
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

10-18-2007

The Structure of Games
David Michael Kaiser

DOI: 10.25148/etd.FI08081528
Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Other Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Kaiser, David Michael, "The Structure of Games" (2007). FIU Electronic Theses and Dissertations. 2.
http://digitalcommons.fiu.edu/etd/2

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.fiu.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/2?utm_source=digitalcommons.fiu.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

THE STRUCTURE OF GAMES

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

David M. Kaiser

2007

ii

To: Interim Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by David M. Kaiser, and entitled The Structure of Games,
having been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Malek Adjouadi

Geoffrey Smith

Ana Pasztor

Tao Li, Major Professor

Date of Defense: October 18, 2007

The dissertation of David M. Kaiser is approved.

Interim Dean Amir Mirmiran

College of Engineering and Computing

 Dean George Walker

University Graduate School

Florida International University, 2007

iii

© Copyright 2007 by David M. Kaiser

All rights reserved.

iv

DEDICATION

This dissertation is dedicated to my angelic wife Adrienne. Her steadfast love,

endless support and unwavering encouragement made the completion of this work

possible. This dissertation is also dedicated to my children Alexander and Katherine.

Get yours done early rather than later.

v

ACKNOWLEDGMENTS

First and foremost I thank my wife Adrienne. Although she has had cause to

regret suggesting a Ph.D. in the first place, she has never wavered in her support. I also

thank my ten year old son Alexander, and my eight year old daughter Katherine. They

have both given up many hours of play time, pool time, and story time so that daddy can

do his homework. I am grateful for their unconditional love, and continual support.

They are a delight and have been a constant source of energy and motivation.

I am very grateful to Alex Pelin for encouraging me nearly a decade ago to follow

a line of research that I found really fascinating. His thoughtful advice and guidance

were invaluable.

I would like to thank my major professor Tao Li for shepherding me through to

the finish line with extreme passion. His boundless energy and enthusiasm have kept me

motivated. I thank the committee members Ana Pasztor and Geoffrey Smith for their

continuous support and encouragement. I also need to thank Raimund Ege for stepping

in for a short but critical period of time. And I would like to thank Malek Adjouadi for

committing his time and help in a pinch.

Many warm thanks go to Maria Monteagudo, Olga Carbonell and Martha Soledad

who have been of invaluable help in dealing with the many details associated with my

studies. I also want to express my deep gratitude to Roberto Hernandez for willingly

falling into the trap of keeping me in line.

vi

ABSTRACT OF THE DISSERTATION

THE STRUCTURE OF GAMES

by

David M. Kaiser

Florida International University, 2007

Miami, Florida

Professor Tao Li, Major Professor

Computer Game Playing has been an active area of research since Samuel’s first

Checkers player (Samuel 1959). Recently interest beyond the classic games of Chess and

Checkers has led to competitions such as the General Game Playing competition, in

which players have no beforehand knowledge of the games they are to play, and the

Computer Poker Competition which force players to reason about imperfect information

under conditions of uncertainty. The purpose of this dissertation is to explore the area of

General Game Playing both specifically and generally.

 On the specific side, we describe the design and implementation of our General

Game Playing system OGRE. This system includes an innovative method for feature

extraction that helped it to achieve second and fourth place in two international General

Game Playing competitions.

On the more general side, we also introduce the Regular Game Language, which

goes beyond current works to provide support for both stochastic and imperfect

information games as well as the more traditional games.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 1

2. INTRODUCTION TO PART I .. 4

3. COMPUTER GAME PLAYING ... 5
3.1 Game Related Concepts.. 5
3.2 Game Tree... 6
3.3 Search.. 8
3.4 Iterative Deepening... 10
3.5 Transposition Tables... 11

4. GENERAL GAME PLAYING... 13
4.1 Game Description Language... 14
4.2 Survey of Previous General Game Playing Systems .. 16

5. FEATURE EXTRACTION.. 22

6. AUTOMATIC THEOREM PROVING ... 25
6.1 Inference ... 25

7. OGRE.. 28
7.1 The Design .. 28
7.2 HTTP Interface ... 29
7.3 Parser... 30
7.4 Game Analyzer ... 30
7.5 Search Engine ... 31
7.6 Inference Engine ... 32
7.7 Identifying Static Clauses ... 34
7.8 Chapter Summary ... 35

8. EXTRACTING FEATURES.. 36
8.1 Extracting Features by Variance... 37
8.2 Sorting By Variance.. 38
8.3 Motion Detection .. 40
8.4 Piece Identification ... 41
8.5 Chapter Summary ... 43

9. EVALUATION FUNCTION CONSTRUCTION .. 44
9.1 Game Structure Evaluators ... 44
9.2 Game Definition Evaluators ... 45
9.3 Combining Evaluators .. 46

viii

10. RESULTS ... 48
10.1 Assessment.. 49

11. SUMMARY OF PART I .. 52

12. INTRODUCTION TO PART II ... 53

13. GAMES... 54
13.1 Game Theories .. 54
13.2 Games Taxonomy ... 56
13.3 High Level Abstraction... 57
13.4 Players... 58
13.5 Randomness .. 59
13.6 Information ... 60
13.7 Partisan vs. Impartial .. 60

14. REGULAR GAME LANGUAGE.. 61
14.1 Game Grammars ... 61
14.2 RGL... 62
14.3 The Pieces ... 63
14.4 The Board.. 64

15. REGULAR GAME LANGUAGE SYNTAX .. 66
15.1 The Players.. 67
15.2 Board... 68
15.3 Pieces .. 69
15.4 Visibility ... 69
15.5 Initial State .. 70
15.6 Randomness .. 70
15.7 Query functions... 71
15.8 Movement ... 71
15.9 Game Over .. 76

16. SUMMARY OF PART II... 78

17. CONCLUSIONS... 79

REFERENCES ... 80

APPENDICES .. 85

VITA... 95

ix

LIST OF FIGURES

FIGURE PAGE

Figure 1. Partial game tree for Tic-Tac-Toe. .. 7

Figure 2. Using Alpha-Beta pruning nodes (i) and (j) do not need to be expanded. 9

Figure 3. Basic iterative deepening algorithm. ... 10

Figure 4. Four move variations can lead to this position in Tic-Tac-Toe......................... 11

Figure 5. A toy game description in GDL. ... 15

Figure 6. Partial game state for Chess in GDL. .. 23

Figure 7. Alternate game structure formats, before and after obfuscation. 24

Figure 8. OGRE architecture. ... 29

Figure 9. Inference Algorithm. ... 33

Figure 10. Dependency graph for predicates in the game Towers of Hanoi. 33

Figure 11. Pseudo code to calculate variance. .. 39

Figure 12. Example of comparing two game states .. 41

Figure 13. Algorithm for extracting game "piece" features.. 42

Figure 14. Features identified as pieces from the Chess game description. 42

Figure 15. Algorithm for selecting evaluators .. 47

Figure 16. A "Glider" in Conway's Game of Life .. 56

Figure 17. The game categories of Burns ... 57

Figure 18. Game Theory. .. 59

Figure 19. The graph for Tic-Tac-Toe. ... 65

Figure 20. A game of Tic-Tac-Toe where player O has won. .. 67

Figure 21. Example STRIPS action. ... 72

x

Figure 22. Precondition rules for placing a mark. .. 75

Figure 23. Result rules for placing a mark in Tic-Tac-Toe. ... 75

Figure 24. Rules for non-active player to pass. .. 76

 1

1. INTRODUCTION

Computer Game Playing is one of the oldest areas of endeavor in Artificial

Intelligence. However, most AI research in the area of computer game playing has

focused on a small number of very similar games (Halck 1999). Focusing on this limited

category of games has had its advantages. The games are popular and simple enough that

most people understand them without much explanation. They have proved complex

enough to provide a real challenge in programming viable opponents. The popularity of

these games has also served to generate interest in game-playing research.

While concentrating on these popular board games has born fruit, focusing on

such a restricted problem space has certain disadvantages. For each new game, a large

amount of the researcher's efforts must be spent to develop a program just to play the

game. It is difficult to evaluate the research. The improvements in computer players can

be the result of better hardware (more memory, more processors, faster processor, and

better architecture), better evaluation functions, better code, or better tricks that are

particular to a specific game. It is difficult to determine what components are applicable

to other games or games in general. As Pell states: "We can write successful programs,

even learning programs, without understanding the ability actually to analyze games,

possible the most interesting issue in game-playing, from an AI perspective." (Pell 1993)

With champion-level computer players in Chess, Checkers, Othello, and

Backgammon, Machine Learning research has extended into new and different games

(Fürnkranz 2001). However these efforts are hampered by two things. First there is no

generally recognized formalism for the structure of games. Second there is no popular

grammar to define games. Researchers are forced to essentially start from scratch with

2

each new game. Because no generally acceptable formalism for game structure exists,

current machine learning techniques used in game playing do not allow us to compare

different kinds of games, or choose between viable learning alternatives, easily and cost-

effectively.

In recent years research interests have extended beyond the classic board games

into games such as Poker and Bridge. These games offer many new challenges because

they are games of imperfect information, where decisions are made under conditions of

uncertainty. More recently the area of General Game Playing has come into the spotlight.

General Game Playing is concerned with developing systems to play arbitrary games for

which they have no prior knowledge. The Game Description Language and General

Game Playing framework developed at Stanford University (Genesereth, Love and Pell

2005) has been used in the first three AAAI General Game Playing competitions.

This dissertation has two main purposes. First this dissertation describes the

design and implementation of a General Game Playing system, whose performance led to

second and fourth place in two international competitions. The system implements

several well-studied methods of computer game playing such as min-max with Alpha-

Beta pruning, paranoid search and transposition tables. A high-level description of the

general system design and the underlying principles is followed by a detailed explanation

of a number of key implementation techniques and an innovative method for feature

extraction.

Feature Extraction is an important problem in many areas of computer science

including machine learning, data mining, computer vision, bioinformatics and speech

recognition (Guyon and Elisseeff 2006). Our main contribution in this area is an original

3

technique for automatically identifying critical game features by examination of the game

description and through self play.

Secondly this dissertation gives a proposal for a formalism that can be applied to

all software development that use games as a domain. This formalism can then be used

as the basis for machine learning in games to provide comparisons between the games

and to explore the effects of variations on learning techniques. This language is capable

of representing a wide range of games to facilitate research in Machine Learning and

other areas of Artificial Intelligence.

 The Regular Game Language is significant because unlike other languages for

describing games, RGL is capable of representing both deterministic and non-

deterministic games. Additionally, RGL is capable of representing games of both perfect

and imperfect information. This makes RGL an ideal framework for researchers in

Artificial Intelligence to explore many new areas of Computer Game Playing.

 The dissertation is separated into two parts. The first part is based primarily on

the design and implementation of our successful General Game Playing system (Kaiser

2007a) and our innovative method of automatic feature extraction for autonomous agents

(Kaiser 2007b). The second part of the dissertation focuses on the design of a new

framework for describing games. Originally outlined in (Kaiser 2005), the Regular Game

Language allows the specification of both stochastic and imperfect information games.

4

2. INTRODUCTION TO PART I

This section of the dissertation introduces the subject of Computer Game Playing,

both from the perspective of specialized game playing systems like Deep Blue and then

from the perspective of General Game Playing. It then goes on to describe our particular

implementation of a GGP system and the success we have had participating in

international competitions.

Chapters 3 through 6 introduce background information and concepts that relate

to the construction of a General Game Playing systems. Chapter 3 introduces concepts

related to traditional Computer Game Playing. Chapter 4 discusses General Game

Playing and describes the language used in the three AAAI General Game Playing

competitions. Chapter 5 introduces the subject of feature extraction, which is closely

related to one of our main contributions. Chapter 6 presents Automatic Theorem Proving

which will help the reader in the sections discussing the design of OGRE, our General

Game Playing system.

Chapters 7 through 10 describe our particular implementation of a General Game

Playing system: OGRE. Chapter 7 outlines the basic architecture of the system. Chapter

8 details our innovative method for extracting game related features. Chapter 9 describes

the construction of the evaluation function. Chapter 10 discusses how our system

performed during international competition.

5

3. COMPUTER GAME PLAYING

Computer Game Playing has been an active area of computer research since

Shannon’s ground breaking paper outlined his strategy for programming a computer to

play Chess (Shannon 1950). This section gives a brief overview of some terminology

and concepts that have been used in computer game playing systems from the very

earliest Checkers player (Samuel 1959).

3.1 Game Related Concepts

We define a game as a decision problem with one or more decision makers –

players – where the outcome for each player may depend on the decisions made by all

players. One-person games are puzzles, where a single player makes all the decisions.

Several two-person games are mentioned in this dissertation. Chess, Checkers and Tic-

Tac-Toe are examples of two-person games. In such games, there are two participants

that are the decision makers. We will use the term multi-player games to refer to games

with more than two players such as Chinese Checkers, or Bridge.

A game is called a perfect information game if all the players have complete

information of the current game state. Othello is a perfect information game, because the

state of the game is completely captured by the position of the pieces on the board, and

all players have access to this information. Games in which players are not privy to the

entire game state, such as Poker or Battleship, are imperfect information games.

A deterministic game is one in which the outcome of each move, or transition

from one state in the game to another, is known beforehand. Checkers is a deterministic

game. Both players know exactly what the results will be for any particular move. The

opposite of a deterministic game is a stochastic game. Backgammon is an example of a

6

stochastic game. Stochastic games involve some element of chance such as rolling dice,

spinning a wheel, or shuffling cards.

A zero-sum game is a game in which one player's winnings equal the other

player's losses. If we add up the wins and losses in a game, treating losses as negatives,

and we find that the sum is zero for each set of strategies chosen, then the game is a zero-

sum game. In games that are not zero-sum games, the winnings of one player are not

necessarily the losses of the other. Both players may win or both players may lose. A

Poker game in which 20% of each player's winnings must go to the local charity is not a

zero-sum game. Zero-sum games eliminate any incentive for cooperation between

players. Many familiar two-player games like Chess, Checkers and Tic-Tac-Toe are

zero-sum games.

3.2 Game Tree

A game can be represented as a game tree. A game tree is a directed graph that

represents state space of a game. In deterministic games, each node in the tree represents

a state in the game, each edge represents a move. The root of the tree is the initial state

of the game, before any players have made any moves. A terminal state is a position

where the rules determine when the game ends. A terminal node in the game tree

represents a terminal state in the game (Bratko 1990). In stochastic games, chance nodes

must be introduced to represent the variable elements of the game, such as dice rolls in

Backgammon.

A node is expanded by generating all successors of the position represented by the

node. A direct successor of a node is termed a child of the node. The direct predecessor

of a node is termed the parent of the node. The root, or initial game state, is the only

7

node without a parent. Likewise terminal nodes are the only nodes without child nodes.

