 0.1613 

Site(Region)*N 3 <0.01 0.17 0.9159  2 <0.01 <0.01 0.9987  3 0.70 1.29 0.2826 

Site(Region)*P*N 3 0.02 1.23 0.3023  2 0.01 0.14 0.8724  3 0.35 0.64 0.5894 

Residual 108 0.02    98 0.05    108 0.55   
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Table 2 (cont.):  

 df MS F p  df MS F p  df MS F p 

 Chlorophyta Cover   Epiphyte chlorophyll a  Benthic chlorophyll a  

Region 2 10.33 72.73 <0.0001  2 0.92 34.28 <0.0001  2 0.17 7.97 0.0006 

P 1 0.01 0.07 0.7906  1 0.10 3.62 0.0598  1 0.33 15.23 0.0002 

N 1 0.15 1.09 0.2988  1 0.02 0.69 0.4073  1 0.01 0.28 0.6000 

P*N 1 0.01 0.09 0.7594  1 0.06 2.09 0.1513  1 0.01 0.22 0.6433 

Region*P 2 0.43 3.01 0.0532  2 0.25 9.39 0.0002  2 0.09 4.31 0.0159 

Region*N 2 0.47 3.27 0.0417  2 0.03 1.08 0.3447  2 0.02 0.91 0.4054 

Region*P*N 2 0.11 0.75 0.4772  2 0.03 0.94 0.3921  2 0.02 0.99 0.3760 

Site(Region) 3 16.66 117.29 <0.0001  3 4.10 152.69 <0.0001  3 0.72 32.90 <0.0001 

Site(Region)*P 3 0.27 1.92 0.1312  3 0.31 11.56 <0.0001  3 0.02 0.79 0.5033 

Site(Region)*N 3 0.45 3.20 0.0262  3 0.03 1.03 0.3835  3 0.04 1.78 0.1549 

Site(Region)*P*N 3 0.13 0.93 0.4304  3 0.09 3.38 0.0211  3 0.01 0.50 0.6856 

Residual 108 0.14    108 0.03    108 0.02   
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Figure Captions: 

Fig. 1: Map of Florida Bay and study sites. Bay regions are defined based on delineations from 

Zieman et al. (1989). Region A: Gulf/Atlantic, Region B: Interior/East Central, Region C: 

Northeast. 

Fig. 2: Responses of sediment nutrient content to region and P and N addition: a) P content as a 

percent of dry weight, b) N content as a percent of dry weight. At site A1, n = 3 per nutrient 

treatment; at all other sites, n = 6. In all figures, significant p-values are indicated and all bars 

represent standard error.  

Fig. 3: Responses of Thalassia testudinum nutrient content to region and P and N addition: a) P 

content as a percent of dry weight, b) N content as a percent of dry weight, c) N:P molar ratio. At 

site A1, n = 3 per nutrient treatment; at all other sites, n = 6. 

Fig. 4: Responses of Thalassia testudinum epiphyte nutrient content to region and P and N 

addition: a) P content as a percent of dry weight, b) N content as a percent of dry weight, c) N:P 

molar ratio. n = 6 per site per nutrient treatment. Ψ indicates insufficient replication for analysis. 

Fig. 5: Responses of primary producers to region and P and N addition: a) Thalassia testudinum 

percent cover, estimated by Braun-Blanquet (BB) score, b) T. testudinum short-shoot (ss) 

productivity, c) uncalcified red algae (Rhodophyta) cover, d) calcified green algae (Chlorophyta) 

cover, e) epiphyte chlorophyll a concentration, f) benthic chlorophyll a concentration. At site 

A1, n = 3 per site per nutrient treatment; at all other sites, n = 6.  Ψ indicates insufficient 

replication for analysis. § indicates no macroalgae present. 



  Armitage et al. 

36 

 

 

 

 

 

 

 

 

 

 

          
 

 

km 0 5 10 15 20 25 

C2 

C1 

B1 
B2 

Gulf 
of 

Mexico 
Area of

Detail

Atlantic

Ocean 

95 85 75
30 

20

o o o 
o 

o 

A2 
A1 

A 

B 

C 

Figure 1 



  Armitage et al. 

37 

 

 

 

 

 

 

 

                            

S
e

d
im

e
n

t 
%

P

0.0

0.2

0.4

0.6

C 

N 

P 

NP 

Site
W                         �       �       �       �        E

A1 A2 B1 B2 C1 C2

S
e
d

im
e

n
t 

%
N

0.0

0.5

1.0

1.5
N     p < 0.0001
Site  p < 0.0001

b)

a) Site*P  p < 0.0001

 

Figure 2 



  Armitage et al. 

38 

 

 

                            

L
e
a

f 
%

P

0.00

0.05

0.10

0.15

0.20

0.25
C 

N 

P 

NP 

L
e
a

f 
%

N

0

1

2

3

Site
W                         �       �       �       �        E

A1 A2 B1 B2 C1 C2

L
e
a

f 
N

:P

0

50

100

150

a) Site*P*N  p = 0.0225

b) N        p = 0.0044
   Site*P  p = 0.0481

c) Site*P*N  p = 0.0233

 
 

 

Figure 3 



  Armitage et al. 

39 

                     

                        

E
p

ip
h

y
te

 %
P

0.00

0.02

0.04

0.06

0.08

0.10
C 

N 

P 

NP 

E
p

ip
h

y
te

 %
N

0.0

0.2

0.4

0.6

0.8

Site
W                         �       �       �       �        E

A1 A2 B1 B2 C1 C2

E
p

ip
h

y
te

 N
:P

0

20

40

60

80

a) Site*P  p = 0.0012

b) Site  p = 0.0050

c) Site*P  p = 0.0046

Ψ

Ψ

Ψ

Figure 4 



  Armitage et al. 

40 

                               

 

 

U
n

c
a
lc

if
ie

d
 R

h
o

d
o

p
h
y
ta

B
B

 s
c
o

re

0

1

2

3

4

5

T
h

a
la

s
s
ia

 t
e

s
tu

d
in

u
m

B
B

 s
c
o
re

0

1

2

3

4

5

T
. 
te

s
tu

d
in

u
m

 p
ro

d
u

c
ti
v
it
y

(m
g

 s
s

-1
 d

-1
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
C

N

P

NP

C
a

lc
if
ie

d
 C

h
lo

ro
p
h

y
ta

B
B

 s
c
o

re

0

1

2

3

4

5

Site
W                         �       �       �       �        E

A1 A2 B1 B2 C1 C2

E
p
ip

h
y
te

 c
h

lo
ro

p
h

y
ll 

a

(µ
g

 c
m

-2
)

0.0

0.5

1.0

1.5

2.0

Site
W                         �       �       �       �        E

A1 A2 B1 B2 C1 C2

B
e

n
th

ic
 c

h
lo

ro
p

h
y
ll 

a

(µ
g

 c
m

-2
)

0

1

2

3

4

5

6

Site*P  p < 0.0001 P     p < 0.0001
N     p = 0.0110
Site  p < 0.0001

Region*P  p = 0.0042 Site*N  p = 0.0262

Site*P*N  p = 0.0211 Region*P  p = 0.0159

a) b)

c) d)

e) f)

ψ

 §       §   §         §

 
 

Figure 5 


	Florida International University
	FIU Digital Commons
	1-1-2005

	Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay
	Anna R. Armitage
	Thomas A. Frankovich
	Kenneth L. Heck Jr.
	James W. Fourqurean
	Recommended Citation