A game tree is generated by expanding every node, starting at the root node, until all the

terminal nodes are reached. Each terminal node has an associated value known as the

utility value for the player. The partial game tree for Tic-Tac-Toe is shown in Figure 1

has a utility value of 1 for a win for player X, -1 for a loss and 0 for a draw.

Figure 1. Partial game tree for Tic-Tac-Toe.

By examining the entire game tree of any particular game, from the root all the

way down to the terminal nodes, it would be possible to find the best strategy for playing

that game. However, for most interesting games the game tree is extremely large, and

infeasible to generate completely. For example, the size of the game tree for Chess has

been estimated as being between 10120 (Shannon 1950) and 10123 (Allis 1994) nodes. To

8

get an idea of how difficult it would be to generate this game tree, consider a computer

capable of generating one billion (109) nodes every second. Such a hypothetical

computer, if run continuously for five billion years, would only be capable of generating

1026 nodes in that span of time.

3.3 Search

When the game tree is too big to be generated in its entirety, a search tree is

generated instead. The search tree is only a part of the game tree. The root of the search

tree represents the game state under investigation. The search tree is generated during the

search process. Nodes which have not been expanded yet are called leaves. When

terminal nodes are not reached the utility value is computed for each game position by

means of an evaluation function. The evaluation function produces an estimated utility

value that indicates how good it would be for a player to reach that position.

Standard game-playing search techniques include some variant of the min-max

algorithm with Alpha-Beta pruning (Levy and Newborn 1991). The concept is based on

the observation that in some cases, it is clear that further investigation of part of the game

tree is pointless. The basic principle is to expand a game tree from the current position,

and evaluate each game state based on a heuristic evaluation function, pruning huge areas

of the search space that appear unpromising. The Alpha-Beta algorithm has proven to be

a valuable tool for the design of two-player, zero-sum, deterministic games with perfect

information and there have been numerous algorithmic enhancements to improve the

search efficiency.

9

Figure 2. Using Alpha-Beta pruning nodes (i) and (j) do not need to be expanded.

In the basic min-max algorithm, player max is trying to maximize the utility of a

position while player min is trying for a minimum value. An illustration of Alpha-Beta

pruning is shown in Figure 2. The triangles pointing up are player max, while the

triangles pointing down are player min. At node (b) player min will chose a move that

leads to a position with the lowest utility, in this case node (f) with a utility value of 2. At

node (c) player min would choose a move leading to (h) with a utility of 1. At this point,

player max would have no further interest in this line of play, because it has a lower

utility than the variation including node (b) so the search does not need to expand nodes

(i) and (j).

The min-max algorithm was designed for two-player games, but many games

such Chinese Checkers have multiple players. The paranoid algorithm (Sturtevant and

Korf 2000) reduces an n-player game to a 2-player game by assuming that n-1 players

have formed a coalition against the remaining player. In practice, this is unlikely, but the

assumption makes it possible to implement the basic min-max with Alpha-Beta pruning

algorithm with only minor modification.

10

3.4 Iterative Deepening

Iterative deepening (Russel and Norvig 2003) allows the system to examine all available

moves in a reasonable amount of time. The idea is to search to a fixed depth in the search

tree. If no winning variation is discovered, and we have some time left, then increase the

depth of the search and try it again.

Figure 3 shows the basic algorithm.

for (depth = 1;; depth++) {
 value = AlphaBeta(node, depth);
 if (isTimeOut())
 break;
}

Figure 3. Basic iterative deepening algorithm.

Iterative deepening provides a simple means of interrupting the search when the

amount of time runs out and it makes searching more efficient. The obvious

disadvantage of this approach is that it re-visits the nodes at the top of the search tree,

possibly many times. From a theoretical perspective this is not a serious drawback

because the cost of expanding nodes at the lower depths dominates searching the upper

nodes multiple times (Korf, Reid, and Edelkamp 2001). For a game tree with an average

branching factor (average number of children expanded) of b, searching to depth of d has

a time complexity of O(bd) which is equivalent to depth first search. From a practical

perspective, these repeated expansions can also be addressed by using a transposition

table.

11

3.5 Transposition Tables

In many games it is possible to reach a given position in more than one way and

these are known as transpositions. For example there are four different sequences of

moves that lead to the position in Figure 4, namely (a1, a2, a3, b1), (a1, b2, a3, a2), (a3,

a2, a1, b1) and finally (a3, b1, a1, a2). One way to speed up the search process is to

avoid evaluating the same position more than one time.

Figure 4. Four move variations can lead to this position in Tic-Tac-Toe.

The idea behind a transposition table is to store the evaluation value for evaluated

positions into a table (Greenblatt, Eastlake, and Crocker, 1967). The entries in the table

include not only the evaluation for the position but also a measure of how deep the search

was which produced the value. Before a position is considered for evaluation, the table is

consulted. If the position has previously been evaluated, and is found in the table, then

the program can avoid further expansion on the node in question.

To maximize speed, the table itself is implemented as a hash table (Knuth 1973).

Each game state is converted to a large number using a hashing function. A popular

method used in many Chess programs is described by Zobrist (1970). When combined

with iterative deepening a transposition table can dramatically speed up search. The

12

transposition table reduces the overhead of the iterative deepening algorithm by storing

the evaluation results of previously visited game states.

13

4. GENERAL GAME PLAYING

General Game Playing (GGP) is the problem of designing systems that are

capable of playing many different games successfully. Many specialized game playing

systems are capable of beating the best human players in games such as Chess, Checkers,

Othello and Backgammon. The most famous of these is Deep Blue which was the first

program to defeat a reigning world Chess champion. Specialized game playing systems

are designed for particular games and human expert knowledge is a key component of

their success. GGP systems, on the other hand, must be able to play previously unknown

games, based exclusively on the description of the game. Rather than relying on

algorithms tuned for a specific game, GGP systems must be able to adapt their behavior

to each new game they encounter.

To compete effectively, game playing agents must make a series of moves that

lead to a final winning position. They search through the game tree assessing positions

based on an evaluation function. To perform well, the evaluation function must be as

accurate as possible. Systems designed to play specific games use optimization

techniques such as opening books or end game databases to enhance the evaluation

function. The World Chess Champion Deep Blue (Campbell, Hoane and Hsu 2002) has

an opening book of 4,000 positions and a summary of 700,000 grandmaster games.

World Checkers Champion Chinook (Schaeffer, Treloar, Lu and Bryant 1996) has perfect

information for over 443 billion end game positions. The effectiveness of the evaluation

function directly impacts the search for good moves. An accurate evaluation function

allows the system to spend more time on promising areas of play and less time on

obviously bad moves.

14

Successful GGP systems, however, must be capable of playing many different

games, even games they have never seen before. The central problem for a GGP system

is to construct a heuristic evaluation function that performs efficiently for each different

game it confronts. Even if the system has access to a set of perfect evaluation functions

for specific games, it must still determine whether or not one or more of these functions

are applicable to the current problem it is facing.

In order to perform well, a general game playing agent must be able to examine

the relevant features of different kinds of games and generate an evaluation function.

The system must also accomplish all this within the limits set by the operational

environment. These limits can include memory resources constraints, restrictions on the

amount of time available to analyze the game definition and limits on the amount of time

to make moves.

4.1 Game Description Language

The Game Description Language (GDL) along with the Stanford General Game

Playing framework (Genesereth, Love, and Pell 2005) was used during the AAAI 2005

and 2006 General Game Playing Competitions. GDL is a formal language for defining

deterministic games with perfect information.

In GDL, games are modeled as state machines in which the state of a game is

described as a set of true facts at a specific point in time. The rules of the game are

described using logical rules that define successor states in terms of the current state and

player moves. The GDL is a variant of first-order logic that uses syntax from the

Knowledge Interchange Format (KIF) language (Genesereth 1991).

15

Figure 5. A toy game description in GDL.

A toy game is described in Figure 5. Each GGP agent must be able to play any

game, given such a description. In this example line 1 indicates the player (role

white). There is only one role statement and therefore only one player in this game.

Line 2 (init (cell 1 1 b)), is the initial state of the game. At the start of the

game one true fact will be set. A single location 1/1 will be set to blank. Again there is

only one statement, making the layout of the game very simple. But a more complex

game such as Chess, might have sixty-four such statements, one for each position on the

board. After the start of the game, all init statements are converted to true

statements.

Our toy example has one legal move (legal white (mark 1 1)). In this

particular example the game is over when the player makes the first move and there is

only one legal move. Using a theorem prover, a GGP agent can determine all the legal

moves, game termination conditions, goal values and successive game states from the

current game state.

1. (role white)
2. (init (cell 1 1 b))
3. (<= (legal white (mark ?x ?y))

 (true (cell ?x ?y b)))
4. (<= (next (cell ?m ?n x))

 (does white (mark ?m ?n))
 (true (cell ?m ?n b)))

5. (<= (goal white 100)
 (true (cell 1 1 x)))

6. (<= (terminal)
 (true (cell 1 1 x)))

16

This simple example contains all the key elements of game description in GDL,

including the distinguished keywords: role, init, true, legal, does, goal,

terminal. Tokens such as cell and mark are game specific and have no intrinsic

meaning. Numbers are treated as symbols that have no significance outside that defined

within the game description itself.

4.2 Survey of Previous General Game Playing Systems

Barney Pell introduced Meta-game playing (Pell 1993), a framework for general

game playing systems to compete against each other in games for which they had no

prior knowledge. Pell’s work is a direct predecessor to the GDL and the Stanford Game

Playing framework. Pell's METAGAMER program plays a class of games called

symmetric Chess-like games (a subset of two-person, perfect information, deterministic,

zero-sum games). The class includes the games of Chess, Tic-Tac-Toe, Checkers, and

many others. METAGAMER supports only square boards (as in Chess and Checkers),

but the board size can be changed. Also, the board can be defined as a cylinder so that the

left and right sides are connected, allowing piece movement to wrap-around from one

side of the board to the other. To allow for the ability to promote pieces (as in Chess or

Checkers) a promotion rank can also be defined.

Pieces are defined in terms of moving, capturing and promoting, and by an

optional set of constraints on the use of these abilities. For example, it is possible to

define a piece that can capture opponent pieces by hopping over them diagonally (like a

man in draughts), or a piece that can move indefinitely through a line of empty squares

(like a rook in Chess). However, some types of movement cannot be represented: en

passant or castling in Chess for example. With the Metagame grammar, it is possible to

17

define games that have most of the rules of many games, including Chess, Shogi,

Checkers, Tic-Tac-Toe, and Go-Moku.

Gherrity (1993) created a program called SAL that has the ability to learn any

two-player, deterministic, perfect information, zero-sum game. It does not learn from the

rules, but by trial and error from actually playing and being given valid moves at each

turn. The program consists of a game-independent kernel and a game-specific move

generator module. The kernel remains unchanged for different games, while the move

generator is modified to reflect the rules of each game to be played. The kernel uses a

temporal difference procedure combined with a back propagation neural network to learn

good evaluation functions for the game being played. The back propagation neural

network is fully connected between layers, with a single layer of hidden units. The

number of hidden units is one for every ten input units. Gherrity chose ten different

feature types for the evaluation function. The actual number of features depends on the

size of the board, and the number and types of pieces. For example, SAL calculates 61

features for Tic-Tac-Toe, resulting in a network with 61 inputs. SAL calculates 221

features for Connect-four, and 1031 for Chess. SAL has two evaluation functions, one

for each player, so it can also learn non-symmetric games.

When it is SAL’s turn to move, a 2-ply search tree is created. Further expansion

is controlled by the consistency search procedure. This is a game-independent

generalization of the standard Alpha-Beta search procedure. It is based on the idea that

some positions may be evaluated incorrectly and it uses search to correct these evaluation

errors (Gherrity 1993). SAL does not make use of a language to describe games. It

18

requires user-supplied move generators written in C, and some constants that declare the

size of the board and the pieces used in the game.

Susan Epstein (1994) created a program called HOYLE that can learn to play

two-person, perfect information, finite board games. It uses a mixture of generic and

specific advisors weighted for each particular game to improve its performance. HOYLE

has 23 game-independent advisors. Each advisor represents a different viewpoint on

games playing, and takes a fairly narrow, but rational, view of the move selection

problem. For example, one advisor may specialize in moves that can win from the

current game state, while another only considers moves that eliminate the opponent’s

pieces. When it is HOYLE’s turn to move, a procedure computes all legal moves from

the current state and offers them to its advisors. The advisors comment on these

alternatives, recommending them or advising against them, based on its narrow

perspective. Based on the advisors' recommendations, a simple arithmetic vote selects a

move to be made. HOYLE plays without ever searching more than 2-ply ahead in the

game tree (Epstein, Gelfand, and Lesniak 1996).

HOYLE seems to be unique in that it improves its performance through a variety

of learning paradigms. HOYLE begins with precise but general prior knowledge about

the domain of two-person, perfect information, deterministic games. The program learns

how to play a specific game gradually. The information it retains, or learns, from play is

different for each advisor. One advisor may be interested in opening moves that have

been made by expert (winning) opponents, while another attempts to store patterns

credited for negative outcomes in play, yet another advisor may store no information at

all (i.e. perform no learning). HOYLE quickly and efficiently identifies key information

19

about the game that is adequate for expert move selection. While Epstein’s program

learns much faster than SAL, it seems to require a certain amount of hand crafting (i.e.

programmer intervention) for each game. HOYLE has learned to play Tic-Tac-Toe,

Qubic and Nine-Men's Morris perfectly. It is unclear how well HOYLE would play

complex games like Chess.

Robert Levinson developed MORPH II (Levinson 1994), a domain-independent

machine learning system and problem solver. This is an extension of Morph (Gould and

Levinson 1992), a program that learned to play Chess using Adaptive Predictive Search,

a method by which search systems can improve through experience. The previous

system, Morph, while given little initial domain knowledge, was able to learn to defeat

human novices while searching only 1-ply. Like its predecessor, MORPH II also has a

low reliance on search; just 2-ply is average. Games are presented to the system using a

graph-theoretic representation scheme. Interestingly, Levinson states that games

generated from the Metagame generators can fit this structure (Levinson 1995). In other

words, MORPH II should be able to play Metagames.

Given the rules of a game, the MORPH II system is responsible for abstracting its

own features and patterns, developing its own learning modules and adjusting the weights

for state evaluation through training. The learning modules learn through both weight

propagation (similar to a neural network) and pattern evolution (like genetic algorithms).

While MORPH II has successfully learned to play Tic-Tac-Toe, it has yet to be tested in

more difficult games.

WAR (Kaiser 2000) is a general game player designed to play a class of games

called Simple War Games. The class includes both deterministic and non-deterministic

20

games that are comparable in complexity to Checkers and Chess. The language used to

describe Simple War Games is not capable of expressing all deterministic games. The

WAR system uses a genetic algorithm to learn each new game through self play. But

WAR performs the learning process off-line, not as part of the game playing process.

MULTIGAME (Romein 2001) provides a language for describing single or two-

player, deterministic, perfect information games. MULTIGAME also includes an

environment for playing those games. The system is designed to provide fast, parallel

search on a distributed memory system. It is structured as traditional game playing

systems: a move generator, a search engine, an evaluation function, and heuristics that

guide search. However, the system relies on the researcher to provide the evaluation

function.

The most relevant work to our own efforts in both feature extraction and General

Game Playing is that of Kuhlmann, Dresner and Stone (2005). The GGP system

developed at the University of Texas competed in the first GGP competition. The system

identifies certain structures that can be determined from the game description such as

successor functions and also has an interesting method for identifying team-mates in

multi-player games.

The method used by Kuhlman to identify movable pieces differs from our own.

Their system hypothesizes game structures, such as boards and pieces, from the game

description and then uses internal simulation to see if these hypotheses are violated. Our

approach is statistical, while Kuhlmann’s approach is based on the strongest unviolated

constraint.

21

The commercial game Zillions of Games (Mallet and Lefler 2001) is a program

capable of playing a whole host of different games. Rules are described by a language,

similar to the programming language LISP, in which users can define different kinds of

games including Chess, Checkers, Tic-Tac-Toe, Othello and many others. Over six

hundred games have been written in the Zillions grammar. The language is capable of

describing many deterministic, perfect information games, but it does not provide support

for defining games in which more than a single piece occupies the same position

simultaneously.

22

5. FEATURE EXTRACTION

Feature Extraction is an important problem in many areas of computer science

including machine learning, data mining, computer vision, bioinformatics, and speech

recognition (Guyon and Elisseeff 2006). Successful GGP agents must be able to extract

pertinent features in each new game they are presented and adapt their behavior

accordingly.

Feature identification is necessary whenever search cannot reach terminal game

states from which to determine true payoffs. This is typical in most interesting games

(Utgoff 2001). In a domain such as that considered here, namely GDL and the GGP

competition, where the game definition is unknown beforehand, it is necessary for the

system to have a way to identify useful measurable features and a method of combining

these feature values into a single number that indicates the overall ranking of the game

state relative to others. A GGP agent must be able to approximate the relative utility of

the game states that it encounters in actual play or look-ahead search.

For many games, features such as pieces and their location relative to one another

are critical to evaluating a game state. Other useful structures include turn counters,

accumulators, game boards, successor functions and goal patterns. However the GDL

has no formal mechanism for identifying game structures in the language itself. All such

information is specific to each game definition. The game state from a game of Chess

defined in GDL is used to illustrate our technique.

23

Figure 6. Partial game state for Chess in GDL.

In the Stanford GGP framework, games are modeled as state machines, where a

state is a set of true facts at a given time. A partial game state for the game of “Chess” is

shown in Figure 6. In our Chess example the first and second arguments (i.e. <arg1>

<arg2>) represent board locations while the third argument (i.e. <arg3>) represents

the pieces. Each piece is represented by a two letter combination (e.g. “wr” for the white

rook), and empty positions are indicated with the token “b”.

Example: (true (cell a 1 wr))

Format: (true (<predicate> <arg1> <arg2> <arg3>))

But this format is neither necessary nor required. The tokens within game

descriptions are normally obfuscated during competition. The tokens cell, a, 1, and

(true (cell a 1 wr))
(true (cell a 2 wp))
(true (cell a 3 b))
(true (cell a 4 b))
(true (cell a 5 b))
(true (cell a 6 b))
(true (cell a 7 bp))
(true (cell a 8 br))
(true (cell b 1 wn))
(true (cell b 2 wp))
(true (cell b 3 b))
.
.
.
(true (cell h 6 b))
(true (cell h 7 bp))
(true (cell h 8 br))
(true (control white))
(true (step 1))

24

wr might easily be presented to the GGP agent as wearer, boling, undriese, and

parfulds. The GGP system cannot depend on the token strings to identify features.

Additionally, the arguments may not conform to any specific pattern. The order of

the information could be scrambled or inverted, extraneous tokens might be added or the

information may be combined in many different ways as shown in Figure 7. Example (a)

is the original format. In example (b) the coordinates and piece have been reordered.

Example (c) contains extraneous information, namely the symbol dummy. Finally (d)

combines the coordinates into a single parameter.

Since the number of possible arrangements is limited only by the game author’s

imagination, it is worth while to develop a method to extract features that is more robust

than simple pattern matching.

Figure 7. Alternate game structure formats, before and after obfuscation.

(true (cell a 1 wr)) /* a. original */
(true (cell wr 1 a)) /* b. reordered */
(true (cell dummy a wr 1)) /* c. noisy */
(true (cell a1 wr)) /* d. combined */

(true (place column1 row1 fortress)) /* a. */
(true (tyrant castle alpha prime)) /* b. */
(true (location noise primo keep first)) /* c. */
(true (position angrymuffin tower)) /* d. */

25

6. AUTOMATIC THEOREM PROVING

While not a topic typically associated with general game playing, Automatic

Theorem Proving (ATP) is critical to processing GDL game descriptions. ATP deals

with the development of computer programs to prove mathematical theorems. The

language in which the theorems are written is a logic, often classical first-order logic.

Theorems are composed of axioms and hypotheses which will lead (or won’t) to a

conjecture. ATP systems produce proofs that describe how and why the conjecture is a

logical consequent of the axioms and hypotheses.

The proofs produced by ATP systems are intended to be readily understandable.

For example, if the Towers of Hanoi puzzle were formulated as a theorem, the proof

would describe the sequence of moves that need to be made in order to solve the puzzle.

ATP systems have been successfully used in many fields including software

generation, software verification, security protocol verification and hardware verification.

There are several ATP systems available. Some well-known and successful first-order

logic systems are Otter, E, SPASS, Vampire and Waldmeister (Sutcliffe, Fuchs and

Suttner 2000).

6.1 Inference

In logic, a rule of inference is a pattern of reasoning consisting of one set of

sentences, called premises, and a second set of sentences called conclusions. The

following is a rule of inference called Modus Ponens.

A -> B if A is true then B is true
A A is true
------- therefore
B B is true

26

ATP systems use a wide variety of inference strategies such unit resolution, linear

resolution, set of support resolution, and term rewriting. The inference system Vampire

uses ordered binary resolution, superposition, and splitting (Voronkov 1994).

To prove a theorem, the axioms of the theory to be proved are first put into a

normal form called clausal form. An inference algorithm is then applied exhaustively to

the resulting set of clauses in the search for a contradiction (the empty clause). The core

component that performs the inference algorithm is sometimes referred to as the

inference engine.

First-order theorem provers such as Vampire use saturation algorithms (Riazanov

and Voronkov 2003). For each new clause generated by an inference the prover decides

whether this clause should be kept or discarded. For non-trivial theorems a very large

number of intermediate clauses need to be generated before the empty clause is found.

This process can lead to a combinatorial explosion, so most systems perform inferences

not on all kept clauses but only on a subset of them.

ATP systems essentially explore a tree of clauses, generated by their rules of

inference, searching for the empty clause. But as is the case with game trees, generating

a complete search tree can exhaust the available computational resources. Therefore, like

game playing systems, ATP systems use heuristics (i.e. rules of thumb) for pruning

inference steps and for guiding the search through the space of inference steps.

In the E Equational Theorem Prover, search control heuristics define the order in

which the prover considers newly-generated clauses. A heuristic is defined by a set of

clause evaluation functions and a selection scheme which defines how many clauses are

selected according to each evaluation function (Schulz 2001).

27

The ATP system known as Gandalf is able to adapt its behavior. The system

automatically selects search strategies that are likely to be useful for a given problem

(Tammel 1997). This is exactly the kind of behavior one would desire in a general game

playing system.

In simple rule-based inference engines, there are two methods of reasoning,

forward chaining and backward chaining. Forward chaining applies a rule of inference

(for example modus ponens) to the available facts, generating new facts in an attempt to

reach a goal. Backward chaining starts with a list of goals (or hypothesis) and works

backwards to see if there are facts available to support any of the goals. Programming

languages such as Prolog support backward chaining.

Comparisons between systems are based mostly on success rates during timed

competition using standard collections of problems. The main collection of problems is

the Thousands of Problems for Theorem Provers (TPTP) library (Sutcliffe and Suttner

1998). This is used as the basis for the annual CADE ATP System Competition (CASC),

held at the Conference on Automated Deduction (CADE) (Sutcliffe 2001).

28

7. OGRE

This chapter describes the implementation architecture and design issues behind

OGRE, a General Game Playing agent. The system is fully implemented and competed

successfully at the second international AAAI General Game Playing competition held at

AAAI-2006. OGRE came in fourth place out of twelve initial participants. The OGRE

system builds upon our success with GOBLIN, another GGP system that placed second

out of seven competitors at the first international AAAI-2005 General Game Playing

competition. The basic architecture of GOBLIN and OGRE are the same. The only

major difference is that OGRE contains a new inference engine and our new feature

extraction algorithm.

7.1 The Design

OGRE is a GGP agent designed to play any game defined in the Game

Description Language (GDL) and to compete within the Stanford GGP framework. The

Stanford GGP framework defines how participating agents compete. GGP agents are

given the game description, their roles within the game, and the time limits available to

analyze the game and the time available to submit moves.

The system consists of five key components: HTTP Interface, Parser, Game

Analyzer, Search Engine and Inference Engine. The HTTP Interface controls all

communication with the outside world. The Parser converts GDL into an internal clausal

form suitable for the Inference Engine. The Inference Engine process clauses and is used

to determine legal moves, successor game states, terminal conditions and goal conditions.

29

The overall process architecture of the OGRE implementation is shown in Figure

8. The Game Analyzer component is consulted only during the analysis phase, before the

first turn is submitted.

Figure 8. OGRE architecture.

7.2 HTTP Interface

The OGRE HTTP interface is a very simple HTTP server. The Stanford GGP

framework (Genesereth, Love and Pell 2005) requires that each player communicates

with the Game Master through an HTTP connection. The Game Master transmits all

game information to the players including the game description, start time, player moves

and final game scores. Players communicate only with the Game Master, sending legal

moves at the appropriate time.

HTTP
Interface

Parser

Search
Engine

Inference
Engine

Game
Analyzer

30

7.3 Parser

Game descriptions and player moves are extracted from the Game Master

messages and sent to the Parser. OGRE uses the KIF parser built into the Java Theorem

Prover (JTP) to convert the game description and player moves into clauses. JTP is a

inference engine developed at Stanford (Fikes, Frank, and Jenkins 2003). OGRE’s

ancestor, GOBLIN, used the JTP inference engine not only for parsing but also to

determine game states, legal moves, goal states, and game termination conditions. OGRE

uses an entirely new inference engine. The new inference engine is significantly faster

than the JTP inference engine and includes several GDL-specific enhancements.

7.4 Game Analyzer

There are two distinct phases of each match, the start phase and the play phase.

The Stanford GGP process gives agents a period of time to analyze the game before the

first turn begins. This start time can range from as short as a few seconds, to as long as

an hour. Prior to the first message from the Game Master, agents have no knowledge of

the game rules or the amount of time they will have to deliberate between moves. The

OGRE system uses approximately 50% of the time given in the analysis phase to extract

features and construct an evaluation function by playing games internally against a player

that makes random moves.

OGRE attempts to generate an efficient evaluation function. It does so by

examining the syntactic structure of the game definition as well as dynamic features that

appear in the game during a self play stage. Features recognized solely from the game

definition include the dependency graph, static predicates, successor functions, and turn

counters. Features discovered through self play include pieces and board position. Our

31

innovative method for feature extraction is described in chapter 8. Construction of the

evaluation function is described more fully in chapter 9.

Finally with the remaining time in the analysis phase, OGRE attempts to choose

the best first move using the generated evaluation function. After the first move of the

game is made, the system no longer references the Game Analyzer.

7.5 Search Engine

Since GDL allows multiplayer games, OGRE uses a variant of min-max with

Alpha-Beta pruning called the paranoid algorithm (Sturtevant and Korf 2000). This

essentially assumes that all of the opponents have formed a coalition and work together

against the agent. This eventuality is highly unlikely, especially in the context of the

AAAI GGP competition, where communication between systems in not possible, but the

assumption reduces an n-player game to a two-player game, making it possible to

implement the basic min-max with Alpha-Beta pruning algorithm with only minor

modification.

Two common enhancements, iterative deepening and a transposition table (Sakuta

and Iida 2000) are also used to improve performance of the search algorithm. Iterative

deepening allows the system to examine all available moves in a reasonable amount of

time. The transposition table reduces the overhead of the iterative deepening algorithm by

storing the evaluation results of previously visited game states.

During development we found that playing certain puzzles within a reasonable

amount of time is completely impossible without a transposition table. For the

transposition table to operate effectively, however, it is absolutely crucial that the system

identifies potentially misleading game state information. As noted previously, many

32

game definitions include elements such as turn counters. These elements must not be

included in the game state hashing function or the benefits of the transposition table will

be lost.

7.6 Inference Engine

Every state of the game, and every game state visited in the game tree must be

interpreted by the inference engine. Depending on the game definition, OGRE can spend

upwards of 71% of its time doing inferences. At the high end of the spectrum, in games

that have complex definitions, this seriously limits how much time the system can spend

on analyzing the game structure, as well as how deeply the system can search the game

tree.

As stated previously, OGRE uses an inference engine that is significantly faster

than the one used by its predecessor GOBLIN. The inference engine includes some

enhancements specifically designed to improve performance within games defined in

GDL. The basic inference algorithm is shown in Figure 9. The queryStatic()

function stores and retrieves literals from the cache.

The most significant enhancement is the static predicate cache. Static predicates

are those predicates that are not dependent on the reserved GDL predicates TRUE or

DOES. The TRUE predicates are facts that represent the state of the game. The DOES

predicates are facts representing the moves made by each player. Any predicate that is

dependent on either the TRUE or DOES predicate may need to be recalculated each turn.

However, certain predicates will never change their results; therefore performing

resolution on these predicates more than one time is wasteful. The OGRE inference

engine caches the results of any resolution done on a clause containing a static predicate.

33

Solve()
WHILE (TRUE) {
 IF goal stack G is empty
 THEN return TRUE
 goal G1 <- top literal in G
 IF out of time
 THEN return FALSE
 IF term of G1 is a static predicate
 AND cache contains G1 term
 THEN R <- queryStatic(G1)
 ELSE R <- literals potentially
 unifiable with compliment of G1.
 ENDIF
 FOR each literal L in R
 IF L and G1 unify with mgu θ THEN
 G2 = Unify(L,G1, θ)
 Push right-literals of G2 onto G
 ELSE
 IF backtrack() fails
 THEN return FALSE
 ENDIF
 ENDFOR
}

Figure 9. Inference Algorithm.

Figure 10. Dependency graph for predicates in the game Towers of Hanoi.

34

7.7 Identifying Static Clauses

GDL contains seven reserved predicates: LEGAL, TERMINAL, NEXT, GOAL,

ROLE, DOES and TRUE. Any clause that is dependent on the reserved predicates TRUE

or DOES is a dynamic clause. Dynamic clauses can change from turn to turn and therefore

must be continually reevaluated. A clause that is not dependent on a TRUE or DOES

predicate is a static clause. Static clauses need to be resolved only one time and are used

to optimize the inference engine for the target game.

OGRE creates a dependency graph of the predicates in the game description. The

dependency graph identifies clauses that are static. Figure 10 shows a dependency

graph generated by the system. Rectangles represent reserved GDL predicates. Ovals

represent game-specific predicates. Parallelograms indicate negated predicates. Static

predicates are underlined. In this example, the predicate smallerdisc would only

need to be resolved one time for a given set of parameters, because it does not rely on any

TRUE or DOES predicates.

The static predicate cache can improve the performance of the inference engine

significantly. That is to say that the system can do more inferences in the same amount

of time. However, this improvement is heavily dependent on the game definition. Game

definitions that make wide use of static predicates will benefit more than game

definitions which have no static predicates or rarely use them. Another concern is that

the amount of overhead necessary to maintain the cache can cost more in time than it

saves.

35

7.8 Chapter Summary

In this chapter, we have given an overview of the design and implementation of a

fully implemented autonomous General Game Playing agent called OGRE. The system

automatically generates evaluation functions from game descriptions given in the Game

Description Language. The effectiveness of this process allowed the system to come in

fourth place in the 2006 AAAI General Game Playing competition.

36

8. EXTRACTING FEATURES

One feature that the system attempts to identify is the turn counter. GDL games

are guaranteed to end in a finite number of turns. Many GDL games achieve this by

using a turn counter. These turn counters are particularly vexing because game states that

might otherwise be identical appear unique when there is a turn counter. Take for

example, two instances of the eight puzzle game state:

a) (true (puzzle 1 b 2 3 4 5 6 7 8)) (true (turn 14))

b) (true (puzzle 1 b 2 3 4 5 6 7 8)) (true (turn 19))

By identifying the turn counter, our agent is able to recognize that these two game states

are essentially the same, except that they occur at different times. Without this feature,

all the benefits of the transposition table are lost. Puzzles that contain a turn counters

become unsolvable if the information is not dealt with properly.

 In order to identify a turn counter it is necessary to first recognize successor

functions. Any series of predicate functions with the following format are considered

possible candidates for successor functions:

(<successor> <value0> <value1>)

 (<successor> <value1> <value2>)

 (<successor> <value2> <value3>)

 . . .

 (<successor> <valueN-1> <valueN>)

37

Where <successor> can be any relation constant, and the <valuen> components are

object constants. It is then possible to identify predicate functions with the following

format as possible turn counters.

(<== (NEXT (<turn> <varY>))

 (TRUE (<turn> <varX>))

 (<successor> <varX> <varY>))

It is interesting to note that our solution for this problem is quite similar to that

described in (Kuhlmann, Dresner and Stone 2005). This is likely an artifact of the sample

game descriptions that were available during the development of these systems. The

method, however, is quite brittle. Encoding the turn counter differently prevents

recognition of this feature.

8.1 Extracting Features by Variance

In most games, players alter the game state by moving or placing pieces on a

board. The basic idea of our approach is to compare facts from one turn to another and

identify arguments in which symbols change. Arguments that represent these pieces will

tend to have many changes, while arguments that represent static information like

location coordinates will tend to remain the same. There are several steps to this

identification process. First, groups of similar facts must be identified. Second, a

consistent sorting scheme is determined for each fact group. Third, fact groups from

sequential game states are compared to identify arguments that have changed.

38

In order to make comparisons possible, the system first categorizes the facts of the

game state into separate groups based on the first predicate and the number of arguments.

Thus the Chess example has three initial fact groups: cell/3, control/1 and

step/1.

8.2 Sorting By Variance

Like other first-order logic based calculi the GDL does not explicitly indicate the

order that transitions are performed. There is no guarantee that the facts of each game

state will be in any particular order. Therefore it is necessary to sort the members of each

fact group in a consistent manner. Sorting is done based on the symbols in each

argument of the fact predicate (i.e. (true (<pred> <arg1> <arg2> ...

<argn>))). But instead of sorting on the original order of the arguments, the system

sorts the facts based on the variance of the arguments during the course of a game. The

arguments with the lowest variance are sorted first. The understanding being that the

variance for arguments representing a fixed grid will be zero, while the variance for

highly mobile pieces will be quite large.

The variance is calculated separately for each argument position in each fact

group. The standard formula for calculating an unbiased estimate of the population

variance s from a finite sample of n observations is:

()
1

1

2

12

2

−

−
=
�

�
=

=

n
n

x
x

s

n

i

n

i i
i

However, the numerically stable algorithm in Figure 11, due to Knuth (1988),

who cites Welford (1962), is used because it does not require storing the whole sequence

39

of elements. Only the last value of the mean and the sum of squares are required. While

the current system does not take advantage of this, it is expected that the ability to

calculate this information on-the-fly will be of great benefit to future autonomous GGP

agents.

Figure 11. Pseudo code to calculate variance.

The variance and mean are calculated separately for every argument in each fact

group. The variable x is a unique number assigned to each symbol in the game

description. The variable n is the total number of symbols processed by the algorithm.

After playing a few random games, the sort sequence for the Chess example is

determined as shown in Table 1. Three new fact groups appear in the table. These were

not part of the initial game state but identified as a result of the self-play process. Pawn

represents en passant conditions, Moved tracks castling conditions and Check indicates

the check state. The system identifies the third argument of Cell as having a high

variance. The sort sequence mirrors the original arguments and so is unremarkable, but

for the Moved predicate it can be seen that the arguments are reordered based on the

ranking of their variance.

Calculate Variance
For Every x;
 n = n + 1;
 delta = x - mean ;
 mean = mean + delta / n;
 sumsqr = sumsqr + delta * (x - mean);
 variance = sumsqr/(n + 1);
End For;

40

Table 1. Variances calculated from random game.

 Args N Mean Col.
Var.

Sort Sequence

Cell/3 arg1 592 8 0 1
Cell/3 arg2 592 8 0 2
Cell/3 arg3 592 5.14 92.50 3
Control/1 arg1 74 1 0 1
Step/1 arg1 74 1 0 1
Pawn/1 arg1 6 1 0 1
Pawn/1 arg2 6 1 0 2
Moved/3 arg1 103 1.09 0.08 1
Moved/3 arg2 103 1.64 0.22 3
Moved/3 arg3 103 1.23 0.17 2
Check/4 arg1 2 1 0 1
Check/4 arg2 2 1 0 2
Check/4 arg3 2 1 0 3
Check/4 arg4 2 1 0 4

For games with stable board locations like Chess and Checkers the arguments

representing these board locations will have a very low variance since the available

positions never change; there are always sixty four squares on a Chess board. Similarly

as pieces are placed on the board, in games like Othello or Tic−Tac−Toe, or are captured,

as in Checkers and Chess, the variance will increase.

In some games, like Chinese Checkers, the pieces move around but are never

removed from the game. In these cases the variance will tend be much smaller and thus

be of less usefulness in identifying pieces. Further measures are necessary to identify

possible pieces and board locations in these types of games.

8.3 Motion Detection

After the fact groups are sorted in a consistent manner, the system attempts to

determine which symbols are moving around. The motion detection algorithm performs

a comparison operation on two sequential game states. Symbols that appear in the same

41

location in both states are ignored. Symbols that change or “move” are identified and

retained.

Continuing with our Chess example, performing the comparison operation on two

sequential game states would produce results shown in Figure 12, after white has moved

a pawn from a,2 to a,3. Four things have changed. The turn counter step has been

incremented; black is now the player to move; location a,2 is empty (or blank) and

location a,3 contains symbol wp (for white pawn).

Figure 12. Example of comparing two game states

8.4 Piece Identification

The algorithm for extracting “piece” features from the game description is shown

in Figure 13. The system first plays several random games and stores the results. The

remaining calculations are all based on this recorded history.

After the fact groups have been identified, variances calculated and the sort order

determined, the system begins comparing fact groups from successive game states. Each

game history H contains k game states. Each game state sk contains m fact groups. Each

fact group gi is compared against its succeeding gi+1 game state. Arguments in each fact

group with a high variance have already been identified to create the sort order. The

comparison operation identifies which symbols in these columns move, and with what

frequency.

(step 1) vs (step 2) => (. 2)
(control white) vs (control black) => (. black)
(cell a 1 wr) vs (cell a 1 wr) => (. . . .)
(cell a 2 wp) vs (cell a 2 b) => (. . . b)
(cell a 3 b) vs (cell a 3 wp) => (. . . wp)

/* all others resolve to (. . . .) */

42

Figure 13. Algorithm for extracting game "piece" features.

PieceInfo:
 symid=10, symbol=wr, argument=3, symbolvariance=0.134054, symbolmean=2.162162.
 symid=12, symbol=wp, argument=3, symbolvariance=3.127927, symbolmean=6.270270.
 symid=19, symbol=bp, argument=3, symbolvariance=1.042162, symbolmean=6.567565.
 symid=21, symbol=br, argument=3, symbolvariance=0.0, symbolmean=2.0.
 symid=22, symbol=wn, argument=3, symbolvariance=0.243783, symbolmean=1.445945.
 symid=23, symbol=bn, argument=3, symbolvariance=0.0, symbolmean=2.0.
 symid=25, symbol=wb, argument=3, symbolvariance=0.211351, symbolmean=1.689189.
 symid=26, symbol=bb, argument=3, symbolvariance=0.038378, symbolmean=2.040540.
 symid=28, symbol=wq, argument=3, symbolvariance=0.0, symbolmean=1.0.
 symid=29, symbol=bq, argument=3, symbolvariance=0.0, symbolmean=1.0.
 symid=31, symbol=wk, argument=3, symbolvariance=0.142882, symbolmean=1.175675.
 symid=32, symbol=bk, argument=3, symbolvariance=0.0, symbolmean=1.0.

Figure 14. Features identified as pieces from the Chess game description.

Figure 14 shows an example of symbols identified as pieces from the Chess game

example. The variable symid is the unique number assigned to each symbol while the

groupkey/argument combination indicates where the symbol is used as a piece.

This is necessary because the same symbol may have different meaning depending on the

context. In our Chess example, the symbol “b” indicates a coordinate when it appears in

Play m Random Games, store game history H
Identify Fact Groups G
For every fact group g in G
 For every argument a in g
 For every symbols x in a
 Calculate variance v of x in a
 End For
 End For
 Determine sort order for g
End For
For each game state s in game history H
 For each fact group gi in s
 Sort gi
 /* Detect motion */
 Compare gi with gi+1
 End For
End For

43

the first argument of cell/3 but the same symbol indicates an empty, or blank, square

when it appears in the third argument.

Symbols are associated with players by determining the available moves each turn

and detecting what symbols moved. Symbols that appear to move regardless of player

actions, such as the symbol “b” in our example, are not considered “pieces” under player

control.

The entire procedure works best on games that explicitly define the entire game

state on each turn. In practice, playing a few random games provides sufficient

information to determine pieces and board locations for most applicable game definitions.

However a more robust learning agent could be designed to explore the game tree more

purposefully, trying new areas and expanding unvisited branches of the game tree.

8.5 Chapter Summary

This chapter introduced an innovative method for autonomous agents to extract

key features from their knowledge of the environment. This method has been fully

implemented in an autonomous agent that competed successfully in the second AAAI

General Game Playing competition. The autonomous agent and how the extracted

features are automatically incorporated into the final evaluation function are described in

detail in the next chapter.

44

9. EVALUATION FUNCTION CONSTRUCTION

Following the approach used in HOYLE (Epstein 1994) and WAR (Kaiser 2000)

we created several evaluators that encapsulate knowledge about common features found

in many classes of games. This section explains briefly a partial list of evaluators

implemented in OGRE. The evaluators can be categorized into two groups based on

whether or not they rely on information derived from the structure of the game or simply

the game definition itself.

9.1 Game Structure Evaluators

The first group of evaluators generalizes concepts related to games that involve

boards and pieces. The complicating factor with these evaluators is that the GDL does

not explicitly identify critical features such as pieces and board locations. In those cases

where the system is unable to identify the required aspects of the game, these structural

evaluators will not be available.

Distance-Initial (Run-Away): measures the distance between the

initial position of a piece and the current position. This evaluator was intended for racing

games like race-track-corridor and Chinese Checkers. Surprisingly it also provides a

positive influence in games such as Checkers or Chess by nudging the agent into early

board development.

Distance-To-Target: measures the distance between the piece and a target

location. It is intended for games like Maze where a piece must be moved to a specific

location.

45

Count-Pieces: measures the number of each type of piece in the current game

state. This evaluator is most valuable in games where capturing pieces is possible, like

Chess. Games like Tic-tac-toe do not benefit from it.

Occupied-Columns: This evaluator measures how many pieces are in the

same column. This evaluator is intended to provide useful information for games like

Tic-tac-toe, Pente, Connect-4 or the Eight Queens puzzle.

9.2 Game Definition Evaluators

Evaluators in the second group do not rely on information derived from the

structure of the game. These evaluators encapsulate very general heuristics that are

applicable to a broad set of games.

Count-Moves: measures the number of choices available to each player. In

games such as Chess it can be beneficial to limit the choices available to the opponent.

Depth: produces a number inversely proportional to the search depth. The idea

is to give a small preference for shorter solution paths. The evaluator is intended for

puzzles which usually reward players for shorter solutions, but other games benefit as

well. This evaluator completely ignores the game state.

Exact: calculates the exact value of the current game state based on the goal

predicates given in the game definition. Depending on the game definition this evaluator

will most often return a value at terminal game states. This function relies on the

Inference Engine and this is therefore quite expensive.

Pattern: compares the current game state with a pattern found in the goal

state. Helps solve several simple puzzles quickly.

46

Purse: measures the value of ordinal symbols in the game state. This evaluator

is intended for games that involve accumulating items such as gold, chips or money.

9.3 Combining Evaluators

The system combines these evaluators into a single evaluation function by playing

games internally against a player that makes random moves. The system uses

approximately 50% of the time given in the analysis phase to both extract features and

construct an evaluation function for the current game. To facilitate feature extraction, the

agent plays two games in which all players choose their moves at random, and performs

the feature extraction method described in section 7. This allows the system to quickly

categorize structures that represent pieces and board locations.

The remaining portion of the self play stage is spent conducting a series of games

in an effort to identify evaluators that are effective for the target game definition. For

each unique piece type identified previously, an evaluator is created. Each of these

evaluators is then used as the sole evaluation function in a quick game played against a

player that makes random move selections. In order to play many games, the depth of

look-ahead used in the search function is limited.

47

Figure 15. Algorithm for selecting evaluators

Every evaluator returns a positive number, although each evaluator may further be

modified by a positive or negative weight. The algorithm used to select evaluators which

involve pieces is outlined in Figure 15. One instance of each evaluator is created for each

piece identified in the game definition.

The final evaluation function is the sum of weighted values returned by all the

selected evaluators as shown in the following formula where e ∈ L.

i

n

i iwe� =1

The actual values generated by the final evaluation function are unimportant.

What does matter is that the function be able to give an assessment of the game state that

is accurate relative to the other game states. Currently, the system assigns similar

weights to each evaluator, but it might prove beneficial to test different weighting

strategies.

SelectEvaluators
 FOR each evaluator E
 FOR each piece P
 Create instance of E (En) using P.
 Play one game using En weighted +10.
 IF win THEN
 add En to list L
 ELSE
 Play game using En weighted -10.
 IF win THEN
 add En to list L
 ENDFOR (piece)
 ENDFOR (evaluator)
 RETURN list of evaluators L

48

10. RESULTS

The AAAI-06 competition consisted of a series of matches held over the course of

three months, from May-June 2006. GGP agents participated remotely in the first three

rounds of the competition and the competition culminated in a fourth and final round of

matches at the conference in Boston.

Participants played a variety of games generated by the competition organizers.

The games included single-player puzzles such as n-Queens, peg jumping, the Towers of

Hanoi as well as planning and scheduling problems. Two player games included variants

of Tic-tac-toe, Othello, Chess and Checkers. Multi-player games included variants of

Chinese Checkers, and Othello.

Players had the opportunity to earn up to 100 points from each match they

participated in. The points were explicitly defined in each game definition. Zero-sum

games such as Tic-tac-toe allow only one player to gain 100 points. Some puzzles

afforded the opportunity to gain less than the full number of points by partially

completing the goal. Other games allowed ties or somehow distributed points between

players. Several cooperative games organized players into teams, and each member of

the winning team received 100 points.

The matches were organized into rounds. The points accumulated in each round

were weighted; victories in later rounds were more advantageous than those in the

earliest rounds. The matches in the first round were weighted 0.25, round two matches

weighted at 0.50, round three 0.75, and round four matches were weighted at 1.00. Total

scores of all previous matches were used to seed the contestants in the two-player

49

matches of round four. The two top-scoring agents competed in the final championship

match at the conference.

10.1 Assessment

Our system, OGRE, performed successfully during the entire three months of the

competition, coming in fourth place out of twelve initial entrants (Love 2006). OGRE

played 41 different games including one-player games (puzzles), two-player games, and

games involving three or more players. Some games were played more than once with

players switching sides. As shown in Table 2, our system won 34% of the matches it

participated in.

Table 2. Results for games participated in during the AAAI competition

__

 Results Percent

 ___________________________ ___________________________

Games Won Partial Loss Total Won Partial Loss Total

__

Puzzles 5 6 8 19 26 31 42 100

Two Player 18 14 14 46 39 30 30 100

Multi 2 3 3 8 25 37 37 100

__

Total 25 23 25 73 34 31 34 100

__

50

Our agent was designed primarily to play two player games and this bias is

apparent in the game statistics. The system performed better in two-player games than it

did in puzzles.

Table 3. The un-weighted points acquired by the top four players.

 One-player
Points Two-player

Points Multi player
Points

Fluxplayer 1st 1520 80% 2792 59% 350 50%
Cluneplayer 2nd 1145 60% 2895 62% 300 43%
Pires5600 3rd 1000 53% 2923 62% 200 29%
OGRE 4th 825 43% 2322 49% 450 64%
Total Possible
Points 1900 4700 700

Each match afforded players the opportunity to acquire up to 100 points and each

participant had the opportunity to earn up to 7300 un-weighted points. Table 3 shows the

total number of unweighted points acquired by the top four players. OGRE received only

43% of the possible points from puzzles compared to the 1st place finisher Fluxplayer,

which receive 80%. On the other hand OGRE did better than the top three players in

games with more than two players, winning 64% of the possible points in this category.

OGRE finished in 4th place while its predecessor, GOBLIN, had finished 2nd the

previous year. All of the top four finishers had participated in the first GGP competition

and demonstrated clear improvements in performance.

On average our system is only capable of searching 100 game states each second.

This is quite slow. For comparison, readily available Chess playing programs such as

GNUchess and Crafty can easily search through over 35,000 game states each second and

with the aid of specially designed Chess chips, Deep Blue is capable of examining over

51

200 million game states each second. Thankfully, the effectiveness of the evaluation

function generated by OGRE compensates for this serious shortfall.

In practice, random play is sufficient to identify pieces in most games. However,

this method can prove inadequate in some game definitions. It may be advantageous to

pursue a learning strategy that includes active exploration. A system that purposefully

explores new areas and expands unvisited branches of the game tree might perform

better.

52

11. SUMMARY OF PART I

This part of the dissertation presented a novel method for automatic feature

extraction and an implementation of this method in the form of OGRE, a successful

General Game Playing system.

Chapters 3 through 6 covered introductory material. Chapter 3 introduced several

concepts related to the topic of Computer Game Playing. Chapter 4 described General

Game Playing (GGP) and outlined some of the challenges related to this area of research.

Chapter 5 covered the topic of Feature Extraction which is a key component of General

Game Playing while Chapter 6 introduced the topic of Theorem Proving.

Chapters 7 through 10 covered our implementation of a General Game Playing

(GGP) system, OGRE. Chapter 7 presented the implementation architecture and design

issues behind OGRE, a General Game Playing agent that participated in the AAAI-2006

General Game Playing competition. Chapter 8 described our innovative method for

extracting important features such as pieces from the game definition. These features are

important for a GGP agent to play effectively in games it has never seen before. Chapter

9 describes how we combine these features into a specialized evaluation functions for

previously unfamiliar games. Chapter 10 presents the results of OGRE in the AAAI

2006 competition. The innovative method for feature extraction allowed our system to

come in fourth place out of twelve participants.

Part II of this dissertation will focus on the structure of games and outline a

framework that will allow for experimentation with a wide variety of games.

53

12. INTRODUCTION TO PART II

Part II introduces a framework for testing games and a language to describe them:

the Regular Game Language (RGL). RGL was designed to address the fact that there is

no standard formal method to describe either arbitrary stochastic games or arbitrary

games of imperfect information.

Chapter 13 introduces several areas of research that are related to games and

outlines structures that are important in the definition and analysis of games. Chapter 14

introduces the Regular Game Language. Chapter 15 describes the syntax of the Regular

Game Language.

54

13. GAMES

Games have captivated people for thousands of years. Games and puzzles (one-

player games) have been an inspiration in many areas of research ranging from Statistics

to Graph theory. Games are used extensively in areas such as Game Theory, Game

Logic, Game Semantics, and Computational Game Theory. However, these theories look

at games from an abstract point of view.

13.1 Game Theories

Game Theory studies the ways in which strategic interactions among rational

agents produce outcomes with respect to their preferences. Game Theory was founded in

the early twentieth century by Zermelo, Borel, and von Neuman on parlor games. John

Nash made his famous contributions to non-cooperative game theory in the 1950’s.

Game Theory is not concerned with the details of any particular contest, only the results

and their utility to the individual participants (Williams 1986).

Game Logic focuses on the choices made by players, but not on the details of

what the moves entail. Developed by Parikh (1985) for reasoning about neighborhood

models, Game Logic extends propositional logic by adding modal operators whose

meanings are assigned by games. Games in extensive form are modeled as trees whose

nodes are possible states of the game, end nodes being terminal game states. Labeled

directed edges from a node to its children indicate available moves. Game Logic has

more detail about a game than Game Theory. It is concerned with the moves of each

player as opposed to the strategy of the players. However the theory does not concern

itself with the details of those moves.

55

Game Semantics interprets computation as a dialog between two parties. The idea

is simple: a logic formula is interpreted as a game between two players the “Verifier” and

the “Falsifier”. The two players take turns attempting to refute or defend the validity of

the formula. The formula is semantically valid if there is a strategy by which the

“Verifier” can always win: a winning strategy (Abramsky and McCusker 1998). Game

Sematics approaches games at the same level of detail as Game Logic.

Combinatorial Game Theory (Berlekamp, Conway and Guy 2001) studies the

strategies and mathematics of a large range of perfect information two-player games that

involve no chance elements. The theory relates the moves of each player to John H.

Conway’s surreal numbers (Conway 1976) and leads to several interesting complexity

results.

Conway’s Game of Life is a cellular automaton (Gardner 1970). The game is

played on an infinite grid of squares cells, where each cell has one of two states, dead or

alive. The rules are as follows:

1) If a cell is alive and two or more adjacent cells are alive, then the cell

stays alive, otherwise the cell’s state changes to dead.

2) If a cell is dead and exactly three surrounding cells are alive, then the

cell’s state changes to alive, otherwise it remains dead.

The game can be thought of as a zero-player game; it requires no player

intervention after the initial state is determined. Or said another way, there are no options

during the course of play; everything is completely deterministic. This simple game has

been shown to have the power to emulate a universal Turing Machine (Rendal 2002). A

Turing Machine is a construct that can perform any finite algorithm.

56

Figure 16. A "Glider" in Conway's Game of Life

Games seem to encapsulate something more than Turing Machines.

Computationally they are more akin to Interaction Machines (Wegner 1997) or

Computability Logic (Japaridze 2003, 2006). Interaction Machines are automata which

are extensions of Turing machines in that they can interact with their environment with

new input and output actions. Computability Logic is a mathematical framework for

redeveloping logic as a formal theory of computability as opposed to classical logic

which is a formal theory of truth. Computability Logic deals with computational

problems as games played by a machine against the environment.

13.2 Games Taxonomy

Games can be classified from several perspectives and in many dimensions. For

example, Burns (1998) groups games into the categories shown in Figure 17. A

mathematical perspective focuses on information and probability. Game designers might

concentrate on process. From a player’s point of view, a taxonomy of games focuses on

structure.

57

• Card games
o Patience Games
o Gambling Games
o Non-Trick Games
o Trick Games
o Children's Games

• Board Games
o Family Board Games
o Race Games
o War Games
o Territorial Games

• Domino & Dice Games
o Domino Games
o Dice Games

• Family Games
o Parlor Games
o Paper & Pencil Games
o Word Games & Spoken Games
o Written Games

• Sporting & Active Games
o Games of Skill
o Outdoor Games

Figure 17. The game categories of Burns

13.3 High Level Abstraction

Systems that model games at a high level of abstraction, like Game Theory and

the Theory of Computation use three common features to classify games: players,

randomness, and information. The number of players, whether a game involves random

chance and whether or not players have access to complete information about a particular

game are the three topics we cover in this section.

Game Theory uses three common features to classify games: players, randomness,

and information. The Theory of Computation includes analysis of games that involve one

or two players, randomness and resource bounds. Examples include Condon’s game

58

automata, games against nature, and Arthur-Merlin games (Condon 1989). Games

between two players, of the kind where one player wins and one loses, are used in many

branches of logic. Important examples are semantic games used to define truth, back-

and-forth games used to compare structures, and dialogue games to express formal

proofs.

13.4 Players

The number of players is fundamental to any game and a natural place to start

classification. This is the approach taken in game theory as seen in Figure 18. Game

Theory categorizes games into three categories: games of skill, games of chance, and

games of strategy. Games of skill are one-player games where the single player has

complete control over all the outcomes. Taking a test is one example. Solving a Towers

of Hanoi puzzle is another. One-player games are often referred to as puzzles.

Games of chance are one-player games against nature. Unlike games of skill, the

player does not control the outcomes completely and strategic selections do not lead

unavoidably to certain outcomes. The outcomes of a game of chance depend partly on the

player’s choices and partly on nature, which is treated as a disinterested second player. In

Game Theory games of strategy are games involving two or more players, not including

nature, each of whom has partial control over the outcomes (Williams 1986).

We will separate games into three categories as well, but slightly differently. The

three categories are: one-player games, two-player games, and multi-player games. Zero-

player games, such as Conway’s game of Life do exist, but we will not cover them in our

treatment.

59

Figure 18. Game Theory.

13.5 Randomness

The element of chance is a key component of many games, from dice games like

Backgammon to card games like solitaire. Game Theory distinguishes between “risk” and

“uncertainty”. The term “risk” refers to situations where the decision-maker can assign

mathematical probabilities to the randomness which he is faced with. In contrast

“uncertainty” refers to situations when the randomness cannot be expressed in terms of

specific mathematical probabilities.

The randomness of games involving physical sports such as soccer and basketball

are subject to uncertainty. Board games such as Backgammon and Poker involve risk. It

is the calculable form of randomness to which we will focus our attention. In her

60

computational game model, Anne Condon (1989) refers to this as Randomness. Each

player can make random choices, such as shuffling a deck of cards, rolling dice or

flipping a coin.

13.6 Information

Games such as Chess or Checkers are known as perfect information games.

Every participant is privy to all the information about the current game state. When

players can keep some information private from the other players, as in games like

bridge, the game is one of imperfect information. Sometimes these are known as partial

information games.

13.7 Partisan vs. Impartial

Combinatorial game theory (Berlekamp, Conway and Guy 1982) deals abstractly

with a very large range of two player games of perfect information with no randomness.

A game is called impartial if both players have exactly the same moves (e.g. Nim).

Games in which players have different move options are called partisan.

61

14. REGULAR GAME LANGUAGE

The Regular Game Language was designed to provide a framework for research

in the area of games. It provides support for single and multiple players, imperfect and

perfect information, as well as deterministic and stochastic games. The language also

provides support for common game concepts such as pieces, locations, arithmetic

functions and numbers.

14.1 Game Grammars

There have been a few methods proposed to define the rules of games in general.

Barney Pell created a game definition grammar, Metagame (Pell 1995). Romien

(Romein 2001) developed a language, Multigame, for expressing the rules of one and

two-person board games. Orwant designed the EGGG language to codify game rules

(Orwant 2000) and in (Kaiser 2000) we presented a new class of games called Simple

War Games. More recently, the Game Description Language (Genesereth, Love and

Pell 2005) has been used in the AAAI General Game Playing competition in both 2005

and 2006.

However, all these descriptive methods are limited. Metagame can only define

games on a Chess-like grid; Multigame can only define two-person games; Simple War

Games limit the types of piece movement. Although GDL has not been formally

analyzed, the language appears to have the most expressive power. It is able to describe

most perfect information, deterministic games of any number of players.

Unfortunately, none of these languages provide support for defining games of

imperfect information and, with the exception of Simple War Games, do not support

games with random elements. That means that games such as Backgammon, Poker,

62

Battleship and Scrabble are outside the domain of these previous frameworks. It would

be advantageous to include these elements.

Perfect-information domains are the exception and not the rule in the real world.

The richness of a domain that includes games of imperfect information and games with

random elements make it superior to traditional environments for exploring many issues

needed to achieve the ultimate goal of near-human-like Artificial Intelligence.

Games with imperfect information and randomness provide researchers with the

test-bed to explore concepts such as deception, opponent modeling and information

sparsity (Billings, Davidson, Schaeffer, and Szafron 2002). Clever opponents are able to

exploit predictable play, so deception can play a key role in some games such as Poker

and Diplomacy. Opponent modeling involves observing your opponents and adjusting

play to exploit their perceived weaknesses. In card games the amount of information that

a player has may be limited, even at the end of the game, which leads to learning

challenges. In Poker, play may end with players not having to reveal their cards. This

information sparsity limits the amount of data from which to learn.

To provide a framework for exploration in these interesting areas, we developed

the Regular Game Language.

14.2 RGL

The Regular Game Language was designed to provide a framework for research

in the area of games. It provides support for single and multiple players, imperfect and

perfect information, as well as deterministic and stochastic games. The language also

provides support for common game concepts such as pieces, locations, arithmetic

functions and numbers.

63

Informally a game consists of players, something for the players to manipulate,

which we will refer to as pieces, a place for the pieces to be located, which we will call a

board, and finally a set of rules for manipulating the pieces. Generally speaking the rules

can be thought of as algorithms or a set of instructions that all players must follow to play

the game. For each game there are a set of rules outlining what each player can do at any

particular time in the game, when the game is over and who wins. Players play the game

by following these instructions.

In our model, the entire state of the game is represented in the form of pieces and

their locations. Players change the state of the game by moving the pieces around on the

board.

14.3 The Pieces

Most board games have small objects that the players place on or move around

the board. In our model these are called pieces, whether they are rooks, checkers, disks,

tokens, stones, Xs or Os.

In some games the pieces themselves indicate state information for the game by

how they are placed on the board. Othello pieces have two sides and the side facing up

indicates the current state of that piece. For our purposes, state information will not be

stored in this manner. For example rather than flipping pieces over in an Othello game, a

black piece would be replaced by a white piece or visa versa.

In our model, pieces do have static attributes. To support games that include

imperfect information, these attributes can be either hidden, or made visible to specific or

all players. For example in a card game, a piece might have a ‘face’ and a ‘back’ where

the ‘back’ is visible to all players, while the ‘face’ is visible to only one.

64

Pieces need to be located somewhere. In our model, each piece is located at a

single location. In games like Monopoly or Risk, more than one piece may be located at

a single location, while games such as Go or Hex restrict each location to a single piece.

Our model supports both of these possibilities.

14.4 The Board

The playing surface, or board, of a game is represented by a labeled directed

graph. Both the nodes and the edges are labeled. The nodes are the locations where pieces

are placed. The game pieces are represented as distinguished symbols at the nodes.

Many popular games are played on a grid. Chess and Tic-Tac-Toe are both

played on a grid consisting of a lattice of squares. In games like Hex or Chinese

Checkers the board is a lattice of hex shaped locations instead of squares. Board games

like Risk or Diplomacy have locations that are neither uniform in size nor regular or

consistent in the way they are connected to one another. But square grid boards, hex grid

boards and unstructured boards can all be easily represented by directed labeled graphs.

In games such as Risk where the direction of the connection is unimportant, the

labels can be omitted without adverse effect. However, labels are helpful in games like

Monopoly or Draughts to avoid an explosive increase in the number of rules necessary to

describe valid moves.

The nodes are the locations where pieces are placed. By labeling the edges, we

are able to express more complex relationships than simple adjacency. As a simple

example, consider the graph for Tic-Tac-Toe in Figure 19. The nodes are represented as

circles {1 … 9} and edges are labeled with lowercase letters {h, v, d, a}.

65

Figure 19. The graph for Tic-Tac-Toe.

Each of the edge labels encapsulates the notion of a type of relationship between

board locations. A string of locations connected by edges with the same label are in a

‘line’. For example, the notion of horizontal rows is encapsulated in the edges labeled

‘h’.

66

15. REGULAR GAME LANGUAGE SYNTAX

This section provides a detailed description of the syntax and semantics of the

Regular Game Language. RGL is based on the familiar syntax of Prolog. To be precise,

RGL is Prolog with a distinguished set of statements. Prolog uses a single data type

called a term. A term can be:

• Constant symbol
o Atoms (names)
o Numbers (integers)

• Variable symbol
• The anonymous variable symbol “_” (the underscore)
• Compound term

Logical variables start with an upper-case letter, atoms with a lower-case letter,

and numbers with a digit. Logical variables are untyped, and can be instantiated by

substitution by another term. Instantiation occurs by unification through pattern

matching and appearing in an equality expression. The anonymous variable (the

underscore) matches or unifies with anything and is used when it does not matter what

the variable matches. A compound term has a functor and a number of arguments which

are also terms. The number of arguments is called the term’s arity. Examples for

compound terms are foo(a,b), bar(x,y,z) or foo(foo(a,b),a).

Prolog programs are defined by clauses. A clause has two components, the head

and the body. Clauses with empty bodies are called facts. An example of a fact is:

player(red).

If a clause’s body is not empty it is called a rule. An example of a rule is:

score(x,100):- threeinarow(x).

67

The “:-” means “if”. This rule means that player “x” scores 100 if the fact

“threeinarow(x)” is true. Prolog includes the Unique Names Assumption which says that

any two terms with different names are, in fact, distinct entities (e.g. “Miami” and

“Hollywood” are assumed to be different). Prolog also includes the Domain Closure

Assumption which says that the only objects in the universe are those named by ground

terms.

RGL has the following set of distinguished relations: player, node, edge,

initVisible, pieceAt, score, gameover. This section provides a more

detailed description of the Regular Game Language statements. We will use the familiar

game of Tic-Tac-Toe to illustrate the Regular Game Language constructs. Also referred

to as Noughts and Crosses, Tic-Tac-Toe is a game for two players X and O, who take

turns to mark spaces in a 3x3 grid. The player who makes three of their marks in a row,

horizontally, vertically or diagonally, wins the game.

Figure 20. A game of Tic-Tac-Toe where player O has won.

15.1 The Players

The RGL defines the players of the game through the “player” statement. In Tic-

Tac-Toe, the statement is:

player(playerx).
player(playero).

68

This indicates that the game has two players, referred to in the game as playerx and

playero.

15.2 Board

The game board is represented by a graph. The two statements “node” and

“edge” are used to define graphs. The graph for Tic-Tac-Toe is define as follows

node(a/1).
node(a/2).
node(a/3).
node(b/1).
node(b/2).
node(b/3).
node(c/1).
node(c/2).
node(c/3).
node(whoseturn).

edge(a/1,a/2,h).
edge(b/1,b/2,h).
edge(c/1,c/2,h).
edge(a/2,a/3,h).
edge(b/2,b/3,h).
edge(c/2,c/3,h).
edge(a/1,b/1,v).
edge(a/2,b/2,v).
edge(a/3,b/3,v).
edge(b/1,c/1,v).
edge(b/2,c/2,v).
edge(b/3,c/3,v).
edge(a/1,b/2,d).
edge(b/2,c/3,d).
edge(a/3,b/2,a).
edge(b/2,c/1,a).

Note that there is also a node “whoseturn” in this definition which we will use to

identify whose turn it is to play. There is a shorthand method for defining nodes and

edges.

69

nodes([a/1, a/2, a/3, b/1, b/2, b/3]).
nodes([c/1, c/2, c/3, whoseturn]).
edges([[a/1,a/2,h],[b/1,b/2,h],[c/1,c/2,h]]).
edges([[a/2,a/3,h],[b/2,b/3,h],[c/2,c/3,h]]).
edges([[a/1,b/1,v],[a/2,b/2,v],[a/3,b/3,v]]).
edges([[b/1,c/1,v],[b/2,c/2,v],[b/3,c/3,v]]).
edges([[a/1,b/2,d],[b/2,c/3,d]]).
edges([[a/3,b/2,a],[b/2,c/1,a]]).

Because many popular board games are played on grid lattices shorthand statement

“grid” is included in RGL. This statement significantly reduces the number of

statements needed to define the game board. The statement grid(3,3) implicitly

defines nodes a/1 through c/3.

grid(3,3).
nodes([whoseturn]).

15.3 Pieces

Pieces and their relationship to one another on the game board represent the

current state of the game. Players move these pieces around during the game. In certain

games, particularly those with hidden information such as card games, some attributes of

the pieces (for example the suit and rank) may be hidden from the opposing player. The

example game Tic-Tac-Toe contains only two pieces with no hidden information.

attrImage(x,front,'x').
attrImage(o,front,'o').
attrImage(x,back,'x').
attrImage(o,back,'o').

15.4 Visibility

Visibility in RGL is modeled by giving pieces attributes, and then controlling

access to this information. The “initVisible” statement defines the initial visibility all the

pieces in a particular node on the game board.

70

initVisible(whoseturn,front,all).
initVisible(whoseturn,back,all).

Our example game is one of perfect information and therefore all players are privy to all

information about each of the pieces on the board. In this case the visibility of the piece

that controls the active player is made visible to all players.

15.5 Initial State

The “init” statement indicates the initial state of the game. Some games, such as

Checkers and Chess, have many pieces that start on the board. Other games, like Go or

Tic-Tac-Toe, have an empty initial game board. Recall that in our model, the entire game

state is represented on the board. So information such as the player to move next, must

also be indicated on the board. Therefore our example game of Tic-Tac-Toe has the

following init statement:

init(whoseturn,[x]).

This indicates that a piece labeled “x” is located at the node labeled “whoseturn”. It

will be used to indicate which player is currently moving.

15.6 Randomness

The “shuffle” and “roll” statements are used to provide support for random

information. The “shuffle” statement takes all the pieces at a particular node on the game

board and shuffles them around so that they are not in the same order. The “roll”

statement places a random piece at the indicate position on the board. Tic-Tac-Toe does

not involve random information.

71

15.7 Query functions

RGL provides several predefined functions to query the state of the game. These

functions make defining a game more manageable by reducing the number of functions

that game designers need to create.

pieceAt(P,N) – if both P and N are bound variables then the statement

resolves to true if piece P is at node N of the game board and false otherwise. If either

variable is unbound, the system returns with the appropriate variable bindings or with

false if no such bindings can be found.

onboard(N) – resolves to true if N is a node on the game board, and false

otherwise. If either variable is unbound then this function can be used to return all

positions on the game board.

15.8 Movement

Movement is the core of any game. Players change the state of the game by

moving pieces around on the board. At its core, the RGL allows only two fundamental

actions for manipulating the game state: adding and removing. A piece can either be

added to the game board, or removed from the game board. These two functions are

sufficient in and of themselves for many games with very simple structures like Tic-Tac-

Toe, Nim, or Hackenbush. But more complex actions can be formed by combining these

simple functions.

Conceptually a movement operation is a quadruple <Y,A,P,R> in which each

component has the following meaning:

1. Y is the player making the move.

2. A is the action identifier.

72

3. P is a set of preconditions that must be met before the move can be made. The

preconditions in set P can be any conditional statement in the language.

4. R is the set of changes that will be made to the game state.

This method uses many representational assumptions consistent with the STRIPS

language (Fikes and Nilsson 1971). The STRIPS (Stanford Research Institute Problem

Solver) language is the base for most languages for expressing automated planning

problems instances. Structurally movement operators in the game language we will be

discussing shortly have some similarity to actions in the STRIPS planning language.

Pickup (X)
Preconditions: Clear(X)

 OnTable(X)
 HandEmpty

Add list: Holds(X)
Delete list: HandEmpty
 Clear(X)
 OnTable(X)

Figure 21. Example STRIPS action.

One notable difference is that STRIPS makes the simplifying assumption that

actions can always be executed but they do not have effects if their preconditions are not

met. This is not the case in RGL where all preconditions must be met before a player can

make the move.

Syntactically, the moves are defined in a pair of statements: “moveprecon” and

“moveresult”. The “moveprecon” statement indicates what conditions must be met

before the move can be made. The “moveresult” statement lists what the results will be.

Even a simple movement may cause multiple effects. For example, jumping an opposing

piece in Checkers will result in the movement of the piece, the removal of the opposing

73

piece, and possibly promoting the moving piece to a king. The format of “moveprecon”

and “moveresult” is shown here:

 moveprecon(<player>,<action>):-
<preconditionlist>.

moveresult(<player>,<action>,<resultlist>):-
 <conditionlist>.

Where the <player> term is either a variable, or one of the terms defined in a

player(<player>) relation. The <action> term is a relation of the form

 functor(<Piece>,<Location>)

or

functor(<Piece>,<Location1>,<Location2>)

while <preconditionlist> and <conditionlist> are a lists of valid relations.

Note that the terms <player> and <action> must match in both of the two

statements “moveprecon” and “moveresult”, otherwise there will be no results for an

action and/or no legal precondition for the mismatched result.

The movement and visibility operators in RGL are the only relations that can be in

the <resultList> of the “moveresult” statement. The movement operators are:

place, remove, move, replace. The movement operators are the functions that

actually change the state of the game by moving pieces.

place(P,T) – places a piece P at the given location T.

remove(P,F) – removes the specified piece P from the location F.

74

move(P,F,T) – moves the specified piece P from one location F to another

location T. This function is just a shorthand way of writing remove(P,F) and

place(P,T).

replace(P,T,N) – removes piece P from location T, and replaces it with

piece N. This function is just a shorthand way of writing remove(P,T) and

place(N,T).

Another relation that is restricted to the <resultList> of the “moveresult”

statement is the “reveal” statement. To provide support for games with hidden

information, all attributes of all pieces are considered hidden from all players until these

attributes are revealed to them. This visibility operator allows players to become aware

of the attributes of specific pieces. It does not actually change the state of the game, but

it can change a player’s perception of the game state.

reveal(Y,P,T,A) – reveals to player Y, the attribute A of piece P at location

T.

The movement and visibility operators are the only relations allowed in the

<resultList> of the “moveresult” statement and these operators cannot appear in

any other context except the <resultList> of the “moveresult” statement.

Movement for the example game of Tic-Tac-Toe is shown in Figure 22, Figure

23, and Figure 24.

75

moveprecon(Player,place(Piece,To)):-
 whoseturn(Player)
 owner(Player,Piece)
 onboard(To)
 not(pieceAt(_,To)).

Figure 22. Precondition rules for placing a mark.

The active player is allowed to place their own piece on the board in any location that

does not already contain a piece. Notice in Figure 22 that the onboard(To) and

pieceAt(_,To) conditions are both distinguished conditional relations in RGL. The

whoseturn(Player) and owner(Player,Piece) conditions are specific to this

game definition.

moveresult(Player,place(Piece,To),
 [
 place(Piece,To),
 reveal(all,Piece,To,front),
 replace(Player,whoseturn,Next),
 reveal(all,Next,whoseturn,front)
]
):-
 nextPlayer(Player,Next).

Figure 23. Result rules for placing a mark in Tic-Tac-Toe.

The result of placing a piece (as described in Figure 23) is to a) place the piece, b) reveal

this fact to all the players, c) replace the piece indicating whose turn it is, d) reveal whose

turn it is to all players.

76

% ----------------
% -- PASS
moveprecon(Player,pass):-
 not(whoseturn(Player)).

moveresult(Player,pass,[]).

Figure 24. Rules for non-active player to pass.

In our example game, players do not move simultaneously; only one player is allowed to

move at one time. Therefore the statements given in Figure 24 allow the inactive player

to pass.

15.9 Game Over

The “gameover” statement indicates the termination conditions under which the

game ends. In Tic-Tac-Toe, the game terminates when a player has made three marks in a

row or when the board is full and players have no more legal moves.

gameover:- threeinarow(_).
gameover:- not(legal(_,_)).

The “score” statement indicates how each player should view the results of a

game. Each player is assigned an integer value from between 0 and 100. Zero being bad

and 100 being defined as good. For games where one player wins and another loses, the

“winning” player could receive 100 points while the other player receives zero points.

The 100 points can also be divided amongst the players in other ways. Cooperative

games might assign identical scores to players on the same “team”. Single player puzzles

might assign credit for partially completing goals. Multi-player games can assign

progressive amounts to 1st, 2nd and 3rd place.

77

Continuing our Tic-Tac-Toe example, the following statements indicate the score

for each player. Tic-Tac-Toe games often end in ties, and in this definition each player is

awarded 50 points when that occurs.

score(playerx,100):- threeinarow(x).
score(playerx,0) :- threeinarow(o).
score(playerx,50).
score(playero,100):- threeinarow(o).
score(playero,0) :- threeinarow(x).
score(playero,50).

Note that the function “threeinarow(_)” is not part of the language

definition but rather a helper function defined by the game designer specifically for this

implementation of the game.

78

16. SUMMARY OF PART II

This part of the dissertation has discussed the structure of games and the general

issues involved in construction of a language to support all board games. Chapter 13

introduced several areas of research that are related to games and outlines structures that

are important in the definition and analysis of games. Chapter 14 introduced the Regular

Game Language which is capable of describing not only two player, perfect information

games such as Chess and Checkers, but also stochastic games such as Backgammon, and

imperfect information games such as Bridge and Stratego. Chapter 15 described the

syntax of the Regular Game Language. The Regular Game Language will provide a

useful framework for future research in the area of General Game Playing.

79

17. CONCLUSIONS

Artificial Intelligence research in Computer Game Playing continues to expand

beyond the narrow confines of classic board games such as Chess and Checkers. The

Game Description Language and the recent AAAI General Game Playing and AAAI

Computer Poker competitions epitomize this interest.

This dissertation has two main contributions. It first describes the design and

implementation of a successful General Game Playing system. The main contribution

here is an original technique for automatically identifying critical game features by

examination of the game description and through self play. This method has been

incorporated into a fully autonomous agent that participated successfully in the second

AAAI General Game Playing competition which was held at the AAAI 2006 in Boston.

Our system, OGRE, came in fourth place.

Secondly we introduce the Regular Game Language which is the first General

Game Playing language to provide support for single and multiple players, imperfect and

perfect information, as well as deterministic and stochastic games. The Regular Game

Language will provide a useful framework for future research in the area of General

Game Playing. This framework can be used as the basis for machine learning in games

to provide comparisons between the games and to explore the effects of variations on

learning techniques.

80

REFERENCES

Abramsky, S. & McCusker, G. (1998). Game Semantics. In H. Schwichtenberg & U.
Berger (Eds.) Logic and Compuation: Proceedings of the 1997 Marktoberdorf
Summer School, Springer-Verlag.

Allis, L. V. (1994). Searching for solutions in games and artificial intelligence. (Doctoral
dissertation, University of Limburg, Maastricht, The Netherlands).

Berlekamp, E. R., Conway, J. H., & Guy, R. K. (2001) Winning Ways for your
Mathematical Plays (2nd ed.). Natick, MA: A.K. Peters.

Billings, D., Davidson, A. Schaeffer, J. Szafron, D. (2002) The Challenge of Poker.
Artificial Intelligence 134(1-2): 201-240.

Bratko, I. (1990). Prolog programming for artificial intelligence (2nd ed.). Wokingham,
England: Addison-Wesley.

Burns, B. (1998) (ed.) The Encyclopedia of Games. London: Brown Packaging Books,
Ltd.

Campbell, M., Hoane, A. J., Jr., & Hsu, F. (2002, January). Deep Blue. Artificial
Intelligence, 134(1-2), 57-83.

Condon, A. (1989). Computational models of games. Cambridge, MA: MIT Press.

Conway, J. H. (1976). On Numbers and Games. London: Academic Press.

Epstein, S. (1994). Identifying the right reasons: Learning to filter decision makers. In
Proceedings of the AAAI 1994 Fall Symposium on Relevance, 68-71. New
Orleans, LA: AAAI Press.

Epstein, S., Gelfand, J. and Lesniak, J. (1996). Pattern-based learning and spatially-
oriented concept formation in a multi-agent, decision-making expert.
Computational Intelligence, 12(1), 199-221.

Fikes, R. & Nilsson, N. (1971). STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. In Proceedings of Second International
Joint Conference on Artificial Intelligence (pp. 608-620). Los Altos, CA: William
Kaufmann, Inc.

Fikes, R., Frank, G., & Jenkins, J. (2003). JTP: A system architecture and component
library for hybrid reasoning. In Proceedings of the 7th World Multi-Conference
on Systemics, Cybernetics and Informatics, Orlando, Florida, USA.

81

Fürnkranz, J. (2001). Machine learning in games: A survey. In J. Fürnkranz & M. Kubat
(Eds.) Machines That Learn to Play Games (pp. 11-59). Commack, NY: Nova
Science Publishers.

Gardner, M. (1970). The fantastic combinations of John Conway's new solitaire game
"Life". Scientific American, 223(4), 120-123.

Genesereth, M. (1991). Knowledge Interchange Format. In: J. Allen, R. Fikes, & E.
Sandewall (Eds.) Principles of Knowledge Representation and Reasoning:
Proceedings of the Second International Conference (KR’91). San Fransisco,
California: Morgan Kaufmann Publishers.

Genesereth, M., Love, N., & Pell, B. (2005). General game playing: Overview of the
AAAI competition. AI Magazine, 26(2), 62-72.

Gherrity, M. (1993) A Game-Learning Machine. (Doctoral dissertation, University of
California, San Diego, California).

Gould, J. & Levinson, R. (1992) Experience-Based Adaptive Search, In R. S. Michalski
& G. Tecuci (Eds.) Machine Learning: A Multi-Strategy Approach, (Vol 4.), pp.
579-604. San Fransisco, CA: Morgan Kaufman

Greenblatt, R., Eastlake, D., & Crocker, S. (1967). The Greenblatt Chess Program,
Proceedings of the AFIPS Fall Joint Computer Conference (31), 801-810.
Reprinted (1988) in Computer Chess Compendium (ed. D.N.L. Levy), pp. 56-66.
New York: Springer-Verlag Inc.

Guyon, I., & Elisseeff, A. (2006). An Introduction to Feature Extraction. In: I. Guyon, S.
Gunn, M. Nikravesh, & L. Zadeh (Eds.), Feature Extraction, Foundations, and
Applications. Series Studies in Fuzziness and Soft Computing. New York:
Springer.

Halck, O. M. & Dahl, F.A. (1999). On Classification of Games and Evaluation of Players
– With Some Sweeping Generalizations About the Literature. In: J. Fürnkranz &
M. Kubat (Eds.), Proceedings of the 16th International Conference on Machine
Learning (ICML-99) Workshop on Machine Learning in Game Playing,
Ljubljana, Slovania: Jozef Stefan Institute.

Japaridze, G. (2003). Introduction to Computability Logic. Annals of Pure and Applied
Logic 123, (pp. 1-99).

Japaridze, G. (2006). Computability Logic: A Formal Theory of Interaction. In D.
Goldin, S. Smolka & P. Wegner (Eds.) Ineractive Computation: The New
Paradigm. (pp 183-223) Berlin: Springer-Verlag.

Kaiser, D. (2000). A Generic Game Playing Machine, unpublished master’s thesis,
Florida International University, Miami, Florida.

82

Kaiser, D. (2005). The Structure of Games, In Proceedings of the 43rd Annual Southeast
Regional Conference. (Kennesaw, Georgia, March 18 – 20, 2005) ACM-SE 43.
ACM Press.

Kaiser, D. (2007a). The Design and Implementation of a Successful Autonomous Game
Playing Agent. Proceedings of the 20th International Florida Artificial
Intelligence Research Society Conference. FLAIRS 2007. May 7-9, 2007 Key
West, Florida, USA

Kaiser, D. (2007b). Automatic Feature Extraction for Autonomous General Game
Playing Agents. Proceedings of the Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems. AAMAS’07. May 14-18, 2007
Honolulu, Hawaii, USA

Knuth, D. E. (1973). The Art of Computer Programming. Volume 3: Sorting and
Seaqrching. Reading, MA: Addison-Wesley Publishing Company.

Knuth, D. E. (1988). The Art of Computer Programming, volume 2: Seminumerical
Algorithms, (3rd ed.), p 232. Boston: AddisonWesley.

Korf, R., Reid, M., Edelkamp, S. (2001, June). Time Complexity of Iterative Deepening-
A*, Artificial Intelligence, 129(1-2), 199-218.

Kuhlmann, G., Dresner, K., & Stone, P. (2006). Automatic Heuristic Construction in a
Complete General Game Player. In Proceedings of the Twenty First National
Conference on Artificial Intelligence. 1457-1462.

Levinson, R. (1994). MORPH II: A universal agent: Progress report and proposal.
Technical Report Number UCSC-CRL-94-22, Department of Computer Science,
University of California, Santa Cruz, Jack Baskin School of Engineering.

Levinson, R. (1995). General game playing and reinforcement learning. Technical
Report, Number UCSC-CRL-95-06, Department of Computer Science, University
of California, Santa Cruz, Jack Baskin School of Engineering..

Levy, D. N. L., & Newborn, M. M. (1991). How Computers Play Chess. New York:
W.H. Freeman and Company.

Love, N. (2006). General Game Playing Competition Results. Retrieved September 24,
2006, from http://games.stanford.edu/2006results.html

Luckhardt, C. & Irani, K. (1986) An Algorithmic Solution of n-Person Games. In
Proceedings of the Ninth National Confernce on Artificial Intelligence (AAAI-
86): 158-162.

Mallet, J. & Lefler, M. (2007) Zillions of Games. Retreived on June 24, 2007 from
http://www.zillions-of-games.com/

83

Orwant, J. (2000). EGGG: Automated programming for game generation. IBM Systems
Journal, 39(3/4): 782-794.

Parikh, R. (1985). The Logic of Programs: New Directions. In M. Karpinski and J. van
Leeuwen (Eds.) Topics in the Theory of Compuations, Annals of Discrete
Mathematics 24, Elsevier.

Pell, B. (1993). Strategy Generation and Evaluation for Meta-Game Playing. (Doctoral
dissertation, University of Cambridge, Cambridge, UK).

Pell, B. (1995). A Strategic Metagame Player for General Chess-Like Games.
Computational Intelligence, 11(4), 1995.

Rendal, P. (2002). Turing universality of the game of life. In A. Adamatzky (ed.)
Collision-Based Computing. (pp. 513-539) London: Springer-Verlag.

Riazanov, A. & Voronkov, A. (2003). Limited Resouce Stategy in Resolution Theorem
Proving, Journal of Symbolic Computation, 36(1-2).

Romein, J. (2001). Multigame - An environment for Distributed Game-Tree Search.
(Doctoral dissertation, Faculty of Sciences, Department of Mathematics and
Computer Science, Vrije Universiteit, Amsterdame, the Netherlands).

Russel, S., & Norvig, P. (2003). Artificial Intelligence, A Modern Approach (2nd Ed.),
Prentice Hall International, Inc.

Sakuta, M., & Iida, H. (2000). Solving Kriegspiel-Like Problems: Exploiting a
Transposition Table, ICGA JOURNAL, 23(4): 218-229.

Samuel, A. (1959, March 03). Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development (3), 210-229.

Schaeffer, J., Treloar, N., Lu, P., & Bryant, M. (1994). Chinook: The Man-Machine
World Checkers Champion. AI Magazine. 17(1): 21-29.

Schulz, S. (2001). System Abstract: E 0.61. Proceedings of First International Joint
Conference on Automated Reasoning (JCAR), Siena Italy, (June 18-23) 370-375.

Shannon, C. (1950, March). Programming a Computer for Playing Chess. Philosophical
Magazine, Ser. 7, 41(314).

Sturtevant, N. R., & Korf, R. E. (2000). On pruning techniques for multi-player games. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artificial Intelligence (July 30 –
August 03, 2000), 201-207. AAAI Press / The MIT Press.

84

Sutcliffe, G. & Suttner, C. (1998). The TPTP Problem Library: CNF Release v1.2.1,
Journal of Automated Reasoning, 21(2), 177-203.

Sutcliffe, G., Fuchs, M. & Suttner, C. (2000). Progress in Automated Theorem Proving,
1997-1999. Technical Report TR-ARP-11-00, Australian National University.

Sutcliffe, G. (2001). The CADE-17 ATP System Competition, Journal of Automated
Reasoning, 27(3), 227-250.

Tammel, T. (1997). Gandalf. Journal of Autmated Reasoning. 18(2), 199-204.

Utgoff, P.E. (2001). Feature construction for game playing. In J. Fürnkranz & M. Kubat
(Eds.), Machines That Learn to Play Games. 131-152. Commack, NY: Nova
Science Publishers.

Voronkov, A. (1994) Implementing Bottom-up Procedures with Code-Trees: A Case
Study of Forward Subsumption. Technical Reprot no. 88. Computing Science
Department, Uppsala University.

Wegner, P. (1997). Why Interaction is More Powerful than Algorithms. Communications
of the ACM 40(5).

Welford, B. P. (1962). Note on a method for calculating sums of squares and products.
Technometrics 4(3): 419-420.

Williams, J. D. (1986). The Compleat Strategyst: Being a primer on the Theory of Games
of Strategy. New York: Dover Publications Inc.

Zobrist, A. L. (1970). A New Hashing Method with Application for Game Playing.
Technical Report #88, Computer Science Department, The University of
Wisconsin, Madison WI, USA Reprinted (1990) in ICCA Journal, 13(2), pp 69-
73.

85

APPENDIX A – Sample Game Definitions

This section contains two sample games defined in the Regular Game Language: Tic-
Tac-Toe, and Stratego.

/*
 * The Game of TicTacToe
 */

/***
 *** DEFINITION
 ***/

% ------------------------------
% define the players
player(x).
player(o).

% --------------------------------
grid(3,3).

otherlocations([whoseturn]).

whoseturn(P):- pieceAt(P,whoseturn).
nextPlayer(x,o).
nextPlayer(o,x).

%----------------------------
% when is the game over.
gameover:- threeinarow(_).
gameover:- not(precon(X,Y)).

%----------------------------
% who wins?
score(x,100):- threeinarow(x).
score(x,0) :- threeinarow(o).
score(x,50).
score(o,100):- threeinarow(o).
score(o,0) :- threeinarow(x).
score(o,50).

% -- init(+Location,+PieceList).
% -- shorthand version of piece creation.
init(whoseturn,[x]).

% -- initVisible(+location,+attr,+who).
initVisible(whoseturn,front,all).
initVisible(whoseturn,back,all).

86

/***
 *** HELPER PREDICATES
 ***/

threeinarow(P):-
 pieceAt(P,X/1),
 pieceAt(P,X/2),
 pieceAt(P,X/3).

threeinarow(P):-
 pieceAt(P,a/X),
 pieceAt(P,b/X),
 pieceAt(P,c/X).

threeinarow(P):-
 pieceAt(P,a/1),
 pieceAt(P,b/2),
 pieceAt(P,c/3).

threeinarow(P):-
 pieceAt(P,a/3),
 pieceAt(P,b/2),
 pieceAt(P,c/1).

/***
 *** PIECES
 ***/

%----------------------------------
% what do the pieces look like?
attrImage(x,front,'x').
attrImage(o,front,'o').
attrImage(x,back,'x').
attrImage(o,back,'o').

%----------------------------------
% define piece attributes
owner(x,x).
owner(o,o).

/***
 *** MOVEMENT
 ***/
% ---
% define placement
precon(Player,place(Piece,To)):-
 whoseturn(Player),
 owner(Player,Piece),
 onboard(To),
 not(pieceAt(_,To)).
result(Player,place(Piece,To),
 [
 place(Piece,To),

87

 reveal(all,Piece,To,front),
 reveal(all,Piece,To,back),
 replace(Player,whoseturn,Next),
 reveal(all,Next,whoseturn)
]
):-
 nextPlayer(Player,Next).

% ----------------
% -- PASS
precon(Player,pass):-
 not(whoseturn(Player)).
result(Player,pass,[]).

/********************** EOF ************************/

88

/*
 * A small version of the Game of Stratego
 */

/***
 *** STRATEGO: DEFINITION
 ***/

% ------------------------------
% define the players
player(r).
player(b).

% --------------------------------
% grid(X,Y)
grid(4,10).

otherlocations([redhand,bluehand,whoseturn]).

zone(redzone,[a/1,a/2,
 b/1,b/2,
 c/1,c/2,
 d/1,d/2
]).

zone(bluezone,[a/9,a/10,
 b/9,b/10,
 c/9,c/10,
 d/9,d/10
]).

inzone(Location,Zone):-
 zone(Zone,ZList),
 member(Location,ZList).

whosezone(r,redzone).
whosezone(b,bluezone).

whosehand(r,redhand).
whosehand(b,bluehand).

whoseturn(P):- pieceAt(P,whoseturn).
nextPlayer(r,b).
nextPlayer(b,r).

%----------------------------
% put some pieces on the board.

gameover:- not(pieceAt(bf,_)).
gameover:- not(pieceAt(rf,_)).
gameover:- whoseturn(r),not(precon(r,_)).
gameover:- whoseturn(b),not(precon(b,_)).

score(r,100):- not(pieceAt(bf,_)).
score(r,0) :- not(pieceAt(rf,_)).

89

score(r,50).
score(b,100):- not(pieceAt(rf,_)).
score(b,0) :- not(pieceAt(bf,_)).
score(b,50).

% -- init(+Location,+PieceList).
% -- shorthand version of piece creation.
%%init(redhand, [r1,r2,r3,r3,r4,r4,r4,

r5,r5,r5,r6,r6,r6,
r7,r7,r7,r8,r8,r8,
r9,r9,r9,rs,
rm,rm,rm,rm,rm,rm,rf]).

%%init(bluehand,[b1,b2,b3,b3,b4,b4,b4,
b5,b5,b5,b6,b6,b6,
b7,b7,b7,b8,b8,b8,
b9,b9,b9,bs,
bm,bm,bm,bm,bm,bm,bf]).

init(redhand, [r1,r2,r3,r4,r8,rs,rm,rf]).
init(bluehand,[b1,b2,b3,b4,b8,bs,bm,bf]).
init(whoseturn,[r]).

% -- initVisible(+location,+attr,+who).
initVisible(redhand,front,red).
initVisible(redhand,back,all).
initVisible(bluehand,front,blue).
initVisible(bluehand,back,all).
initVisible(whoseturn,front,all).
initVisible(whoseturn,back,all).

/***
 *** STRATEGO: PIECES
 ***/

%----------------------------------
% what do the pieces look like?
attrImage(b1,front,'1').
attrImage(b2,front,'2').
attrImage(b3,front,'3').
attrImage(b4,front,'4').
attrImage(b5,front,'5').
attrImage(b6,front,'6').
attrImage(b7,front,'7').
attrImage(b8,front,'8').
attrImage(b9,front,'9').
attrImage(bs,front,'S').
attrImage(bm,front,'M').
attrImage(bf,front,'F').

attrImage(r1,front,'1').
attrImage(r2,front,'2').
attrImage(r3,front,'3').
attrImage(r4,front,'4').
attrImage(r5,front,'5').
attrImage(r6,front,'6').

90

attrImage(r7,front,'7').
attrImage(r8,front,'8').
attrImage(r9,front,'9').
attrImage(rs,front,'S').
attrImage(rm,front,'M').
attrImage(rf,front,'F').

attrImage(b1,back,'B').
attrImage(b2,back,'B').
attrImage(b3,back,'B').
attrImage(b4,back,'B').
attrImage(b5,back,'B').
attrImage(b6,back,'B').
attrImage(b7,back,'B').
attrImage(b8,back,'B').
attrImage(b9,back,'B').
attrImage(bs,back,'B').
attrImage(bm,back,'B').
attrImage(bf,back,'B').

attrImage(r1,back,'r').
attrImage(r2,back,'r').
attrImage(r3,back,'r').
attrImage(r4,back,'r').
attrImage(r5,back,'r').
attrImage(r6,back,'r').
attrImage(r7,back,'r').
attrImage(r8,back,'r').
attrImage(r9,back,'r').
attrImage(rs,back,'r').
attrImage(rm,back,'r').
attrImage(rf,back,'r').

attrImage(b,front,'b').
attrImage(b,back,'b').
attrImage(b,front,'r').
attrImage(b,back,'r').

%----------------------------------
% define piece attributes
owner(b,b1).
owner(b,b2).
owner(b,b3).
owner(b,b4).
owner(b,b5).
owner(b,b6).
owner(b,b7).
owner(b,b8).
owner(b,b9).
owner(b,bs).
owner(b,bm).
owner(b,bf).
owner(r,r1).
owner(r,r2).
owner(r,r3).

91

owner(r,r4).
owner(r,r5).
owner(r,r6).
owner(r,r7).
owner(r,r8).
owner(r,r9).
owner(r,rs).
owner(r,rm).
owner(r,rf).

value(b1,1).
value(b2,2).
value(b3,3).
value(b4,4).
value(b5,5).
value(b6,6).
value(b7,7).
value(b8,8).
value(b9,9).
value(bs,s).
value(bm,m).
value(bf,f).
value(r1,1).
value(r2,2).
value(r3,3).
value(r4,4).
value(r5,5).
value(r6,6).
value(r7,7).
value(r8,8).
value(r9,9).
value(rs,s).
value(rm,m).
value(rf,f).

movableTypes([1,2,3,4,5,6,7,8,s]).
movable(Piece):-
 value(Piece,PValue),
 movableTypes(MList),
 member(PValue,MList).

/***
 *** STRATEGO: MOVEMENT
 ***/
% ---
% define placement
precon(Player,place(Piece,From,To)):-
 player(Player),
 whosehand(Player,From),
 whosezone(Player,Zone),
 owner(Player,Piece),
 pieceAt(Piece,From),
 inzone(To,Zone),

92

 not(pieceAt(_,To)).
result(Player,place(Piece,From,To),

[reveal(all,Piece,To,back),
move(Piece,From,To),
reveal(Player,Piece,To,front)]).

% ---
% define movement

% ---------
% -- ATTACK
precon(Player,amove(Piece,From,To)):-
 player(Player),
 whoseturn(Player),
 whosehand(Player,H),
 not(pieceAt(AnyPiece,H)),
 owner(Player,Piece),
 movable(Piece),
 pieceAt(Piece,From),
 pieceAt(EPiece,To),
 path(From,To),
 not(owner(Player,EPiece)).
% P = Spy, E equals 1.
result(Player,amove(Piece,From,To),

[reveal(all,EPiece,To),
remove(EPiece,To),
move(Piece,From,To),
reveal(all,Piece,To),
replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 value(Piece,s),

 pieceAt(EPiece,To),
 value(EPiece,1).
% P = Spy, E equals Sply.
result(Player,amove(Piece,From,To),

[remove(Piece,From),
remove(EPiece,To),
replace(Piece,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 value(Piece,s),
 pieceAt(EPiece,To),

 value(EPiece,s).
% P = Spy, E not 1.
result(Player,amove(Piece,From,To),

[reveal(all,EPiece,To),
reveal(all,Piece,From),
remove(Piece,From),
replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 value(Piece,s),

 pieceAt(EPiece,To),

93

 value(EPiece,PValue),
 PValue \= 1.

% E = Mine, P equals Miner.
result(Player,amove(Piece,From,To),

[reveal(all,EPiece,To),
remove(EPiece,To),
move(Piece,From,To),
reveal(all,Piece,To),
replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 pieceAt(EPiece,To),
 value(Piece,8),
 value(EPiece,m).
% E = Mind, P not Miner.
result(Player,amove(Piece,From,To),

[reveal(all,EPiece,To),
reveal(all,Piece,To),
remove(Piece,From),
replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 pieceAt(EPiece,To),
 value(Piece,PValue),

 PValue \= 8,
 value(EPiece,m).
% E = Flag.
result(Player,amove(Piece,From,To),

[reveal(all,EPiece,To),
reveal(all,Piece,To),
remove(EPiece,To),
move(Piece,From,To),
replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 pieceAt(EPiece,To),
 value(EPiece,f).
% P better than E.
result(Player,amove(Piece,From,To),

[reveal(all,EPiece,To),
reveal(all,Piece,To),
remove(EPiece,To),
move(Piece,From,To),
replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 pieceAt(EPiece,To),
 value(Piece,PValue),
 value(EPiece,EValue),
 PValue > EValue.
% E better than P.
result(Player,amove(Piece,From,To),

[reveal(all,EPiece,To),
reveal(all,Piece,To),
remove(Piece,From),

94

replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 pieceAt(EPiece,To),
 value(Piece,PValue),
 value(EPiece,EValue),
 PValue < EValue.
% P equals E.
result(Player,amove(Piece,From,To),

[reveal(all,EPiece,To),
reveal(all,Piece,From),
remove(Piece,From),
remove(EPiece,To),
replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]) :-

 nextPlayer(Player,Next),
 pieceAt(EPiece,To),
 value(Piece,PValue),
 value(EPiece,EValue),
 PValue = EValue.

% ----------------
% --- simple MOVE
precon(Player,move(Piece,From,To)):-
 player(Player),
 whoseturn(Player),
 whosehand(Player,H),
 not(pieceAt(AnyPiece,H)),
 owner(Player,Piece),
 movable(Piece),
 pieceAt(Piece,From),
 path(From,To),
 not(pieceAt(_,To)).
result(Player,move(Piece,From,To),

[reveal(all,Piece,To,back),
reveal(Player,Piece,To,front),
move(Piece,From,To),
replace(Player,whoseturn,Next),
reveal(all,Piece,whoseturn)]):-

 nextPlayer(Player,Next).

% ----------------
% -- PASS
precon(Player,pass):-
 player(Player),
 not(whoseturn(Player)),
 whosehand(Player,H),
 not(pieceAt(AnyPiece,H)).
result(Player,pass,[]).

/********************** EOF ************************/

95

VITA

DAVID M. KAISER

2007 Doctoral Candidate in Computer Science,
 Florida International University

2000 Master’s of Science Degree in Computer Science
 Florida International University

1994 Bachelor’s of Science Degree in Computer Science
 Florida International University

PUBLICATIONS AND PRESENTATIONS

Kaiser, D. Automatic Feature Extraction for Autonomous General Game Playing Agents.
Proceedings of the Sixth International Joint Conference on Autonomous Agents and
Multiagent Systems. AAMAS’07. May 14-18, 2007 Honolulu, Hawaii, USA

Kaiser, D. The Design and Implementation of a Successful Autonomous Game Playing
Agent. Proceedings of the 20th International Florida Artificial Intelligence Research
Society Conference. FLAIRS 2007. May 7-9, Key West, Florida, USA

	Florida International University
	FIU Digital Commons
	10-18-2007

	The Structure of Games
	David Michael Kaiser
	Recommended Citation

	Microsoft Word - Dissertation36.doc

